Genome-wide detection of DNA double-stranded breaks induced by

engineered nucleases

Richard L. Frock^{1,2,3,4}, Jiazhi Hu^{1,2,3,4}, Robin M. Meyers^{1,2,3}, Yu-Jui Ho^{1,2,3}, Erina Kii^{1,2,3} & Frederick W. Alt^{1,2,3,5}

¹Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA ²Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA

³Howard Hughes Medical Institute, Boston, Massachusetts, USA ⁴Equal Contribution

⁵Correspondence should be addressed to alt@enders.tch.harvard.edu

Contents	
Supplementary Fig. 1: Genome dot plot of Cas9:RAG1A prey junctions using LAM-PCR HTGTS	2
Supplementary Fig. 2: HTGTS libraries from Cas9:RAG1A-D	3
Supplementary Fig. 3: HTGTS library junction compositions	4
Supplementary Fig. 4: Hotspots are related to recurrent off-target nuclease activity	5
Supplementary Fig. 5: Off-target detection with varied culturing times post-transfection	6
Supplementary Fig. 6: Cas9:RAG1B bait HTGTS library from A549 cells	7
Supplementary Fig. 7: Prey joining outcomes at the bait break-site	8
Supplementary Fig. 8: Cas9n:RAG1A/G, A/E, A/F paired nickase targets	9
Supplementary Fig. 9: ATM and c-MYC TALEN HTGTS libraries	10-11
Supplementary Fig. 10: Analysis of I-Scel OT sites recovered by Cas9:RAG1B bait DSBs	12
Supplementary Fig. 11: Sequence analysis and in vitro cleavage assay for Cas9:EMX1 and Cas9:VEGFA	13
Supplementary Fig. 12: IR-treatment increases break-site chromosome junction enrichment	14
Supplementary Fig. 13: Cas9:RAG1B bait wide-spread low-level DNA DSB activity detection assay	15
Supplementary Fig. 14: ATM TALEN bait HTGTS libraries with increasing concentrations of transfected	16
ATM TALEN plasmids	10
Supplementary Fig. 15: RAG1B bait ATM TALEN titration HTGTS libraries	17-18
Supplementary Fig. 16: Increased amounts of Cas9:RAG1B plasmid does not greatly increase non-specific	19
DSB activity	10
Supplementary Table 1: Cas9 and TALEN target sites used to generate HTGTS libraries	20-22
Supplementary Table 2: Estimated HTGTS background for various libraries	23
Supplementary Table 3: Cas9:RAG1A off-target site mismatches and translocations	24
Supplementary Table 6: ATM TALEN off-target site sequences	25
Supplementary Table 7: C-MYC TALEN off-target site sequences	26
Supplementary Table 4: Cas9:RAG1B and I-Scel off-target site mismatches and translocations	27
Supplementary Table 5: Cas9:EMX1 and Cas9:VEGFA off-target site mismatches and translocations	28
Supplementary Table 8: Translocation cloning and off-target oligos	29-31
Supplementary References	32

Supplementary Figure 1. Human genome dot plot of Cas9:RAG1A prey junctions using LAM-PCR HTGTS. Joins to the (-) and (+) chromosomal orientations are displayed on the left and right sides of each chromosome respectively. Colored dots represent prey junction frequency within a 1.5Mb binned region. The following colors indicate the following frequencies: black = 1, red = 5, yellow =20, green = 100 blue = 500 pink =2,000. Barren areas of variable length occurred in and around centromeres or rDNA genes, consistent with mapping difficulties in these highly repetitive regions⁴⁷. Total junctions listed: 61,700; N=2.

Supplementary Figure 2. HTGTS libraries from Cas9:RAG1A-D. (a) RAG1 locus indicating RAG1B, RAG1C, and RAG1D targeted sites. Red arrow indicates cloning primer. (b-e) Circos plots show (b) Cas9:RAG1A, (c) Cas9:RAG1B, (d) Cas9:RAG1C, and (e) Cas9:RAG1D HTGTS libraries. No recurrent hotspots were detected for RAG1C and D. Biological replicates: N=6 each. Circos plots are presented as similarly as described in Fig 1 (see legend); junction scale: 10-20,000. See Supplementary Table 1 for total library sizes.

Supplementary Figure 3. HTGTS library junction compositions. (a) Filtered DNA sequence reads are composed of (from right to left) the bait primer (red arrow), the bait sequence (black rectangle) leading up to the junction (yellow box), followed by the aligned prey sequence (green rectangle). (b,c) Bait sequence junction distribution corresponds to predicted break-site position for Cas9:RAG1A-D libraries displayed as either (b) total junctions or (c) percent junctions (black dashed lines; N=6 each). Due to the constraints of sequencing length for Miseq and, correspondingly, primer positions from the bait DSB, bait junctions predominately display short resections (up to 25bp for most junctions) with some displaying longer resections leading up to the primer position; bait resections beyond the primer position are not detected with this method. However, this is not true for prey junctions, and for those which map to the break-site (See Supplementary Figure 7), we observe that >99% of resection events are within 15kb with an average of around 2-3 kb while less than 1% extends for up to 250-300 kb. (d-g) Junctions from HTGTS libraries are primarily composed of short micro-homologies and direct joins with a smaller proportion of junctions containing base pair insertions of variable lengths.

Supplementary Figure 4. Hotspots are related to recurrent off-target nuclease activity. (a) Diagram of bait 3' DSB ends translocating to a separate broken end resulting in direct and resected joins in both orientations. (b) Guide RNA sequence preference extrapolated from RAG1A OT sites. (c-e) Prey joining distribution to select OT sites from (c,d) Cas9:RAG1A or (e) Cas9:RAG1B bait DSBs. Plus and minus orientation junction enrichment are indicated by red and blue curves respectively. Dashed lines indicate predicted off-target cleavage site. Shaded area represents off-target sequence listed above each plot; red text indicates mismatch from targeted sequence and underlined nucleotides indicate the PAM.

Supplementary Figure 5. Off-target detection with varied culturing times post-transfection. Cas9:RAG1A-transfected 293T cells were cultured for 24hrs and 96hrs prior to DNA collection. HTGTS libraries indicate identification of similar off-target sites with fewer off-targets detected at 24hrs. Library replicates: 24hrs: N=2; 96hrs: N=2. Circos plots are similarly presented as in Fig. 1 (see legend). Junction scale range: 5-20,000.

Supplementary Figure 6. Cas9:RAG1B bait HTGTS library from A549 cells. Circos plot with red to yellow lines (high to low hotspot enrichment) linking the RAG1B bait to the RAG1B off-target hotspots (N=2). Circos plots are presented as similarly described in Fig. 1 (see legend). Junction scale range: 5-20,000.

Supplementary Figure 7. Prey joining outcomes at the bait break-site. (a) From a single bait DSB, nearby prey junctions are primarily derived from rejoining the original, but resected, DSB. Joining to broken ends of nearby spontaneous DSBs can result in deletions, inversions and excision circles depending on the position of the 2nd DSB relative to the bait and which broken end of the 2nd DSB is joined. (b) Targeting endogenous loci typically include the homologous chromosome and the homologous target site. Thus, joins to the homologous chromosome can occur which can lead to the formation of dicentric chromosomes. (c-e) Break-site prey junction enrichment for (c) Cas9:RAG1B, (d) Cas9:RAG1C, and (e) Cas9:RAG1D (1kb regions flanking the break-site). Orange boxes indicate Cas9 targeted site for the respective gRNA. Red bars indicate cleavage site. Total junctions for each quadrant are listed (N=6 for each).

Supplementary Figure 8. Cas9n:RAG1A/G, A/E, A/F paired nickase targets. (a) Sequences specific for RAG1A, G, E, and F gRNAs (yellow, red, green and blue highlight respectively) with variable length 5' overhangs (dashed lines connecting red arrowheads; PAM is underlined). (b,c) Prey junction distribution at the break-site for (b) Cas9n:RAG1A/G (N=6) and (c) Cas9n:RAG1A/E (N=2). Orange dashed lines indicate the (b) RAG1G or (c) RAG1E site relative to the RAG1A site (black dashed line). Break-site prey junction totals within 0.3kb are listed for each section including prey junctions between off-set nick sites. Preliminary data of RAG1A single nicking experiments do not yield high numbers of HTGTS junctions and no HTGTS hotspots of any kind. However, we detect small numbers of junctions at the break-site, which are 2-fold greater than vector control, indicating that nicks indeed can be converted into DSBs. In these controls, there appears to be few if any translocations to the homologous chromosome. Future studies using a separate bait-site (using a different nuclease class) to capture single nick DSBs (co-expression assay) will yield more information into the mechanisms associated with Cas9n-related single nick-driven DSBs.

Supplementary Figure 9. ATM and c-MYC TALEN HTGTS libraries. (a,b) Circos plots of genome-wide prey junctions cloned from the (a) ATM TALEN (left circos) and the (b) c-MYC TALEN (right circos) on chromosomes 11 and 8 respectively. Circos plots are similarly presented as in Fig. 1 (see legend). Junction scale range: 50-20,000. Interior colored lines linking the bait to prey hotspots (gradient: dark red to yellow = high to low enrichment) display the top ten percent of off-target sites identified for each TALEN library; N=3 each. (c) Cloning from 5' bait DSBs in TALEN libraries and outcomes associated with local joining (see Supplementary Figure 7a,b). (d,e) Relative to the primer (red arrow), downstream prey junctions beyond the break-site (middle dashed line) predominantly represent resections and deletions. Dicentric-forming upstream inversions at the break-site are enriched. Numbers in the lower left corner are total frequencies for each quadrant (N=3 each). (f) ATM and (g) C-MYC TALEN sequence preference derived from OT half-sites (Supplementary Tables 4 & 5). No ATM TALEN right half-site analysis was performed since only two sites were described.

