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S1. Data

Lion data

Lion populations in the Serengeti National Park and Ngorongoro Conservation Area have

been continuously monitored by the Serengeti Lion Project since 1966. Most lions included

in this study have been observed since birth and are recognised from natural markings

and whisker-spot patterns (1-3). Consequently, their precise date of birth is known. For

unknown lions, sampled as part of other interventions (such as snare removal), ages were

estimated on the basis of nose coloration (4).

Serum samples for serological testing were opportunistically collected as part of the

Serengeti National Park management or research interventions (e.g. fitting/removing

radio-collars, snare removals and wound treatment; [5]) led by Tanzania National Parks

and Tanzania Wildlife Research Institute and Ngorongoro Conservation Area Authority.

To maximise samples and ensure independence of observations, if a lion was sampled mul-

tiple times and all samples tested positive for canine distemper virus (CDV) antibodies,

only the first sample was included in the analyses. Conversely, if all samples were seroneg-

ative, only the last sample was included. Finally, if the first sample was seronegative but

the second was seropositive, we included both samples in the analysis but the birth year

corresponding to the second sample was considered to be the sample year of the first

sample. Figure S1 (left panel) shows the individual infection profile of lions from birth to

sampling and Table S1 contains the number of samples included in the analyses.

Dog data

Domestic dog populations surrounding the Serengeti National Park have been intensively

studied since the early 1990s and serological surveys have been conducted since 1992. Dogs

are sampled during central-point and house-to-house vaccination campaigns (6) and, in

unvaccinated areas, during randomised household surveys. At the time of sampling, in-

formation on the age of each dog sampled is obtained by questioning the owner. Previous

longitudinal studies in East Africa demonstrated that owner-reported ages are reliable
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when evaluated as part of specific research studies (7-9). The reliability of ages recorded

during routine vaccination campaigns is likely to be less certain. The dog sampling pro-

tocol is described in (10).

To ensure that only data from unvaccinated dogs were analysed, we included only dogs

from villages that had never been vaccinated and dogs from vaccinated villages that were

i) sampled before the onset of vaccination in a given village; or ii) born after the previ-

ous vaccination campaign. Given that dogs in vaccinated areas receive vaccination also

against rabies and canine parvovirus (CPV), for dogs older than 1 year and originating

from vaccinated areas, sera were also tested for antibodies against rabies and CPV. Dogs

that had a negative antibody titre against at least one of the three pathogens were con-

sidered unvaccinated and included in the analyses. Very young pups (0 - 3 months) were

excluded from the analyses to avoid misclassification of CDV status due to possible mater-

nal antibodies. Figure S1 (right panel) shows the individual infection profile of dogs from

birth to sampling and Table S1 contains the number of samples included in the analyses.

Serological assays

All CDV serology was carried out using neutralisations assays. Sera were analysed at

Intervet UK, Animal Health Diagnostic Center at Cornell (New York, USA) and Univer-

sity of Glasgow (UK). Protocols were broadly similar in all laboratories, including viral

strains used for the assay. Previous studies demonstrated comparable results between the

Intervet and Cornell tests (10). We used a cut-off titer value equivalent to a 1:16 dilution

to evaluate prior exposure. This value was the minimum dilution consistently used across

all samples and is consistent with other studies of CDV exposure in wild carnivore species

(11-13). Sera from older dogs originating from vaccinated areas and with uncertain vacci-

nation status were additionally tested for antibodies against rabies and CPV (see above).

Antibody titres for rabies were determined by fluorescent antibody virus neutralisation as-

say (FAVN) (14), and for CPV by hemagglutination inhibition (HAI) testing (15). FAVN

testing was performed at the Animal Health and Veterinary Laboratories Agency (UK).

HAI testing was conducted at Intervet and the Cornell Laboratory.
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Table S1: Number of serum samples from Ngorongoro and Serengeti lions and unvacci-

nated domestic dogs sampled in areas surrounding the Serengeti National Park available

for canine distemper virus serology. Dog sample sizes are also subdivided depending on

whether the dog originated from an unvaccinated or vaccinated village.

