The American Journal of Human Genetics Supplemental Data

Adjusting for Heritable Covariates Can Bias Effect Estimates in Genome-Wide Association Studies

Hugues Aschard, Bjarni J. Vilhjálmsson, Amit D. Joshi, Alkes L. Price, Peter Kraft

Figure S1. Illustrative examples of direct acyclic graphs.

Y is the outcome, *C* is a potential covariate, *g* is a predictor of interest, and *U* is an unmeasured variable that can results or depends on *Y*, *C* and *g*.

Figure S2. Statistical power in adjusted analysis

Statistical power when the genetic variant is differentially associated with two correlated phenotypes. Two traits *Y* and *C* are simulated with correlation ρ_{CY} varying from 0 to 0.9. A genetic variant *g* has a positive effect β_Y on *Y* and explains 0.015% (left panel) or 0.04% (right panel) of its variance; we vary the effect of g on *C* between $-\beta_Y$ and β_Y . a) We compared the power at 5x10⁻⁸ significance level to detect the g/Y association between the marginal model (unadjusted for *C*, red line) to the adjusted model (light grey to black plain line). b) We plotted the power to detect the marginal *g*/*C* association (light blue to dark blue plain line) while varying α , the significance level.

Figure S3. Effect of the adjustment on estimate

Upper panel presents $\hat{\beta}_Y$ the estimated effect of *G* on *Y* in the unadjusted model as a function of $\hat{\beta}_C$ the estimated effect of *G* on *C* across 1,000 replicates of 100,000 subjects (grey dots) and the regression line (black) when the correlation between *C* and *Y* is 0.5, $\beta_c = 0$ and $\beta_Y = 0$ (a) or $\beta_Y = 0.3$ (b). Upper plots also display $\Delta_{\hat{\beta}_Y} = \hat{\beta}_Y - \hat{\beta}_{Yadj}$ the change in estimates before and after the adjustment for *C* (blue dots). This change corresponds on average to the deviation of $\,\hat\beta_Y$ from β_Y . Bottom panel shows the correlation between $\hat{\beta}_C$ and the *p*-values of $\hat{\beta}_{Yadj}$, the estimate of G on Y after adjustment for C for the same replicates.

Figure S4. Opposite genetic effects between BMI and WHR/WC

Log₁₀ p-value of the observed proportion of SNP with effects in opposite direction when assuming a binomial distribution with probability 0.5, when filtering out SNPs based on their *p*-value for association with BMI.

Figure S5. QQplot under the null for three corrections.

We generated 10,000 replicates of 1,000 subjects. For each replicates we simulated normally distributed variables *Y*, *C* and *g,* so that *C* and *Y* display a correlation of 0.5 and *g* explained 1% of the variance of *C* but none of *Y*. We derived the inflation factor λ and plotted the observed distribution of *p*-value for tests of association between *Y* and *g* against its expected distribution. We considered a marginal model in the whole sample (black), a model adjusted for the raw values of *C* (grey) or after removing either the true effect of *g* on *C* (blue) or its estimated effect (green), a *C*-specific strata of the marginal model (*C*≥0, dark red dots, and *C*<0, light red), and a two-step procedure proposed by Vansteelandt et al^{[1](#page-11-1)} (orange).

Figure S6. Bias in covariate stratified analysis.

Outcome values (*Y*) as a function of a continuous predictor (*G*) in the total sample and in strata defined by a covariates (*C*). For simplicity all variables, *G, C* and *Y* are normally distributed and generated under model from Figure 1B. The plain lines are the regression lines for the association between *G* and *Y*. While there is no correlation between *Y* and *G* in the whole sample (a), *Y* and *G* display a negative correlation in each *C* strata (b).