Supplementary Figure 10. Analysis of I-Scel OT sites recovered by Cas9:RAG1B bait DSBs. (a) Relative junction frequency of RAG1B (N=6; blue) and (b) I-Scel (N=3; green) OTs. Error bars are displayed as S.E.M.. (b) Select I-Scel OT site showing focal prey junction enrichment. Plus and minus orientation junction enrichment are indicated by red and blue curves respectively. Vertical dashed lines indicate predicted off-target cleavage site. Shaded area represents off-target sequence listed above the plot; red text indicates mismatch from targeted sequence. (c) Nuclease sequence preference derived from both human and mouse²³ I-Scel OT sites. (d) I-Scel off-target sites were PCR amplified and either mock digested (U) or digested with I-Scel (C) with most sites efficiently cleaved. Asterisk indicates site with 2 identical off-target sequences.

Supplementary Figure 11. Sequence analysis and in vitro cleavage assay for Cas9:EMX1 and Cas9:VEGFA. (a) Nuclease sequence preference derived from Cas9:EMX1 and Cas9:VEGFA OT sites. (b) T7 Endonuclease I cleavage assay of RAG1B, VEGFA, and EMX1 gRNA on- and off-target sites. 293T genomic DNA sources were from non-transfected, Cas9:RAG1B alone, or in combination with VEGFA or EMX1 gRNAs. For Cas9:EMX on-target, black triangles indicate correct germline band. See online methods for measuring amplicon cleavage.

Supplementary Figure 12. IR-treatment increases break-site chromosome junction enrichment. (a,b) Circos plot comparison of (a) Cas9:RAG1A and (b) Cas9:RAG1A + IR libraries normalized to 75,000 junctions (N=6 and N=3 respectively). Note the change in dark red colored lines to lighter orange/yellow colored lines indicating a decrease in hotspot junction enrichment. (c,d) Dot plot of Cas9:RAG1A (red) and Cas9:RAG1A + IR (blue) (c) across the break-site chromosome 11 and (d) across a similar sized chromosome 12. Dot scale: 100kb. Enlarged dots with asterisks signify RAG1A OT sites or the on-target site (at the dashed line). (e,f) Circos plots of Cas9:RAG1A + IR OT bait HTGTS libraries from (e) chromosome 12 and (f) chromosome 19 (N=3 each). Maximum ranges for OT sites were derived from RAG1A chromosome 12 and chromosome 19 bait OT libraries respectively. Circos plots are similarly presented as in Fig. 1. Junction scale: 50-20,000.

Supplementary Figure 13. Cas9:RAG1B bait wide-spread, low level DSB activity detection assay. (a-d) Dot plot of break-site chromosome junctions from (a,b) RAG1B (N=6), (a) RAG1B + IR (N=3), and (b) RAG1B + C-MYC TALEN (N=3) HTGTS libraries using RAG1B as bait. A similar sized chromosome (12) is also displayed for (c,d) RAG1B, (c) RAG1B + IR, and (d) RAG1B + C-MYC TALEN. Dot scale: 100kb. Dashed line indicates break-site with enlarged dots representing the 100kb region of the break-site. For all HTGTS libraries shown in the figure, junctions within C-MYC OT sites (200 chromosome 11 sites, mean size/site: 990bp) were removed prior to normalization at 59,830 junctions.

Supplementary Figure 14. ATM TALEN bait HTGTS libraries with increasing concentrations of transfected ATM TALEN plasmids. (a-i) Circos plots displaying additional replicates of titrated ATM TALEN bait plasmids at (a,d,g) 1 μ g, (b,e,h) 3 μ g, and (c,f,i) 10 μ g each along with 20 μ g of Cas9:RAG1B prey plasmid as (a-c) the 1st set, (d-f) 2nd, and (g-i) 3rd replicate sets. The blue colored lines connect the ATM bait to RAG1B OT prey hotspots, and the red to yellow colored lines connect ATM bait to ATM OT prey hotspots. Circos plots are presented as similarly described in Fig. 1. Junction scale: set1:10-20,000; set 2: 20-20,000; set 3: 5- or 10-20,000.

17

Supplementary Figure 15. RAG1B bait ATM TALEN titration HTGTS libraries. Circos plots showing additional biological replicate sets of ATM titration RAG1B bait libraries for (a-e) 1-10 μ g of transfected ATM TALEN plasmids from Figure 5, and two replicate sets of RAG1B bait libraries with 20 and 100 μ g of transfected ATM TALEN plasmids. Blue colored lines link the RAG1B bait to RAG1B OT prey hotspots, and red to yellow colored lines link the RAG1B bait to ATM TALEN prey hotspots. Circos plots are presented as similarly described as in Fig. 1 (see legend). Junction scale: 10-20,000.

Supplementary Figure 16. Increased amounts of Cas9:RAG1B plasmid does not greatly increase non-specific DSB activity. (a-h) Increased amounts of transfected Cas9:RAG1B plasmid DNA at (a,e) 20µg, (b,f) 60µg, (c,g) 100µg, and (d,h) 150µg Cas9:RAG1B plasmid for (a-d) set1 and (e-h) set 2 HTGTS libraries. (i) Western analysis probing for FLAG-tagged Cas9 and a loading control Tubulin from 293T extracts transfected with increased amounts of Cas9:RAG1B plasmid DNA. Circos plots presented similarly as in Fig. 1 (see legend). Junction scale: 5-20,000.

Supplementary Table 1. Cas9 and TALEN target sites used to generate HTGTS libraries.

Bait: Cas9 endonuclease

Ехр	Nuclease/Locus	GFP	Total	Method	Library	Total Deit eligneed	Filtered
· ·			DNA			Balt aligned	Junctions
#1	Cas9:RAG1A	81%	100µg	EM-PCR	1	1,385,548	5,373
#2	Cas9:RAG1A	45%	100µg	EM-PCR	1	1,188,505	2,846
#3	Cas9:RAG1A	76%	<u>100µg</u>	EM-PCR	1	837,126	2,836
#4		89%	<u>100µg</u>		1	1,123,900	3,619
#5		90%	<u>50µg</u>		1	1,523,373	33,122
	Case.RAGTA	9170	50µg		6	7 600 042	42,911
TOTAL			suuµg		0	7,099,042	90,707
#1		400/	50		1	1 407 625	2 501
#1 #2	$\frac{Cas9.RAG1A - 2411S}{Cas9.RAG1A - 24brs}$	42%	50µg		1	646 784	2,301
ΤΟΤΔΙ	0030.10017 - 24113	4070	100ug		2	2 054 419	4 399
IUIAL			ισομα		-	2,004,413	4,000
#1	Cas9'RAG1A = 96hrs	62%	50	LAM-PCR	1	1 551 789	9 550
#2	Cas9:RAG1A – 96hrs	72%	50µg	LAM-PCR	1	811.246	4.045
TOTAL		, •	100µg		2	2.363.035	13.595
						,,	-,
#1	Cas9:RAG1A+IR	86%	50ua	LAM-PCR	1	777,941	62,344
#2	Cas9:RAG1A+IR	85%	50µg	LAM-PCR	1	949,984	83,302
#3	Cas9:RAG1A+IR	86%	50µg	LAM-PCR	1	765,342	60,525
TOTAL			150µg		3	2,493,267	206,171
#1	Cas9:RAG1A OT Chr19	81%	50µg	LAM-PCR	1	1,433,690	3,483
#2	Cas9:RAG1A OT Chr19	90%	50µg	LAM-PCR	1	1,343,499	10,878
#3	Cas9:RAG1A OT Chr19	91%	50µg	LAM-PCR	1	1,275,773	8,771
TOTAL			150µg		3	4,052,962	23,132
		0.00/	- ^		4	001.007	15.001
#1		86%	<u>50µg</u>	LAM-PCR	1	921,997	15,934
#2		85%	50µg		1	1,214,518	22,400
	Case.RAGTA OT CITTETIK	0070	<u>50μg</u>		2	2 404 266	<u> </u>
IUTAL			τουμά		5	3,494,200	55,411
#1	Cas9-RAG1A OT Chr12	81%	50.00		1	1 252 516	746
#2	Cas9:RAG1A OT Chr12	90%	50µg	LAM-PCR	1	1 235 424	13 702
#3	Cas9 [·] RAG1A OT Chr12	91%	50ug	LAM-PCR	1	1 134 490	2 711
TOTAL			150ua		3	3.622.430	17.158
#1	Cas9:RAG1A OT Chr12+IR	86%	50µq	LAM-PCR	1	1,183,240	25,223
#2	Cas9:RAG1A OT Chr12+IR	85%	50µg	LAM-PCR	1	1,105,648	29,601
#3	Cas9:RAG1A OT Chr12+IR	86%	50µg	LAM-PCR	1	1,358,359	32,528
TOTAL			150µg		3	3,647,247	87,352
#1	Cas9:RAG1A OT Chr7	90%	50µg	LAM-PCR	1	1,324,361	3,077
#2	Cas9:RAG1A OT Chr7	80%	<u>50µg</u>	LAM-PCR	1	581,954	1,389
#3	Cas9:RAG1A OT Chr7	87%	50µg	LAM-PCR	1	1,422,336	3,777
TOTAL			150µg		3	3,328,651	8,243
#1		Q20/	100 ~		1	1 2/1 606	1 901
#1 #2		/8%	100µg		1	1 235 718	2 044
#3	Cas9:RAG1B	66%	100µg	EM-PCR	1	798 151	1 693
#4	Cas9:RAG1B	87%	100µg	EM-PCR	1	883 814	1,000
#5	Cas9:RAG1B	90%	50ug	LAM-PCR	1	1,493,069	21.720
#6	Cas9:RAG1B	90%	50µa	LAM-PCR	1	1,478,753	28,036
TOTAL			500µg		6	7,131,201	59,848
#1	Cas9:RAG1B – A549	38%	200µg	LAM-PCR	2	2,308,874	2,489
#2	Cas9:RAG1B – A549	51%	100µg	LAM-PCR	1	1,351,727	2,540
TOTAL			300µg		3	3,660,601	5,029
#1	Cas9:RAG1B 60µg	68%	50µg	LAM-PCR	1	891,902	11,593
#2	Cas9:RAG1B 60µg	66%	<u>50μg</u>	LAM-PCR	1	552,083	4,767
TOTAL			100µg		2	1,443,985	16,360