Non-vaccinated domestic dogs

Year Lions Total
Non-vaccinated

villages

Vaccinated

villages

1984 24 - - -

1985 112 - - -

1986 24 - - -

1987 75 - - -

1988 - - - -

1989 16 - - -

1990 3 - - -

1991 17 - - -

1992 5 223 223 -

1993 9 155 155 -

1994 70 240 240 -

1995 - - - -

1996 - 181 180 1

1997 11 643 458 185

1998 25 921 658 263

1999 6 486 455 31

2000 11 90 23 67

2001 21 250 134 116

2002 8 151 19 132

2003 16 550 508 42

2004 14 1073 586 487

2005 19 403 35 368

2006 23 672 188 484

2007 1 307 12 295

2008 5 84 - 84

2009 3 157 - 157

2010 6 133 - 133

2011 10 72 - 72

2012 1 75 - 75

Total 535 6866 3874 2992
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Figure S1: Canine distemper virus serology test result for lions (left) and dogs (right).

Each horizontal line corresponds to a seropositve (red) or seronegative (blue) individual

and starts in the year of birth and finishes in the year of sampling.
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S2. CDV serology model

We used a Bayesian state-space model to estimate the annual force of CDV infection of

each species from serology data and vaccination history of each individual. Briefly, the

model is composed of two parts: i) a Biological process which characterises the mechanism

of infection; and ii) an Observation process which confronts the processes underlying the

generation of the observed data (mostly at the population level) with the individual level

data. Ultimately, the state-space model describes the combination of stochastic processes

giving rise to the data in Figure S1.

We chose this approach over a more mechanistic model, which typically comprises epi-

demiological compartmental models (e.g. susceptible-infected-recovered type models), for

two main reasons. First, because, while there are examples of the use of serology data

to estimate seroprevalence, it is extremely challenging to reconstruct disease dynamics

from this type of data given a number of data limitations, such as the unknown timing

of exposure and misclassification of seropositivity. Second, fitting mechanistic models to

populations for which key information (e.g. number of susceptible and infected individu-

als, uneven sampling of age-structure, etc.) is unknown would not be more powerful than

our chosen approach. Although our modelling approach is mainly phenomenological, it

(1) enables integration of multiple types of data, such as serology and vaccination, (2)

captures and characterises the main features of the disease dynamics (e.g. periodic peaks

of infection, cross-species transmission) and (3) distinguishes between those features act-

ing at the population and/or individual level, while estimating the timing of infection

from serological assays that are never 100% accurate.

Biological process

Ultimately we are interested in estimating, hs(t), the proportion of infected individuals

of species s at year t, where t ranges from 1 to 43 and corresponds to a time series from

1984 to 2012. Here, this proportion is defined through a logit transformation such that:

hs(t) =
exp(Hs(t))

1 + exp(Hs(t))
(1)

where Hs(t) is the predictor of hs(t), defined as a stochastic realisation from a Gaussian
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process:

Hs(t) ∼ N(H̄s(t), σs,t) (2)

The variability implied by σs,t is the annual variation around the expectation H̄s(t). The

prior distribution for σs,t is defined in Table S2. H̄s(t) is formulated as a linear function

of covariates that describe the CDV transmission process in lions and domestic dogs. In

their most parameterised forms, the expected predictors for dogs and lions were:

H̄lions,t = β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 (3)

H̄dogs,t = ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1 − ω6Ct−2 (4)

The parameters β0 and ω0 correspond to the intercept, while β1 and ω1 correspond to the

coefficients of a linear trend on time, for lions and dogs respectively. β2 and β3 for lions

and ω2 and ω3 for dogs, correspond to the coefficients of an autoregressive component

(AR) with lag 1 and 2, respectively. The AR terms were used to emulate the disease

dynamics. Specifically, the AR defines the probability of infection in a given year as de-

pendent on the previous year (lag 1) and the year before that (lag 2). With the addition

of stochasticity, particular combinations of parameter values for the AR(2) process can

generate persistent cycles in the infection dynamics. The epidemiological process behind

CDV dynamics is thought to last 2-6 weeks, however, given the substantial logistical and

financial constraints involved in obtaining serum samples at very close intervals (partic-

ularly from lions), the serology dataset used in this study only allowed us to explore

exposure patterns at longer time intervals, and does not provide sufficient resolution and

sample sizes to efficiently inform a model specified to a time-scale smaller than a year.