SNP ^a	Risk Allele	BMI (<i>pval</i>)	$T2D$ (<i>pval</i>)	$T2D_{\text{adjBMI}}$ (pval)
rs2568958	A	3.77 $(1.2x10^{-11})$	0.0253 (0.038)	0.0170 (0.15)
rs10913469	C	3.36 $(6.2x10^{-8})$	-0.0044 (0.87)	-0.0177 (0.27)
rs7561317	G	6.12 $(4.2x10^{-17})$	0.0212 (0.22)	0.0000 (0.9)
rs7647305	C	4.42 (7.2×10^{-11})	0.0334 (0.036)	0.0128 (0.35)
rs2844479	Т	1.38 (0.003)	-0.0223 (0.11)	-0.0315 (0.028)
rs6265	G	4.58 $(5.1x10^{-10})$	-0.0088 (0.64)	-0.0269 (0.12)
rs925946	T	3.85 $(8.5x10^{-10})$	0.0170 (0.15)	0.0043 (0.73)
rs7138803	A	3.28 $(1.2x10^{-7})$	0.0453 (0.00023)	0.0334 (0.009)
rs7498665	G	3.63 $(3.2x10^{-10})$	0.0212 (0.069)	0.0128 (0.25)
rs6499640	A	5.26 $(4.0x10^{-13})$	0.0294 (0.027)	0.0086 (0.48)
rs8050136	A	8.04 $(1.1x10^{-47})$	0.0531 $(1.6x10^{-5})$	0.0212 (0.086)
rs12970134	A	4.38 $(1.2x10^{-12})$	0.0170 (0.18)	0.0000 (0.91)
rs29941	C	4.18 $(7.3x10^{-12})$	0.0043 (0.7)	0.0000 (0.96)

Table S1. Genetic effect estimates and p-value for association with T2D before and after adjustment for BMI

^a*We extracted SNPs found associated with BMI and/or weight and their estimated effect on BMI and T2D before and after adjustment for BMI from Thorleifsson et a[l](#page-11-2)2.*

SNPs with decreased p-value for association with T2D after the adjustment for BMI are indicated in bold.

Table S2. Additional examples of genetically-associated covariate GWAS

adjusting for either body mass index or height, for which effect estimates can be extracted from the GIANT consortium database[7](#page-11-7).

b *For each SNP selected we extracted from the GIANT consortium database[7](#page-11-7) their p-value for association with BMI or height when*

relevant, and the trait-increasing allele.

^c *GWAS the unadjusted p-value and estimates were not available (noted "na").*

Table S3. Mean chi-square for adjusted and unadjusted analysis across 15 null models

^aDAG: direct acyclic graph. For each DAG from FigureS1 we generated 10,000 replicates of 10,000 individuals. For simplicity *all true effects were defined so that independent variables explain 30% of the variance of the dependent variable. All effects were positives.*

^bG, Y and C are the genetic variant, the outcome and the covariate included in the adjusted model, respectively.

References

- 1. Vansteelandt, S., Goetgeluk, S., Lutz, S., Waldman, I., Lyon, H., Schadt, E.E., Weiss, S.T., and Lange, C. (2009). On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects. Genetic epidemiology 33, 394-405.
- 2. Thorleifsson, G., Walters, G.B., Gudbjartsson, D.F., Steinthorsdottir, V., Sulem, P., Helgadottir, A., Styrkarsdottir, U., Gretarsdottir, S., Thorlacius, S., Jonsdottir, I., et al. (2009). Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature genetics 41, 18-24.
- 3. Scott, R.A., Lagou, V., Welch, R.P., Wheeler, E., Montasser, M.E., Luan, J., Magi, R., Strawbridge, R.J., Rehnberg, E., Gustafsson, S., et al. (2012). Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature genetics 44, 991-1005.
- 4. Stergiakouli, E., Gaillard, R., Tavare, J.M., Balthasar, N., Loos, R.J., Taal, H.R., Evans, D.M., Rivadeneira, F., St Pourcain, B., Uitterlinden, A.G., et al. (2014). Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity.
- 5. Loth, D.W., Artigas, M.S., Gharib, S.A., Wain, L.V., Franceschini, N., Koch, B., Pottinger, T.D., Smith, A.V., Duan, Q., Oldmeadow, C., et al. (2014). Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nature genetics 46, 669-677.
- 6. Hancock, D.B., Eijgelsheim, M., Wilk, J.B., Gharib, S.A., Loehr, L.R., Marciante, K.D., Franceschini, N., van Durme, Y.M., Chen, T.H., Barr, R.G., et al. (2010). Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nature genetics 42, 45-52.
- 7. Speliotes, E.K., Willer, C.J., Berndt, S.I., Monda, K.L., Thorleifsson, G., Jackson, A.U., Lango Allen, H., Lindgren, C.M., Luan, J., Magi, R., et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature genetics 42, 937-948.