#1	Cas9:RAG1B 100µg	65%	50µg	LAM-PCR	1	895,365	9,819
#2	Cas9:RAG1B 100µg	60%	50µg	LAM-PCR	1	1,113,910	5,350
TOTAL	-		100µg		2	2,009,275	15,169
#1	Cas9:RAG1B 150ug	59%	50ug	LAM-PCR	1	1,064,148	14,551
#2	Cas9:RAG1B 150µg	52%	50µg	LAM-PCR	1	1,104,544	5,840
TOTAL			100µg		2	2,168,692	20,391
							·
#1	Cas9 [·] RAG1B+IR	94%	50ug	LAM-PCR	1	1 110 892	47 639
#2	Cas9:RAG1B+IR	96%	50ug	LAM-PCR	1	1,140,162	39.555
#3	Cas9:RAG1B+IR	94%	50ug	LAM-PCR	1	1.188.273	46.621
TOTAL	-		150ug		3	3,439,327	133.815
						-,,	,
#1		57%	50.00	LAM-PCR	1	988 054	15 978
<u>#1</u>	Cas9:RAG1B +IScel	54%	50µg	LAM-PCR	1	1 163 969	10,676
#3	Cas9 [·] RAG1B +IScel	58%	50µg	LAM-PCR	1	976 679	9 900
ΤΟΤΔΙ		0070	150ug		3	3 128 702	36 554
	-		loopg		Ū	0,120,102	00,001
#1	Cas9 [:] RAG1B +Cas9 [:] FMX1	92%	50ug	LAM-PCR	1	1 358 175	19 474
#2	Cas9:RAG1B +Cas9:FMX1	87%	50µg	LAM-PCR	1	940 919	16 730
#3	Cas9:RAG1B +Cas9:EMX1	88%	50ug	LAM-PCR	1	699.736	714
TOTAL		0070	150ug		3	2,998,830	36.918
	-		loopg		Ū	2,000,000	00,010
#1	Cas9:RAG1B +Cas9:VEGEA	88%	50ug	LAM-PCR	1	1 265 815	1 996
#2	Cas9 RAG1B +Cas9 VEGEA	92%	50µg	LAM-PCR	1	769 647	14 352
#3	Cas9:RAG1B +Cas9:VEGFA	89%	50ug	LAM-PCR	1	712 697	12 103
ΤΟΤΑΙ		0070	150ug		3	2 748 159	28 451
	-		loopg		Ū	_,,	20,101
#1	Cas9 [.] RAG1B +ATM TALEN	88%	50ug	LAM-PCR	1	1 429 068	22 426
#2	Cas9:RAG1B +ATM TALEN	77%	50ug	LAM-PCR	1	823.007	24,473
#3	Cas9:RAG1B +ATM TALEN	78%	50ug	LAM-PCR	1	588,161	10.200
TOTAL	-		150ug	-	3	2.840.236	57.099
						,,	
#1	Cas9:RAG1B +MYC TALEN	88%	50ug	LAM-PCR	1	1,723,351	40,995
#2	Cas9:RAG1B +MYC TALEN	77%	50ug	LAM-PCR	1	1,006,825	34,443
#3	Cas9:RAG1B +MYC TALEN	75%	50µg	LAM-PCR	1	1,027,535	35,514
"0					^		
TOTAL	-		150µg		3	3,757,711	110,952
TOTAL	-		150µg		3	3,757,711	110,952
TOTAL	- Cas9:RAG1C	85%	150μg	EM-PCR	3	3,757,711 1,434,562	110,952 1,878
TOTAL #1 #2	- Cas9:RAG1C Cas9:RAG1C	85% 51%	150μg <u>100μg</u>	EM-PCR EM-PCR	3 1 1	3,757,711 1,434,562 1,238,636	110,952 1,878 1,512
TOTAL #1 #2 #3	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C	85% 51% 58%	150μg <u>100μg</u> <u>100μg</u> <u>100μg</u>	EM-PCR EM-PCR EM-PCR	3 1 1 1	3,757,711 1,434,562 1,238,636 743,963 244,989	110,952 1,878 1,512 407
#1 #2 #3 #4	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C	85% 51% 58% 89%	150μg <u>100μg</u> <u>100μg</u> <u>100μg</u>	EM-PCR EM-PCR EM-PCR EM-PCR	3 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 4,742,220	110,952 1,878 1,512 407 644
#1 #2 #3 #4 #5 #6	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C	85% 51% 58% 89% 85%	150μg 100μg 100μg 100μg 100μg 50μg	EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR	3 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,020,004	110,952 1,878 1,512 407 644 20,213 25,046
#1 #2 #3 #4 #5 #6	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C	85% 51% 58% 89% 85%	150μg 100μg 100μg 100μg 100μg 50μg 50μg	EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073	110,952 1,878 1,512 407 644 20,213 25,046 40,700
#1 #2 #3 #4 #5 #6 TOTAL	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C	85% 51% 58% 89% 85% 85%	150μg 100μg 100μg 100μg 100μg 50μg 50μg 500μg	EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 1 6	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073	110,952 1,878 1,512 407 644 20,213 25,046 49,700
TOTAL #1 #2 #3 #4 #5 #6 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C	85% 51% 58% 89% 85% 85%	150μg 100μq 100μq 100μq 100μq 50μq 50μq 500μg	EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073	110,952 1,878 1,512 407 644 20,213 25,046 49,700
TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C - Cas9:RAG1D	85% 51% 58% 89% 85% 85%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR	3 1 1 1 1 1 6 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,498,394	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 701
TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #2	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C - Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 85% 72% 56%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg 100μg 100μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR	3 1 1 1 1 1 6 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,552	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 422
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C - Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 85% 72% 56% 64%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg 100μg 100μg 100μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR EM-PCR	3 1 1 1 1 1 6 6 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 85% 72% 56% 64% 89%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg 100μg 100μg 100μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR	3 1 1 1 1 1 6 6 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg 100μg 100μg 100μg 50μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg 100μg 100μg 100μg 50μg 50μg 50μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 5	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8 076 520	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21 171
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #6 TOTAL	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C - Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87%	150μg 100μg 100μg 100μg 50μg 50μg 500μg 100μg 100μg 100μg 100μg 50μg 50μg 50μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 6	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87%	150μg 100μq 100μq 100μq 50μq 50μq 500μg 100μg 100μg 100μg 100μg 50μg 50μg 50μg 50μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 6 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87% 87% 75% 77%	150μg 100μq 100μq 100μq 50μq 50μq 500μg 100μq 100μq 100μq 100μq 50μg 50μg 50μg 50μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678
#0 #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87% 75% 77%	150μg 100μq 100μq 50μq 50μq 500μg 100μq 100μq 100μq 100μq 100μq 100μq 50μg 50μg 50μg 50μg 100μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 6 1 1 2	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638
#0 #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #1 #2 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87% 75% 77%	150μg 100μq 100μq 50μq 50μq 500μg 100μq 100μq 100μq 100μq 100μg 100μg 50μg 50μg 50μg 50μg 50μg 100μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 6 1 1 2	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638
#0 #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #1 #2 TOTAL #1 #2 TOTAL #1	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D	85% 51% 58% 89% 85% 85% 72% 56% 64% 89% 87% 87% 75% 77%	150μg 100μq 100μq 50μq 50μq 500μg 500μg 100μq 100μq 100μq 100μq 100μq 50μq 50μg 500μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 6 1 1 2 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436
#0 #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #1 #2 TOTAL #1 #2 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1B + ATM TALEN 100µg Cas9:RAG1B + ATM TALEN 10µg Cas9:RAG1B + ATM TALEN 10µg	85% 51% 58% 89% 85% 85% 72% 56% 64% 87% 87% 87% 75% 77% 75% 77% 86%	150μg 100μq 100μq 100μq 50μq 50μg 500μg 100μq 100μq 100μq 100μq 100μq 100μq 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 5	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 1 6 1 1 1 1 6 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912
#0 #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL #1 #2 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1B +ATM TALEN 100µg Cas9:RAG1B +ATM TALEN 10µg Cas9:RAG1B +ATM TALEN 10µg Cas9:RAG1B +ATM TALEN 10µg	85% 51% 58% 89% 85% 85% 72% 56% 64% 89% 87% 75% 77% 77% 96% 86% 87%	150μg 100μq 100μq 100μq 50μq 50μg 500μg 100μq 100μq 100μq 100μq 100μq 100μq 50μq 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 50μg 5	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 1 1 6 1 1 1 1 6 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331
#0 #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL #1 #2 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87% 75% 77% 77% 96% 86% 87%	150μg 100μq 100μq 100μq 50μq 50μq 500μg 100μq 100μq 100μq 100μq 100μq 50μq 50μq 50μg 50μg 50μg 50μg 50μg 100μg	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 2 1 1 1 3	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080 3,626,808	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331 87.679
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL #1 #2 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq	85% 51% 58% 89% 85% 72% 56% 64% 89% 87% 87% 75% 77% 75% 77% 86% 86% 87%	150μg 100μq 100μq 100μq 50μq 50μq 500μg 100μq 100μq 50μq 500μg 100μq 100μq 100μq 100μq 100μq 50μq	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080 3,626,808	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331 87,679
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL #1	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D - Cas9:RAG1B +ATM TALEN 100µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq	85% 51% 58% 89% 85% 85% 72% 56% 64% 85% 87% 87% 77% 77% 77% 96% 86% 87%	150μg 100μq 100μq 100μq 50μq 50μg 500μg 100μq 100μq 100μq 100μq 100μq 100μq 100μq 100μq 50μq	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080 3,626,808 760.330	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331 87,679 8,122
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D - Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq	85% 51% 58% 89% 85% 72% 56% 64% 85% 87% 72% 72% 64% 87% 87% 96% 86% 87%	150μg 100μq 100μq 100μq 50μq 50μq 500μg 100μq 100μq 100μq 100μq 100μq 100μq 100μq 100μq 50μq	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080 3,626,808 760,330 1,461,868	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331 87,679 8,122 41,457
#0 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL	Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq	85% 51% 58% 89% 85% 72% 56% 64% 85% 64% 87% 87% 75% 77% 77% 75% 77% 96% 86% 87% 87% 87% 83%	150μg 100μq 100μq 100μq 50μq	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080 3,626,808 760,330 1,461,868 1,293,894	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331 87,679 8,122 41,457 17,930
"TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 #3 #4 #5 #6 TOTAL #1 #2 TOTAL	- Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1C Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D Cas9:RAG1D - Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq Cas9:RAG1B +ATM TALEN 10µq	85% 51% 58% 89% 85% 72% 56% 64% 87% 87% 75% 77% 77% 96% 86% 87% 87% 87% 87% 83%	150μg 100μq 100μq 100μq 50μq	EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR EM-PCR EM-PCR EM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR LAM-PCR	3 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3,757,711 1,434,562 1,238,636 743,963 814,688 1,712,220 1,920,004 7,864,073 1,498,394 1,458,917 822,563 825,052 1,875,731 1,595,863 8,076,520 1,757,242 1,685,816 3,443,058 655,488 1,476,240 1,485,080 3,626,808 760,330 1,461,868 1,293,894 3,516.092	110,952 1,878 1,512 407 644 20,213 25,046 49,700 729 784 132 184 9,826 9,516 21,171 54,960 63,678 118,638 20,436 48,912 18,331 87,679 8,122 41,457 17,930 67,509