Further, given that the questions we ask are at an annual scale, the magnitude of these

AR components are thought to be appropriate. The parameters β4 and ω4 correspond to

the cross-species transmission coefficients, and are defined as an autoregression of lag 1

on the probability of infection of the other species (i.e. β4 corresponds to the transmis-

sion from dogs to lions and ω4 to the transmission from lions to dogs). The difference

between the lion and dog linear predictors is that the dogs might be directly affected by

vaccination. The impact of regional vaccination coverage (Ct) on the domestic dog annual

CDV seroprevalence was then included as a lagged covariate with coefficients ω5 and ω6.

The effect of village-level vaccination on dog seroprevalence (rather than regional-level
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vaccination coverage) was investigated at a later stage when estimating the probability of

an individual becoming infected (see equation 8). The priors for all these coefficients are

defined in Table S2. When needed we constrained the priors to be biologically plausible.

For example, the priors for the transmission and vaccination parameters were described as

strictly positive since there is no cross-species immunity and vaccination cannot increase

infectivity. Owing to the AR lags, priors drawn from a normal distribution with mean β0

or ω0 for lions and dogs respectively, and variance 103 were allocated to the first two time

points, H̄t=1,2.

We note that the effect of domestic dog vaccination on lion CDV dynamics was not di-

rectly included in the description of H̄lions,t since the cross-species transmission term of

dog to lions (β4) already takes this effect into account. This term uses the dog infection

hazard, which is estimated taking into account the vaccination history of the dog (see

below) and the overall vaccination coverage of the region. Hence, if directly included in

the lion predictor, vaccination would be accounted for twice. To investigate the impact

of dog vaccination in lions, we developed a prediction model (see subsection Prediction

model).

At the individual level, the probability of an individual i of species s becoming infected

at time t, denoted ui,s(t), is defined as:

ui,s(t) =
exp(Ui,s(t)

1 + exp(Ui,s(t))
(5)

where Ui,s(t) is the predictor of ui,s(t) and is modelled as a Gaussian term such that:

Ui,s(t) ∼ N(Ūi,s(t), ψi,s,t) (6)

The stochasticity generated by ψ is the expression of individual variation which increases

with the duration of the time interval between the years of birth and sampling; i.e. the

uncertainty in the time of exposure of an individual with a greater time interval between

birth and sampling will be higher than one with a short interval. The prior distribution

for ψi,s,t is defined in Table S2. Ūi,s(t) is defined for each species as:

Ūi,lions(t) = Hi,lions(t) (7)
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Ūi,dogs(t) = Hi,dogs(t) + v1Hi,dogs,t−1Vi,t−1 + v2Hi,dogs,t−2Vi,t−2 (8)

For dogs, Ūi,s(t) also takes into account the effect of village-level vaccination (V ). The

parameters v1 and v2 are the coefficients for this covariate which investigates the impact

of whether dog i comes from a village that was vaccinated in the previous year or previous

two years, respectively. The priors for these parameters are defined in Table S2.

Table S2: Prior distributions for the parameters used to model the lion and domestic dog
populations annual probability of canine distemper virus infection. AR corresponds to
the autoregression.