#1	Cas9:RAG1B +ATM TALEN 1µg	92%	50µg	LAM-PCR	1	678,188	7,418
#2	Cas9:RAG1B +ATM TALEN 1µg	77%	50µg	LAM-PCR	1	1,399,326	24,120
TOTAL			100µg		2	2,077,514	31,538

Bait: Cas9 D10A nickase

Ехр	Nuclease/Locus	GFP	Total DNA	Method	Library	Total Bait aligned	Filtered Junctions
#1	Cas9n:RAG1A/G	86%	100µg	EM-PCR	1	1,225,465	2,496
#2	Cas9n:RAG1A/G	88%	100µg	EM-PCR	1	1,489,939	2,018
#3	Cas9n:RAG1A/G	86%	100µg	EM-PCR	1	1,514,264	1,203
#4	Cas9n:RAG1A/G	91%	50µg	LAM-PCR	1	1,272,060	13,937
#5	Cas9n:RAG1A/G	90%	50µg	LAM-PCR	1	1,310,951	13,246
#6	Cas9n:RAG1A/G	92%	50µg	LAM-PCR	1	1,131,288	12,794
TOTAL			450µg		6	7,943,967	45,694
#1	Cas9n:RAG1A/E	89%	100µg	EM-PCR	1	1,409,177	3,826
#2	Cas9n:RAG1A/E	86%	50µg	LAM-PCR	1	1,078,141	13,796
TOTAL			150µg		2	2,487318	17,622
#1	Cas9:RAG1A/F	87%	100µg	EM-PCR	1	1,555,687	1,788
#2	Cas9:RAG1A/F	87%	50µg	LAM-PCR	1	1,196,599	10,502
TOTAL			150µg		2	2,752,286	12,290

Bait: TALEN endonuclease

Exp	Nuclease/Locus	GFP	Total DNA	Method	Library	Total Bait aligned	Filtered Junctions
#1	ATM TALEN	85%	50µg	LAM-PCR	1	1,629,352	22,844
#2	ATM TALEN	86%	50µg	LAM-PCR	1	440,065	10,760
#3	ATM TALEN	85%	50µg	LAM-PCR	1	1,058,993	35,553
TOTAL			150µg		3	3,128,410	69,157
#1	c-MYC TALEN	87%	50µq	LAM-PCR	1	957,292	62,473
#2	c-MYC TALEN	97%	50µg	LAM-PCR	1	1,043,966	24,886
#3	c-MYC TALEN	95%	50µg	LAM-PCR	1	1,130,927	20,993
TOTAL			150µg		3	3,132,185	108,352
#1	ATM 1µg +C9B:RAG1B 20µg	92%	50µg	LAM-PCR	1	1,288,833	2,227
#2	ATM 1µg +C9B:RAG1B 20µg	81%	50µg	LAM-PCR	1	1,816,729	22,633
#3	ATM 1µg +C9B:RAG1B 20µg	77%	50µg	LAM-PCR	1	1,659,566	15,185
TOTAL			150µg		3	4,765,128	40,045
#1	ATM 3µg +C9B:RAG1B 20µg	94%	50µq	LAM-PCR	1	1,262,584	21,345
#2	ATM 3µg +C9B:RAG1B 20µg	83%	50µg	LAM-PCR	1	1,580,141	28,890
#3	ATM 3μg +C9B:RAG1B 20μg	87%	50µg	LAM-PCR	1	1,575,902	37,100
TOTAL			150µg		3	4,418,627	87,335
#1	ATM 10µg +C9B:RAG1B 20µg	96%	50µg	LAM-PCR	1	1,104,338	25,359
#2	ATM 10µg +C9B:RAG1B 20µg	87%	50µg	LAM-PCR	1	1,403,545	67,220
#3	ATM 10µg +C9B:RAG1B 20µg	86%	50µg	LAM-PCR	1	1,463,665	59,393
TOTAL			150µg		3	3,971,548	151,972

Target DNA	Vector control	Vector control	Cas9:RAG1A	Cas9:RAG1B	Cas9:RAG1C	Cas9:RAG1D
HTGTS	EM-PCR	EM-PCR	EM-PCR	EM-PCR	EM-PCR	EM-PCR
cloning method	RAG1A/B	RAG1C/D	RAG1A/B	RAG1A/B	RAG1C/D	RAG1C/D
Input DNA	100µg	100µg	100µg	100µg	100µg 100µg	
Control DNA	NA	NA	Mouse	Mouse	Mouse	Mouse
Target Junctions	40	38	3,600	1,541	636	182
Control Junctions	-	-	23 19		5	5
Background	NA	NA	0.64%	1.23%	0.79%	2.75%

Supplementary Table 2. Estimated HTGTS background for various libraries

Target DNA	Vector control	Vector control	Cas9:RAG1A	Cas9:RAG1B	Cas9:RAG1C	Cas9:RAG1D
HTGTS	LAM-PCR	LAM-PCR	LAM-PCR	LAM-PCR	LAM-PCR	LAM-PCR
cloning method	RAG1A/B	RAG1C/D	RAG1A/B	RAG1A/B	RAG1C/D	RAG1C/D
Input DNA	50µg	50µg	50µg	50µg 50µg		50µg
Control DNA	NA	NA	Mouse	Mouse	Mouse	Mouse
Target Junctions	2,346	134	26,508	16,516	20,247	7,500
Control Junctions	-	-	191 113		206	94
Background	NA	NA	0.72%	0.68%	1.02%	1.25%