Species Variable Parameter Distribution Prior

Lions Correct detection q+ Beta ∼ beta(25, 0.5)

False detection q− Beta ∼ beta(0.5, 25)

Variance ψ|σ Normal ∼ N(0, τ 2
−1

)

Standard deviation τ Uniform ∼ U(0, 5)

Intercept β0 Normal ∼ N(0, 0.001)

Linear trend β1 Normal ∼ N(0, 0.001)

AR(1) β2 Normal ∼ N(0, 0.1)

AR(2) β3 Normal ∼ N(0, 0.1)

Dog-to-lion transmission β4 Exponential ∼ exp(0.5)

Dogs Correct detection q+ Beta ∼ beta(25, 0.5)

False detection q− Beta ∼ beta(0.5, 25)

Variance ψ|σ Normal ∼ N(0, τ 2
−1

)

Standard deviation τ Uniform ∼ U(0, 5)

Village status (lag 1) v1 Exponential ∼ exp(0.5)

Village status (lag 2) v2 Exponential ∼ exp(0.5)

Intercept ω0 Normal ∼ N(0, 0.001)

Linear trend ω1 Normal ∼ N(0, 0.001)

AR(1) ω2 Normal ∼ N(0, 0.1)

AR(2) ω3 Normal ∼ N(0, 0.1)

Lion-to-dog transmission ω4 Exponential ∼ exp(0.5)

Regional vacc. (lag 1) ω5 Exponential ∼ exp(0.5)

Regional vacc. (lag 2) ω6 Exponential ∼ exp(0.5)

*Normal distributions are expressed in terms of mean and precision.
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Observation process

Assuming that the ith individual of species s was born in year ti and was sampled in year

Ti, the probability ri,s(Ti) that, at sampling, it was in fact seropositive is:

ri,s(Ti) = 1−
Ti∏
t=ti

(1− ui,s(t)) (9)

where, ui,s(t) is the probability of individual i, of species s, becoming infected at time

t as described above in equation (5). This probability links the observation process at

the individual level with the biological process at the population level. We estimate the

likelihood of being infected between birth and sampling years because it is impossible to

identify the exact time of exposure from a serology test. Once an individual is infected

and recovers from CDV it gains life-long immunity, hence, after infection, the individual

will always test positive in the serology assay. This means that the time-series investi-

gated starts in the year when the first individual from both species was born, i.e. 1970;

and ends in the last year for which data are available, i.e. 2012. As a consequence, larger

uncertainty should be expected in the initial years of the time-series when no samples,

hence no serological data, were available, but the first lions were already born.

In addition to the inherent difficulty in detecting antibodies, test results from serological

assays are typically sensitive to cut-off thresholds (16). This means that the true disease

status of an individual does not always correspond to the test result. In order to account

for this potential misclassification of the animal disease status, in Table S3 we introduce

probabilities of Type I and Type II errors.

Table S3: Probabilities (q) associated with canine distemper virus serological misclassifi-

cation.

True state

+ -

Test + q+ 1−q−

result - 1−q+ q−

The likelihood that an individual i is detected as seropositive (P (Xi = 1)) or seronegative

(P (Xi = 0)) is based on serology data X and was defined in our model as:
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P (Xi = 1) = ri,s(Ti)q
+ + (1− ri,s)(1− q−) (10)

P (Xi = 0) = ri,s(Ti)(1− q+) + (1− ri,s)q− (11)

Based on serological literature, we expect high correct detection (q) and low false detec-

tion (1− q). See Table S2 for further details on these priors.

The total likelihood of the data X under the model and parameters was:

P (Xi,s) =
n∏
i=1

xi,sP (Xi,s = 1) + (1− xi,s)P (Xi,s = 0) (12)

where n corresponds to the number of samples taken from each species and xi,s corresponds

to individual draws from the data X. The likelihood of the data X from individual i and

species s was generated from a Bernoulli distribution with success probability P , i.e.

probability of getting a seropositive individual upon testing, such that:

Xi,s ∼ Bernoulli(P (Xi,s = 1)) (13)

Where Xs = 1 corresponds to a CDV positive titer and Xs = 0 to a CDV negative titer.

If both realisations are equally likely, P (Xs = 1) = P (Xs = 0) = 0.5.

Prior sensitivity

We explored the sensitivity of the model results to the prior distributions by constrain-

ing and widening the allocated distribution range. The posterior distributions for most

parameters and the annual proportion of infected individuals hs(t) remained similar, sug-

gesting that the parameter estimates are not sensitive to the priors chosen (Table S2).

Wider priors for q+ and q− generated convergence issues, but (1) given that these were

highly constrained to account for the knowledge that there is a low probability of false

detection and high probability of correct detection; and (2) given that the overall hs(t)

pattern remained largely unchanged; we find our results robust. The posterior distribu-

tions for the cross-species transmission terms were sensitive to wide priors (e.g. ∼ exp(10))

but these are not thought to be plausible values for these parameters. These posterior
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distributions were not sensitive to the small changes in the priors (e.g. mean 0.2 to 2).

Model selection and model fit

The model from which we draw inferences is the one that addresses our full set of scientific

questions, but also converges well, generates validated fits, and is not identified by the

Deviance Information Criterion (DIC) as obviously overparameterised. The model that is

biologically plausible and addresses our full set of questions (i.e. model described above

and shown as model A.1 in Table S4) is our preferred model [17]. However, in order to en-

sure this model performs well, we further evaluate i) numerical robustness, in the form of

convergence and mixing criteria (e.g. visual inspection of the chains, and Gelman-Rubin

statistics [18,19] shown in Table S5), ii) goodness-of-fit, by, for example, validating the

posteriors against the priors, iii) parsimony, in the form of the DIC [see below, 20], and

iv) parameter posteriors, allowing coefficients of non-significant terms to shrink to zero

(see section Sensitivity analysis and associated results).

To evaluate the parsimony, we compared the DIC of several variations of the linear pre-

dictor H̄s(t) presented in Eqs. 3 and 4 (Table S4). Model A.1 in Table S4, corresponds

to the fully parameterised model and is described as explained in Eqs. 3 and 4 for lions

and dogs, respectively. We compare small changes to this model (A.1 - A.7), such as

excluding lags for the village-level vaccination (e.g. model A.2), one-way cross-species

transmission (model A.3) or lags in the vaccination coverage effect (model A.7). How-

ever, we also compare substantial changes (models A-K), such as removing cross-species

transmission (models B), or investigating alternative disease dynamics, e.g. by replacing

the autoregressive components with sinusoidal dynamics (models J-K). Table S4 shows

all formulations investigated for the predictor H̄s(t) and whether it included the effect of

village-level vaccination on domestic dogs as in Eq. 8. In Table S4, we use ’Yes’ and ’No’

to denote presence or absence of village-level vaccination, and ’Lag 1’ or ’Lag 2’ to denote

the presence of that specific lag only.

The deviance is a measure of overall fit, whilst the penalty measures the complexity of the

model by identifying the effective number of parameters in the model (20,21). A parsi-
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monious model is expected to have relatively few parameters, thus a lower DIC indicates

a better model. As such, our biologically preferred model is also the most parsimonious

as it was separated from the second best model by 12 DIC values. However, although

the posterior distributions for parameters with unconstrained priors are approximately

normally distributed (e.g. β1 and ω1), for parameters whose priors were constrained to

accommodate biological realism (e.g. β4, ω4), the posterior distributions tended to be

unimodal, but skewed (Figure S2), violating normality assumptions required for estimat-

ing DIC. As such, given that the model suggested by the DIC is the one containing all

of the candidate covariates and interactions, it is possible that it suffers from a degree of

overparameterisation. Nonetheless, even if model terms are not structurally dropped from

the classic data-dredging approach, their importance may still be allowed to shrink para-

metrically via our sensitivity analysis that quantifies the effect size of each model term

on the basis of prediction models (see section Sensitivity analysis). As such, considering

this multifaceted approach to model selection (i.e. biologically plausible and scientifically

interesting, and criteria i-iv), our choice of preferred model is deemed robust and reliable.