Chromo				Mie	Cas0: BAC1A	Cas0n: BAC1A	OT1	OT2	OT17
Chromo-	Nuclease/Locus	Off-target site sequence	(NGG)	WIIS-	Case.RAGIA	Eroquonov	Bait	Bait	Bait
some				match	Frequency	Frequency	Freq.	Freq.	Freq.
Chr11	Cas9:RAG1A	GCCTCTTTCCCACCCACCTT	GGGNNN	0	NA	NA	177.59	220.90	23.53
Chr19	DAZAP1 OT1	ACCCCTTCCCCACCTACCTT	GGGTCG	÷ 4	77.18***	0.18	NA	89.65	51.47
Chr12	47.0Mb OT2	TCCTCCTCCCCCCCCCCCTT	CAGACT	4	74.07***	0.26	121.84	NA	36.01
Chr7	155.9Mb OT3	CCCTCCTTCCCACCCACTTT	GGGTGA	3	40.46***	0.09	105.13	130.56	172.11
Chr15	SIN3A OT4	TCCTCTCTCCCACCCACCTC	CGGCTC	3	40.19***	0.20	137.20	174.13	37.91
Chr11	94.9Mb OT5	ACGTCTTCCCCACCCACCTG	GGGCCI	4	24.84***	-	7.33	19.21	13.55
Chr14	78.5Mb OT6	ACTTCCTTCCCACCCACCTT	CAGCCA	4	23.98***	0.09	54.95	88.34	34.48
Chr1	CACHD1 OT7	TCCTCTTCTCCACCCACCTC	TGGTTT	4	22.62***	-	33.59	63.81	25.28
Chr17	6.8Mb OT8	GTCTCTTTCTCACCCACTTT	GGGTTG	3	19.14***	-	68.77	78.62	29.64
Chr7	TARP OT9	CACCCTTTCCCATCCACCTT	TGGATA	4	17.57***	-	23.86	29.82	57.59
Chr7	112.9Mb OT10	GCCTCTTCCACACCCACCCT	GGGCCC	3	14.90***	-	33.84	88.24	270.44
Chr13	RB1 OT11	GCCTCTTTACCACCTCACCT	TGGGCA	5	8.03	-	20.78	39.41	24.20
Chr4	RBPJ OT12	TTCTCTTCCCCCCCCCCCTT	TG <mark>A</mark> GCT	4	7.87	-	8.05	18.23	5.45
Chr11	116.5Mb OT13	TCCTCTTCTCCACCCACCAT	AGGGTG	÷ 4	7.69	-	11.99	6.36	13.53
Chr20	ATRN OT14	GTCTCTTTCCCATCCACCTT	TG <mark>A</mark> TAA	3	6.01	-	12.18	20.92	20.96
Chr11	PCNXL3 OT15	GCCCCTACCCACCCACCTG	GG <mark>T</mark> GGA	5	5.62	-	5.76	1.46	0.88
Chr17	FBXL20 OT16	ACCTCTTATCCACCCACCTT	GG <mark>C</mark> CTC	: 4	4.49	0.09	38.21	44.59	28.79
Chr7	103.6Mb OT17	GCCTCTCCCCCCCCCCCCTT	GGCTTG	5 7	4.25	-	7.68	4.41	NA
Chr8	143.6Mb OT18	ACCTCCTTCCCGCCCACCTG	GGGCTC	: 4	3.43	-	39.66	34.66	39.52
Chr7	AGK OT19	ACCCCTTCCCCACTCACCTC	CGGGAI	5	3.12	-	0.69	1.95	12.90
Chr12	103.2Mb OT20	GCTTCTTCCCCACCCACACT	TGGTGG	÷ 4	2.82	0.1	3.90	26.07	21.15
Chr1	SLC35F3 OT21	CACCCTTCCCCACCCACCCT	GGGACC	5	2.27	-	4.51	3.43	7.65
Chr11	2.2Mb OT22	GCCCCTCCCCCCCCCCCT	GGGGGA	4	1.95	-	4.19	10.35	12.90
Chr22	SUN2/DNAL3 OT23	TGCTCTTCCCCACCCACCCA	AGGCCI	5	1.82	-	8.13	4.42	4.37
Chr1	33.6Mb OT24	ACCTCCATCCTCCCCACCTT	GGGTCT	5	1.54	-	1.37	0.73	1.08
Chr14	XRCC3 OT25	GGCTCCTCCTCACCCACCTC	TGGGTC	5	1.43	0.09	11.80	3.43	5.88
Chr17	LOC284009 OT26	GACTCTTTTCCACCCACCCT	AGGGGA	3	1.40	-	24.14	14.50	9.58
Chr3	0.4Mb OT27	ACCTCTTCCCCTCCCCACCTT	TGGAGG	÷ 4	1.33	-	0.69	1.72	8.50
Chr4	181.5Mb OT28	ACCTCTTTCCATCCCACCTT	GGGAAA	3	1.14	-	2.67	1.72	7.85
Chr6	40.0Mb OT29	GTGTATTCCCCACCCACCTT	GGGAAG	÷ 4	0.77	-	-	-	-
Chr16	FBXO31 OT30	GCCCCTTCCCCACCCACCCT	GTGGAA	4	0.74	-	7.49	6.91	6.33
Chr19	CYTH2 OT31	ACCTTGTCCCCACCCACCAG	GGGATC	6	0.61	-	8.75	1.47	-
Chr22	CECR5 OT32	GCCCCTTACCCATCCACCCT	GGGTGC	4	0.60	-	0.61	3.92	1.97
Chr7	VIPR2 OT33	GCCCCTGCCCCACCCACCTG	TGGAGC	: 4	0.55	-	1.99	1.72	11.35

Supplementary Table 3. Cas9:RAG1A off-target site mismatches and translocations

Mismatches to targeted Cas9:RAG1A and PAM are listed in red. Average junction frequencies (per 10,000 unique junctions) for off-target sites are listed for the Cas9:RAG1A (N=6) and the Cas9:RAG1 combinations (total N=10; A/G (N=6), A/E (N=2), A/F (N=2)). Two-way ANOVA indicates an extremely significant interaction between Cas9:RAG1A and Cas9:RAG1A (A/G, A/E, A/F with the off-targets listed (p<0.0001). Post-tests indicate significance for each site (p<0.001 = ***). Additional Cas9:RAG1A OT bait site libraries with average on-target and OT junction frequencies also listed (N=3 each).

Supplementary Table 4. ATM TALEN off-target site sequences

Chromosome	Nuclease/ Locus	Left half-site		Space	r Right half-site	Mis- match	RAG1B Bait Freq.	ATM Bait Freq.
Chr11	ATM TALEN	TGAATTGGGATGCTGTTT	(+)	18	TTTATTTTACTGTCTTTA (+)	NA	189.32	NA
Chr16	HYDIN OT	TG <mark>G</mark> ATAGGGATGATGT <mark>GC</mark> TGAAT <mark>AGAAC</mark> TGCTTTTC	(+) (-)	17	-	5,7	43.83	61.03
Chr1	JAK1 OT	T <mark>A</mark> AATAGGGAT <mark>T</mark> CTG <mark>AGC</mark> TGAAATGGG <mark>GTTT</mark> TGATT	(+) (-)	15	-	6,5	43.25	100.42
Chr21	BRWD1- AS1 OT	TGAATAGGAA <mark>CAAA</mark> GATT CGAATCGGGA <mark>AGATA</mark> TTC	(+) (-)	14	-	7,6	38.43	31.99
Chr15	FRMD5 OT	TCAATTGAAAAGCTGAGG CGAATAGGAATGCTCTGC	(+) (-)	17	-	7,6	17.88	27.53
Chr21	MIR5009 OT	TGAATAGAAATGCTGTCA AAAATTGGGATGATTTTC	(+) (-)	14	-	5,5	14.52	11.22
Chr10	65.5Mb OT	T <mark>TGAATAGA</mark> ATGATGTAT TGAAT <mark>GA</mark> GAATGCT <mark>CA</mark> TT	(+) (-)	18	-	7,5	12.48	15.25
Chr6	TSPYL4 OT	TGAA <mark>CAA</mark> GGATGCTG <mark>CA</mark> T T <mark>CACTTAAA</mark> ATACTGTTT	(+) (-)	18	-	5,6	12.32	26.15
Chr3	176.1Mb OT	T <mark>AG</mark> ATAGTGATACTGTTT TAAATAGTGATGCTGT <mark>GG</mark>	(+) (-)	15	-	5,5	11.75	19.26
Chr9	7.7Mb OT	TAAATTAGGAAGCTG <mark>AGG</mark> TGAAT <mark>CA</mark> GGA <mark>AA</mark> CTGT <mark>CC</mark>	(+) (-)	23	-	6,6	12.25	13.29
Chr9	13.4Mb OT	TGACTTCAGATGCTGCCT TGAATTGGAAAGCAGTAG	(+) (-)	15	-	5,5	10.17	14.19
Chr15	37.9Mb OT	TG <mark>GACTAGAG</mark> TGCTGGTT T <mark>T</mark> AGTTGGGATACTGCTT	(+) (-)	18	-	5,4	8.25	14.38
Chr1	22.9Mb OT	GGAATCAGGATACTCCTC TGGATTAGAATGATCTAC	(+) (-)	17	-	7,7	7.70	11.68
Chr1	180.0Mb OT	TGAAT <mark>G</mark> GAGATGATTACA TGAATAGGCACGCTGTTC	(+) (-)	16	-	7,4	8.18	15.30
Chr6	LRFN2 OT	TGATTTGAGATGCTCTTA TGCATAGGG <mark>GAGA</mark> TGTTT	(+) (-)	14	-	4,5	6.10	12.37
Chr6	160.5Mb OT	TGAA <mark>GCA</mark> GGATACTG <mark>C</mark> AT TGCAT <mark>AAA</mark> GATGCT <mark>A</mark> TTG	(+) (-)	18	-	6,6	6.49	12.42
Chr2	40.0Mb OT	TG <mark>CATAGT</mark> GAAGCTGCTT TGAAT <mark>A</mark> GGGA <mark>AC</mark> CTATAG	(+) (-)	17	-	5,6	6.53	7.65
Chr15	FBN1 OT	TGA <mark>GTGA</mark> GG <mark>GTT</mark> CT <mark>AG</mark> TT	(-)	16	ACTATTTTACTGTCTTTC (-)	7,3	6.08	3.11
Chr13	PCDH9 OT	TGA <mark>GA</mark> TGAGAGACTCACT TGAATT <mark>AA</mark> GATACTGTTT	(+) (-)	16	-	8,3	6.37	4.28
Chr18	20.3Mb OT	TGCATTGAAAAACTATCT TAAAT <mark>AA</mark> GAAAGCT <mark>TTC</mark> T	(+) (-)	17	-	7,7	6.41	4.24
Chr14	GMFB OT	TGAA <mark>AGGAA</mark> ATACTGTCT TGAAATAGGATATTATAT	(+) (-)	15	-	6,6	4.82	4.72
Chr2	55.8Mb OT	TAAATTGAAAGGCTGTTG GGCATTGCGTTGAATTGT	(+) (-)	17	-	5,8	4.63	3.87
Chr10	SH3PXD2A OT	GGAAATGGAAACCTGTTT TGAAATGAGATGATTTAT	(+) (-)	13	-	5,5	6.28	18.27
Chr12	MLXIP OT	TGAA <mark>G</mark> TGGG <mark>G</mark> TGCTG <mark>CC</mark> T T <mark>TG</mark> ATTGGGAT <mark>TA</mark> TGTTT	(+) (-)	17	-	4,4	5.24	8.65
Chr19	ZNF814 OT	TGAAT <mark>GA</mark> GG <mark>C</mark> TGCTCTTT TGAAT <mark>GT</mark> GGA <mark>GAA</mark> TGT <mark>GG</mark>	(+) (-)	15	-	4,7	4.93	8.47
Chr3	WNT7A OT	TGAA <mark>CA</mark> GGGATGCT <mark>TTG</mark> T T <mark>A</mark> AATTG <mark>A</mark> GAT <mark>AT</mark> TG <mark>C</mark> TT	(+) (-)	15	-	4,5	3.71	7.96
Chr12	FBXO21 OT	T <mark>AC</mark> ATTAGAATGATGTCC TGAAT <mark>GT</mark> GAATGCT <mark>AA</mark> TG	(+) (-)	17	-	7,6	4.26	4.31
Chr15	TCF12 OT	T <mark>T</mark> AATTGGGA <mark>CC</mark> CTGCCT TG <mark>CATCT</mark> GGCTAATGTTT	(+) (-)	17	-	5,6	4.50	5.06
Chr22	PI4KA OT	TAAAT <mark>GAAGCAA</mark> CTGTTT	(+)	18	GACACTCTACTGTCTTCA (+)	7,6	4.41	5.21
Chr7	ABCB1 OT	TGAAT <mark>AT</mark> GTATACTGCTT TGAATTGG <mark>AAGA</mark> CTATTG	(+) (-)	21	-	5,5	4.50	7.10
Chr15	82.1Mb OT	AGAATGCTGTTGCTCTTT CCAATGGGGAGAATGTTT	(+) (-)	16	-	6,6	3.97	6.49

Left and Right TALEN half-sites are reported in the same chromosomal orientation except for loci displaying the same half-site for both sides with the 2nd site reported in the (-) orientation. Average frequencies (per 10,000) are listed for RAG1B and ATM bait libraries.