All models were fitted using JAGS software (22) which uses Gibbs sampling to generate

posterior distributions of the parameters given the likelihood, prior distributions and the

data itself. We ran our models for 50 · 104 iterations with burn-in of 30 · 104 to achieve

convergence. Since the estimation of the number of effective parameters used to estimate

the DIC is typically slower to converge than the model parameters, we recompiled each

model for further 20 · 104 iterations before estimating the DIC using 2000 iterations.
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Figure S2: Histograms of the posterior distributions of the best model, i.e. model A.1.
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Table S4: Model selection. Description of the linear predictors H̄s(t) of all models fitted
with and without village-level vaccination (V), and resultant delta-Deviance Information
Criterion (∆DIC). ∆DIC in red corresponds to the best model and bold values correspond
to the subsequent two best models. See description of parameters in Table S2.

Model V Linear predictor ∆DIC

A.1 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 0

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1 −

ω6Ct−2

A.2 No β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 1436

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1

A.3 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 583

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 − ω5Ct−1

A.4 Lag 1 β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 1256

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1

A.5 Lag 2 β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 1027

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1

A.6 Lag 1 β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 47

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 − ω5Ct−1

A.7 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 1454

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1

A.8 No β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 226

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1 −

ω6Ct−2

B.1 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 834

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1

B.2 No β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 447

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1

B.3 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 424

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2

B.4 Lag 1 β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 556

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1

B.5 Lag 2 β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 229

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1

B.6 Lag 1 β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 12

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2
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Model V Linear predictor ∆DIC