Supplementary Table 5. C-MYC TALEN off-targ	get site sequences
---	--------------------

Chromosome	Nuclease/ Locus	Left half-site	S	pacer	Right half-site		Mismatch	RAG1B Bait Freq.	C-MYC Bait Freq.
Chr8	C-MYC TALEN	TGCTTAGACGCTGGATTT	(+)	16	AACCAGGTAAGCACCGAA	(+)	NA	26.10	NA
Chr19	TIMM44 OT	T <mark>A</mark> CTTAGA <mark>AC</mark> CTGG <mark>G</mark> TTT	(-)	18	GG CCAGG GTG GCA T C T GA	(-)	5,8	17.23	25.11
Chr11	CUL5 OT	-		16	TATTAGTTAAGTACTTGT CCACAGGTAAGTACTTAA	(+) (-)	9,6	23.12	3.60
Chr3	SEMA5b OT	-		20	ACCCAGGCACACACAGAA CCTCAGGTATGCATTGAA	(+) (-)	5,6	9.23	13.27
Chr14	SLC35F4 OT	T <mark>A</mark> CT <mark>C</mark> AGAAATGAATTA	(-)	17	AACCAGGTAA <mark>TCTTTGT</mark> A	(-)	7,5	8.41	22.76
Chr19	4.5Mb OT	-		22	TTACAGGAGTGCACTGCC AACACGAGAATCGCTTGA	(+) (-)	9,8	8.07	20.79
Chr21	25.3Mb OT	TCCCGAGAAGCTGGAATT	(-)	18	AACCAGGTAA <mark>TTTTTGT</mark> A	(-)	5,6	4.52	2.40
Chr8	1.6Mb OT	TGATTAAACCCTGATTCT TCCTTGAACACTGGCTTT	(+) (-)	16	-		7,5	5.34	33.84
Chr1	PHC2 OT	-		15	AAGCAGGTAAGGACCTTA AACCAGGGAAGTATCCAA	(+) (-)	4,4	4.01	6.26
Chr3	CCDC14 OT	-		15	GATCAGGTAGGCATTCAA AGTCAGGTAAGCACACA	(+) (-)	6,5	6.90	5.84
Chr8	LRRC69 OT	TCCCAAGAAGCTGG <mark>GA</mark> TT	(-)	18	AACCAGGTAATTTTTGTA	(-)	6,7	5.81	66.63
Chr5	RhoBTB3 OT	-		18	CATCTGGTGAGTGCTGAA AATGAGGCAGGCACATAA	(+) (-)	7,6	4.34	3.09
Chr13	39.6Mb OT	TACTAAAAGACAAGGTTT	(-)	17	AACCAGGTA <mark>GGGAACTAT</mark>	(-)	8,5	3.09	7.99
Chr4	43.3Mb OT	-		10	ATGCTTGTAATCCCAGCA AACCAGGTACTTTCTTAA	(+) (-)	7,5	3.78	4.04
Chr17	14.6Mb OT	TACTCATGAGCTAAATAT	(-)	17	TACCAGGTATGTCTTGAA	(-)	8,6	4.29	5.72
Chr13	74.7Mb OT	-		17	GCCCAAGTAAGCATCCAA GCGCAGGTAAGCATCTAA	(+) (-)	5,5	3.71	6.58
Chr3	165.2Mb OT	TGCTAAGAAGCTGGACTC TGCTTAGAAGCAGGTCTT	(+) (-)	15	-		4,4	3.56	14.73
Chr10	FAM171A OT	TACATAAAAGCAAGATTC	(+)	17	GGGA AGGTAA <mark>A</mark> CA TT GAA	(+)	7,7	3.09	5.43
Chr8	PBK OT	TAATAAGACACAAGATAC TGCTTCTCTGCTGAATTA	(+) (-)	16	-		8,6	4.07	31.67
Chr5	108.7Mb OT	TAAATAGAAGAAGGCTTG TGATTAGAACATAGATCC	(+) (-)	14	-		8,7	3.42	11.77
Chr5	SH3PXD2B OT	TCCATAGACACTGCATCT	(+)	16	AACCAGTCAAGCACTTTT	(+)	5,6	3.19	10.95
Chr10	101.5Mb OT	TCCTGAGTAGCTGGATTA	(+)	17	GC CCAGGTAA TTTTTGT A	(+)	5,8	3.64	5.83
Chr18	SS18 OT	TACCTAGAAAAAGAATGT	(-)	17	CAGCAAGTATGCACTGGA	(-)	8,7	3.64	3.60
Chr21	30.3Mb OT	TGTATAGAAGCTGGGTGT TCCCAAAGCACTAGGATT	(+) (-)	16	-		5,9	3.12	4.58
Chr3	FAM208A OT	TAATGAAGCCCTGAACAT	(+)	13	GT CCAG T TAAGC T C TT A	(-)	9,7	3.73	13.00
Chr10	DNA2 OT	TCCCAAGAAGCTGG <mark>G</mark> TTT	(-)	18	ACCCAGCTAATTTTTGTA	(-)	5,8	2.82	3.76
Chr3	MRPS22 OT	TAATGAAGCCCTGAACAT	(+)	14	GT CCAG T TAAGC T C TT A	(+)	9,7	2.63	4.55
Chr17	69.9Mb OT	-		22	AA <mark>TAT</mark> GGTAAACTTTGAA AA <mark>T</mark> CAGGTAAG <mark>T</mark> ATTTCA	(+) (-)	7,6	4.21	4.66
ChrX	PGK1 OT	TGCTTAAAAAAAGAATAT TACCTAGAAGCTG <mark>ATGGA</mark>	(+) (-)	16	-		7,8	2.96	14.29
ChrX	122.9Mb OT	TGCTT <mark>TGGCC</mark> CTG <mark>TGAG</mark> T	(-)	21	GAGATAGG AAGCAC TT AA	(-)	7,8	2.85	5.19
Chr17	HS3ST3A1 OT	TCTCGAGAAGCTGAAATT	(+)	20	GC CCAGGTAA TTTTGT A	(+)	6,8	3.37	4.85

Left and Right TALEN half-sites are reported in the same chromosomal orientation except for loci displaying the same half-site for both sides with the 2nd site reported in the (-) orientation. Average frequencies (per 10,000) are listed for RAG1B and C-MYC bait libraries.

oupplementaly rable 0. 0433. NAO ID and rocel on-target site mismatches and itansiocations	Supplementary	/ Table 6.	Cas9:RAG1B	and I-Scel	off-target site	mismatches	and translocations
--	---------------	------------	------------	------------	-----------------	------------	--------------------

Bait	Chromosome	Nuclease/Locus	Off-target site sequence	Mismatch	Frequency (per 10,000)
Cas9:RAG1B	Chr11	Cas9:RAG1B	GACTTGTTTTCATTGTTCTC AGGNNN	0	NA
"	Chr14	ZC3H14 OT1	TCCTTGTTTTCATTGTTCTC TGGTGG	2	289.64
"	Chr4	120.5Mb OT2	CATTTGTTTTCATTGTTCTC TGGCTG	2	37.42
Cas9:RAG1B	NA	I-Scel	NNN TAGGGATAACAGGGTAAT NNN	0	NA
44	Chr11	18.7Mb OT1	GTC T <mark>T</mark> GGGATAACAGGG <mark>C</mark> AA <mark>A</mark> GCA	3	28.85
"	Chr8	31.4Mb OT2	ATT T <mark>T</mark> GGGATAACAGGG <mark>C</mark> AAT ACT	2	8.45
"	Chr11	29.5Mb OT3*	TTG TAGGGATA <mark>C</mark> CAGG <mark>T</mark> TTAT TTC	3	6.97
"	Chr1	CACNA1E OT4	GGC TAGGGATA <mark>C</mark> CAGG <mark>TC</mark> AA <mark>A</mark> CAA	4	5.20
"	Chr11	GLYAT OT5	CAC TAGGGATAACAGG <mark>C</mark> TA <mark>T</mark> T CGG	2	5.17
"	Chr20	11.4Mb OT6	TAC TAGGGATA <mark>C</mark> CAGGGT <mark>C</mark> AT TCA	2	4.86
"	Chr9	24.8Mb OT7	TGC TAGGGATAACAGG <mark>TTGAA</mark> GGT	3	3.64
44	Chr6	CCND3 OT8	CAG TAGGGATAACAGG <mark>CTG</mark> T TGA	3	3.54
"	Chr2	119.9Mb OT9	CAC TAGGGAT <mark>GC</mark> CAGGGT <mark>GAA</mark> CAA	4	1.4

Bait	Chromosome	Nuclease/Locus	Off-target site sequence	Mismatch	Frequency
	Chr2				136.25
Cass.RAGID	Chr15	MFAP1 OT1	GAGTCTAAGCAGAAGAAGAA	SAGC 3	189.39
"	Chr5	HCN1 OT2**	GAGTTAGAGCAGAAGAAGAA	GCAT 2	120 13
"	Chr5	SEMA5A OT3	AAGTCTGAGCACAAGAAGAA TG	GTGA 3	46 42
"	Chr2	219 8Mb OT4	GAGGCCGAGCAGAAGAAAGA CG	GCGA 3	30.31
"	Chr11	HSD17B12 OT5	AAGCCCGAGCAAAGGAAGAA AG	GAGA 4	28 48
"	Chr8	128 8Mb OT6	GAGTCCTAGCAGGAGAAGAA GAG	GGCA 3	16.35
"	ChrX	53 4Mb OT7	GAGTCCG <mark>GGAAGG</mark> AGAAGAA AGG	GCTC 3	8.11
"	Chr5	DPYSL3 OT8	GAGCCGGAGCAGAAGAAGGA GG	GAGG 3	6.21
"	Chr11	MTA2 OT9	GAATCCAAGCAGAAGAAGAG	GGAG 4	5.95
"	Chr6	WASF1 OT10	AAGTCAGAGCAGAAAAAGAG AG	GACA 4	5.41
"	Chr6	9.1Mb OT11	ACGTCTGAGCAGAAGAAGAA TGO	GACA 3	1.34
"	Chr1	TCEA3 OT12	AAGTCCGAGGAGAGGAAGAA AGG	GGTT 3	1.14
"	Chr13	27.7Mb OT13	GAGT <mark>AG</mark> GAGCAG <mark>G</mark> AGAAGAA GG <mark>A</mark>	AGGA 4	1.08
Cas9:RAG1B	Chr6	Cas9:VEGFA	GGGTGGGGGGGGGGTTTGCTCC TG	GNNN O	190.26
"	Chr15	IGDCC3 OT1**	GGATGGAGGGAGTTTGCTCC TGC	GGGT 2	176.22
"	Chr17	KRT42P OT2	TAGTGGAGGGAGCTTGCTCC TGC	GCTG 4	165.88
"	Chr1	99.3Mb OT3**	GGG <mark>GA</mark> GGGG <mark>A</mark> AGTTTGCTCC TGC	GCAT 3	136.19
"	Chr12	LINC01257 OT4**	GGG <mark>A</mark> GGG <mark>T</mark> GGAG <mark>T</mark> TTGCTCC TGC	GGGA 3	72.27
"	Chr12	CACNA2D4 OT5**	CGGGGGAGGAGTTTGCTCC TGC	GGGA 3	66.03
"	Chr22	PVALB OT6	GGGTGGGGGGGAGTTTGCCCC AGC	gcca 1	49.04
"	Chr6	14.3Mb OT7	GTGGGGGTAGAGTTTGCTCC AGO	GTGT 4	38.70
"	Chr22	19.6Mb OT8	GAGGGGGAGCAGTTTGCTCC AGC	GTGA 4	33.47
"	Chr5	32.9Mb OT9	GCGTGGGGGGGTGTTTGCTCC CGC	GGCA 2	19.33
"	Chr17	47.3Mb OT10	CTGGTGGGGGGGGCTTGCTCC AGC	GGAA 5	18.04
"	Chr11	67.5Mb OT11	AGGAAGGAGGAGTTAGCTCC TGC	GGGG 5	16.66
"	Chr5	MAP3K1 OT12	GG <mark>TG</mark> GGGG <mark>T</mark> G <mark>G</mark> GTTTGCTCC TGC	GTAT 4	15.86
"	Chr11	DSCAML1 OT13	GGG <mark>CAA</mark> GGGGAG <mark>G</mark> TTGCTCC TGC	GAGA 4	15.63
"	Chr3	128.2Mb OT14	AGGTGGTGGGAGCTTGTTCC TGC	GCTT 4	15.12
"	Chr1	PCNXL2 OT15	GG <mark>AG</mark> GAGGGGAGT <mark>C</mark> TGCTCC AGC	GTTT 4	14.02
"	Chr11	KIAA1549L OT16	AGCTGAGGGGAGCTTGCTCT GGC	GCTG 5	12.31
"	Chr4	TRMT44 OT17	GAGTGGGTGGAGTTTGCTAC AGC	GCAG 3	12.12
"	Chr13	ATP8A2 OT18	GGTTGAGGGGAGTCTGCTCC AGC	GCTT 3	11.80
"	Chr1	TRIM62 OT19	GGGTGGG <mark>T</mark> GGAGTTTGCTAC TGC	gcat 2	10.41
"	Chr20	56.1Mb OT20	AGG <mark>GA</mark> GGAGGAATTTGCTCC AGO	GAGT 5	9.96
"	Chr17	32.9Mb OT21	GGG <mark>GGT</mark> GGGGA <mark>C</mark> TTTGCTCC AGC	GGCC 3	8.65
"	Chr22	SUN2 OT22	GGG <mark>CAGA</mark> GGGAGTT <mark>A</mark> GCACC GGC	GCGT 5	7.95
"	Chr16	8.7Mb OT23	AAGTAAGGGAAGTTTGCTCC TGC	GTCC 5	6.11
"	Chr11	3.4Mb OT24	AGGAAGGAGGAGTTAGCTCC TGC	GGGG 5	5.69
	Chr11	71.4Mb 0125	AGGAAGGAGGAGTTAGCTCC TGC	GGGG 5	5.52
"	Chr10	124.7Mb O126	AGC'I'GGAGGGAG'I''I''I'GCCCCC AGC	GTGA 4	5.03
	Chr5	7.0Mb 0127	GAGGGTGGGGGAGTTTACTCC TGC	GAAG 4	4.72
"	Chr20	C20orf62 0128	GGGTGAGGGGAATAAACTCC AG	GGTG 5	3.80
	Chr22	38.2Mb 0129	AGGTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGT 4	3.66
"	Chr11	47.2Mb 0130	GGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GCAG 3	3.47
"				JAAA 3	3.38
u	Chr21	RUNX1 0132	AAGTGGGAAGAGTTTGTTCC AG	JUTU 5	2.96
"	Chr12			JATA 3	2.58
"	Chriti		AGGTAGGAGAAGCTTGCTCC TG	AGAT b	2.45
"				JAGG 5	2.41
u		28.4Mb 0136	AAGTGGGAGGAGACTGCTCC AG	GTAG 5	1.80
	Chr10	6./MD 013/		JGAG 5	1.52
Miamatahaa ta ta		0.010 CIVIC OI			1.52

Supplementary	Table 7. Cas9:EMX1	and Cas9:VEGFA off-targ	get site mismatches and t	translocations
---------------	--------------------	-------------------------	---------------------------	----------------

Mismatches to target sequences are listed in RED. Average frequencies are listed (Cas9:EMX1 N=3; Cas9:VEGFA N=3). Double Asterisks (**) represent sites previously identified¹⁵.

Name Sequence5'→3' ** Purpose I-Scel off-target (OT) oligos 1kb amplicon; OT site Chr11 18.7Mb F AGC CCC GTC TTC TCT GAA TG 800bp / 200bp Chr11 18.7Mb R CGT TGA GCT GCT TTT TCC TC 980bp amplicon OT site Chr8 31.4Mb F GCA ACA CGG TGT GGT ATT TC 600bp / 380bp Chr8 31.4Mb R TGA ACC AAT CCT GAC ATT GC 1,419bp amplicon; 2 OT Chr11 29.5Mb F TTT GGA AAC AAG CCC AGT TG sites 250bp / 800bp / 350bp Chr11_29.5Mb_R TGA CCC CAG ATT CCT TCT TC 995bp amplicon: OT site CACNA1E F GGT GGT TCC TGA GTG TTT CC 300bp / 695bp TGG CCA AAA GTC ATG AAG TG CACNA1E R 1kb amplicon; OT site Chr20_11.4Mb_F GGT TGC CAT TGT GAT TCC TC 700bp / 300bp Chr20 11.4Mb R GGC ATA AAC CCA CAA AAA GG 964bp amplicon; OT site GLYAT F CCT TAG CCC ATG GAT TCT ACC 220bp / 744bp GLYAT_R TCA GTT TAC CCC AAC CAA GC 900bp amplicon; OT site Chr2_119.9Mb_F TGC TGT GGC TTG AAT GTC TC 800bp / 100bp ACT TCT GAG GGG CCT TTG TC Chr2 119.9Mb R Oligos for T7 Endo I 690bp amplicon; 470bp / CCC CCT GGA AGA CTG CTT TA RAG1 F 220bp Cas9:RAG1B site RAG1_R AGG ACT GCT GGA GAT TGC TC 700bp amplicon; OT site RAG1B_OT1_F TTG GTT GCC CAT CTT ATT CC 220bp / 480bp RAG1B OT1 R AGC TAA ACC TGC CTG CAG AA 700bp amplicon; OT site RAG1B_OT2_F AAT AAC TTG CAG CCA TTC CA 180bp / 520bp RAG1B OT2 R TAA ATT GCC CAT GAT TGC AC **EM-PCR** adapter oligos Suppress adapter-ended Universal oligo /5phos/ TAA CCA GCC C /3InvdT/ amplification GTA ATA CGA CTC ACT ATA GGG CAC GCG TGG TCG Priming oligo Contains adapter primer ACG GCC CGG GCT GGT TAT RAG1 A/B Bio RAG1A/B - F1 /5BiosG/ AGG ACT GCT GGA GAT TGC TC **Bio-PCRI** TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC RAG1A/B - F2 I5 M00B Miseg tail TGA GAG GGT TTC CCC TCA AAG TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC RAG1A/B - F2 I5 M02B Miseq tail multiplex TTG GAG AGG GTT TCC CCT CAA AG TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC RAG1A/B - F2 I5 M03B Miseq tail multiplex TCA TGA GAG GGT TTC CCC TCA AAG TAC ACT CTT TCC CTA GAC GCT CTT CCG ATC RAG1A/B - F2 I5 M04B Miseq tail multiplex TGC TCG AGA GGG TTT CCC CTC AAA G

Supplementary Table 8. Translocation cloning and off-target oligos

RAG1A/B - F2 I5 M05B	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGC CAT GAG AGG GTT TCC CCT CAA AG	Miseq tail multiplex
RAG1A/B - F2 I5 M06B	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAT ATC GGA GAG GGT TTC CCC TCA AAG	Miseq tail multiplex
AP2 17	TCT CGG CAT TCC TGC TGA ACC GCT CTT CCG ATC TAC TAT AGG GCA CGC GTG GT	Adapter primer; Miseq tail reverse complement
P5	AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT	Miseq tail PCRIII
P7	CAA GCA GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC	Miseq tail PCRIII reverse complement
RAG1 C/D		
Bio RAG1C/D - F1	/5Biosg/ CCT GAG AAC AAT GAA AAC AAG TC	Bio-PCRI
RAG1C/D - F2 I5 M00C	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC CAA TAT CAA TAT CCC ACT GAT G	Miseq tail
RAG1C/D - F2 I5 M02C	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCG ACC AAT ATC AAT ATC CCA CTG ATG	Miseq tail multiplex
RAG1C/D - F2 I5 M04C	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCA CGA CCA ATA TCA ATA TCC CAC TGA TG	Miseq tail multiplex
RAG1C/D - F2 I5 M06C	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TGA CTC GAC CAA TAT CAA TAT CCC ACT GAT G	Miseq tail multiplex
Bridge adapter oligos (LAM-PCR)		
ssA-upper-TN	GCG ACT ATA GGG CAC GCG TGG TNN NNN-/3AmMO/	Common bridge oligo
ssA-lower	/5Phos/ CCA CGC GTG CCC TAT AGT CGC-/3AmMO/	To link A-tailed DNA
ssA-lower-A	/5Phos/ ACC ACG CGT GCC CTA TAG TCG C- /3AmMO/	To link G-,C-, T-tailed or blunt DNA
Cas9:RAG1A – OT		
Bio DAZAP - F1A	/5BiosG/ TTC CCT GTA ACT TGG GAT GG	Bio-PCRI
DAZAP - F2A I5 M00F	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TTG CCC AGA AAT CAG AAC AAC	Miseq tail
DAZAP - F2A 15 M02F	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAG TGC CCA GAA ATC AGA ACA AC	Miseq tail multiplex
DAZAP - F2A I5 M03F	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TTC ATG CCC AGA AAT CAG AAC AAC	Miseq tail multiplex
DAZAP - F2A I5 M04F	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC	Miseq tail multiplex
	TGA TCT GCC CAG AAA TCA GAA CAA C	
DAZAP - F2A I5 M05F	TGA TCT GCC CAG AAA TCA GAA CAA C TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT GAA TGC CCA GAA ATC AGA ACA AC	Miseq tail multiplex
DAZAP - F2A I5 M05F Bio 12_47 + F1	TAC ACT CTT TCC CTA CAC GAA CAA C TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT GAA TGC CCA GAA ATC AGA ACA AC /5BiosG/ GGA CAA CAA CCC CCA GTT AG	Miseq tail multiplex Bio-PCRI
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G	TGA TCT GCC CAG AAA TCA GAA CAA C TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT GAA TGC CCA GAA ATC AGA ACA AC /5BiosG/ GGA CAA CAA CCC CCA GTT AG TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TTG TGG TAA AGG AGA CAA TGC T	Miseq tail multiplex Bio-PCRI Miseq tail
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G	TGA TCT GCC CAG AAA TCA GAA CAA C TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT GAA TGC CCA GAA ATC AGA ACA AC /5BiosG/ GGA CAA CAA CCC CCA GTT AG TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TTG TGG TAA AGG AGA CAA TGC T TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT TGT GGT AAA GGA GAC AAT GCT	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G 12_47 + F2A I5 M03G	TGA TCT GCC CAG AAA TCA GAA CAA C TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT GAA TGC CCA GAA ATC AGA ACA AC /5BiosG/ GGA CAA CAA CAA CCC CCA GTT AG TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TG TGG TAA AGG AGA CAA TGC T TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT TGT GGT AAA GGA GAC AAT GCT TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT TGT GGT AAA GGA GAC AAT GCT TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC ACT CTT TCC TA CAC GAC GCT CTT CCG ATC TAC ACT CTT TCC TA CAC GAC GCT CTT CCG ATC TAC ACT CTT TCC TA CAC GAC GCT CTT CCG ATC TGA CTG TGG TAA AGG AGA CAA TGC T	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex Miseq tail multiplex
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G 12_47 + F2A I5 M03G 12_47 + F2A I5 M04G	TGA TCT GCC CAG AAA TCA GAA CAA CTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT GAA TGC CCA GAA ATC AGA ACA AC/5BiosG/ GGA CAA CAA CCC CCA GTT AGTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT TGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT TGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC GTT GTG GTA AAG GAG ACA ATG CT	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G 12_47 + F2A I5 M03G 12_47 + F2A I5 M04G 12_47 + F2A I5 M05G	TGA TCT GCC CAG AAA TCA GAA CAA CTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT GAA TGC CCA GAA ATC AGA ACA AC/5BiosG/ GGA CAA CAA CCC CCA GTT AGTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT TGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG GTA AAG GAG ACA ATG CTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG ACA TGT GGT AAA GGA GAC AAT GCT	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G 12_47 + F2A I5 M03G 12_47 + F2A I5 M04G 12_47 + F2A I5 M05G TALEN sites	TGA TCT GCC CAG AAA TCA GAA CAA CTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT GAA TGC CCA GAA ATC AGA ACA AC/5BiosG/ GGA CAA CAA CCC CCA GTT AGTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT TGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGT GG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG GTA AAG GAG ACA ATG CTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC ACA TGC TTAC ACT CTT TCC CTA CAC GAC ACT GCTTAC ACT CTT TCC CTA CAC GAC ACT GCT	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G 12_47 + F2A I5 M03G 12_47 + F2A I5 M04G 12_47 + F2A I5 M05G TALEN sites Bio ATM + F1	TGA TCT GCC CAG AAA TCA GAA CAA CTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT GAA TGC CCA GAA ATC AGA ACA AC/5BiosG/ GGA CAA CAA CAA CCC CCA GTT AGTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT TGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGT GGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG ACA TGT GGT AAA GGA GAC AAT GCT/5BiosG/ CTG CTG CCG TCA ACT AGA AC	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex Bio-PCRI
DAZAP - F2A I5 M05F Bio 12_47 + F1 12_47 + F2A I5 M00G 12_47 + F2A I5 M02G 12_47 + F2A I5 M03G 12_47 + F2A I5 M04G 12_47 + F2A I5 M05G TALEN sites Bio ATM + F1 ATM + F2 I5 M00H	TGA TCT GCC CAG AAA TCA GAA CAA CTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT GAA TGC CCA GAA ATC AGA ACA AC/5BiosG/ GGA CAA CAA CAA CCC CCA GTT AGTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTCT TGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGT GGT GGT AAA GGA GAC AAT GCTTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTGA CTG TGG TAA AGG AGA CAA TGC TTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG ACA TGT GGT AAA GGA GAC AAT GCT/5BiosG/ CTG CTG CCG TCA ACT AGA ACTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG ACA TGT GGT AAA GGA GAC ACT AGA ACTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG ACA TGT CTG CCG TCA ACT AGA ACTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC	Miseq tail multiplex Bio-PCRI Miseq tail Miseq tail multiplex Miseq tail multiplex Miseq tail multiplex Bio-PCRI Bio-PCRI Miseq tail multiplex

ATM + F2 I5 M03H	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TTC AAT TTA AGC GCC TGA TTC GAG	Miseq tail multiplex			
ATM + F2 I5 M04H	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAT CTA TTT AAG CGC CTG ATT CGA G	Miseq tail multiplex			
ATM + F2 I5 M05H	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCC GCG ATT TAA GCG CCT GAT TCG AG	Miseq tail multiplex			
ATM + F2 I5 M05H2	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TAC ATT TAA GCG CCT GAT TCG AG	Miseq tail multiplex			
Bio MYC + F1	/5BiosG/ CGA AAC TTT GCC CAT AGC AG	Bio-PCRI			
MYC + F2 I5 M00I	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT TAC AAC ACC CGA GCA AGG	Miseq tail multiplex			
MYC + F2 I5 M03I	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAG CCT TAC AAC ACC CGA GCA AGG	Miseq tail multiplex			
MYC + F2 I5 M04I	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TCT CGC TTA CAA CAC CCG AGC AAG G	Miseq tail multiplex			
MYC + F2 I5 M05I	TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCTTG TAT CTT ACA ACA CCC GAG CAA GG	Miseq tail multiplex			
**Color code: Green = adapter sequence complementarity; Blue = multiplex sequence; Red = Terminal ends for MiSeq; Orange = Internal MiSeq priming sequence; /5phos/ = 5' phosphorylation; /3InvdT/ = 3' inverted dT; /5BiosG/ = 5' Biotin; /3AmMO/ = 3' Amino modified.					

Supplementary References

47. Schueler, M.G. & Sullivan, B.A. Structural and functional dynamics of human centromeric chromatin. *Annu. Rev. Genomics Hum. Genet.* **7**, 301-313 (2006).