C.1 Yes β0 + β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 129

ω0 + ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1 − ω5Ct−1

D.1 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 126

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2 − ω5Ct−1

E.1 Yes β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 55

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2

E.2 No β0 + β1t+ β2Hlions,t−1 + β3Hlions,t−2 692

ω0 + ω1t+ ω2Hdogs,t−1 + ω3Hdogs,t−2

F.1 Yes β0 + β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 753

ω0 + ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1

F.2 No β0 + β2Hlions,t−1 + β3Hlions,t−2 + β4Hdogs,t−1 84

ω0 + ω2Hdogs,t−1 + ω3Hdogs,t−2 + ω4Hlions,t−1

G.1 Yes β0 + β2Hlions,t−1 + β3Hlions,t−2 842

ω0 + ω2Hdogs,t−1 + ω3Hdogs,t−2 − ω5Ct−1

H.1 Yes β0 + β2Hlions,t−1 + β3Hlions,t−2 833

ω0 + ω2Hdogs,t−1 + ω3Hdogs,t−2

I.1 Yes β0 + β2Hlions,t−1 + β4Hdogs,t−1 169

ω0 + ω2Hdogs,t−1 + ω4Hlions,t−1

J.1 Yes β0 + β1t+ β2cos(
2πt
F

) + β3sin(2πt
F

) + β4Hdogs,t−1 * 122

ω0 + ω1t+ ω2cos(
2πt
F

) + ω3sin(2πt
F

) + ω4Hlions,t−1 − ω5Ct−1

J.2 Yes β0 + β1t+ β2cos(
2πt
F

) + β3sin(2πt
F

) + β4Hdogs,t−1 * 102

ω0 + ω1t+ ω2cos(
2πt
F

) + ω3sin(2πt
F

) + ω4Hlions,t−1

J.3 No β0 + β1t+ β2cos(
2πt
F

) + β3sin(2πt
F

) + β4Hdogs,t−1 * 488

ω0 + ω1t+ ω2cos(
2πt
F

) + ω3sin(2πt
F

) + ω4Hlions,t−1

K.1 Yes β0 + β1t+
N∑
n=1

(β2ncos(
2πt
Fn

) + β3nsin(2πt
Fn

)) + β4Hdogs,t−1 * 1369

ω0+ω1t+
N∑
n=1

(ω2ncos(
2πt
Fn

)+ω3nsin(2πt
Fn

))+ω4Hlions,t−1−ω5Ct−1

K.2 Yes β0 + β1t+
N∑
n=1

(β2ncos(
2πt
Fn

) + β3nsin(2πt
Fn

)) + β4Hdogs,t−1 * 115

ω0 + ω1t+
N∑
n=1

(ω2ncos(
2πt
Fn

) + ω3nsin(2πt
Fn

)) + ω4Hlions,t−1

K.3 No β0 + β1t+
N∑
n=1

(β2ncos(
2πt
Fn

) + β3nsin(2πt
Fn

)) + β4Hdogs,t−1 * 181

ω0 + ω1t+
N∑
n=1

(ω2ncos(
2πt
Fn

) + ω3nsin(2πt
Fn

)) + ω4Hlions,t−1

*N corresponds to the number of trigonometric curves, here N=2, and F corresponds to the sinusoidal
frequency which was drawn from a uniform distribution between 1 and 42, the full length of the time-series.
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Sensitivity analysis

We used a forward prediction approach to investigate the effect of village- and regional-

level vaccination on the annual proportion of infected domestic dogs and of the presence of

cross-species transmission from lions-to-dogs and dogs-to-lions on their respective annual

proportion of infected individuals (hs(t)). All predictions were then made using Eqs. 1-4

and generated from the parameters estimated in each iteration of the best model (model

A.7), i.e. a new prediction is generated in each iteration from which we can calculate the

mean prediction values and associated credible intervals.

First, to ascertain the predictive power of the model, we compared the estimates from

equation 4 (i.e. infection hazard of dogs at time t) with its prediction estimates (Figure

S3). Figure S3 shows that in the first ∼10 years, the median and credible intervals of

the estimate (grey in Figure S3) and prediction (red in Figure S3) are very similar. This

suggests that the model’s predictive power is of approximately 10 years.
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Figure S3: Comparison between the mean and 95% credible intervals of the estimated

(grey) and predicted dog probability of infection (red) from the best model.

To investigate the effect of village-level vaccination, we compared predictions from models

A.7 and A.8 (A.8 is similar to A.7 but without village-level vaccination). The mean and

credible intervals of these models were very similar (see Figure 5 in main text), indicating

that there is little or no impact of village-level vaccination on the overall disease dynam-

ics. The similarity between these two prediction models also show that one can be used

as a proxy for the other. Following this result, we used the predictions based on model
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A.8 to investigate the impact of region-level vaccination. Using model A.7 as the base

model for these predictions would bias the results as the effect of village-level vaccination

is carried through to the other parameters of the model, and it would be difficult to dis-

tinguish their effect. A prediction was then generated based on model A.8 and by setting

the region-level vaccination parameter to zero. Finally, to investigate the effect of cross-

species transmission, we generated another prediction model by setting both region-level

vaccination and lion-to-dog, and dog-to-lion transmission parameters to zero.
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S3. JAGS code

model{

for(t in 1:Ntime){

# Hazard predictor for lions

H.lions[t] ∼ dnorm(Hbar.lions[t], prec.lions)

Hbar.lions[t]<- beta0 + beta1*t + beta2*H.lions[t-1] + beta3*H.lions[t-2] + beta4*H.dogs[t-1]

# Hazard predictor for dogs

H.dogs[t] ∼ dnorm(Hbar.dogs[t], prec.dogs)

Hbar.dogs[t]<- omega0 + omega1*t + omega2*H.dogs[t-1] + omega3*H.dogs[t-2] +

omega4*H.lions[t-1] - omega5*Coverage[t-1] - omega6*Coverage[t-2] }

#Hazards for t=1 & t=2 (AR time lags)

H.lions[1] ∼ dnorm(beta0, 0.001)

H.lions[2] ∼ dnorm(beta0, 0.001)

H.dogs[1] ∼ dnorm(omega0, 0.001)

H.dogs[2] ∼ dnorm(omega0, 0.001)

#Lion probability of infection

for(i in 1:Nlions){
for(t in 1:Ntime){

U.lions[i,t]<- H.lions[t] + phi.lions[i,t]

phi.lions[i,t] ∼ dnorm(0, tau.phi.lions)

logit(u.lions[i,t])<- U.lions[i,t]

P.lions[i,t]<- 1-u.lions[i,t] }

# probability of infection between birth and sample year

r.lions[i]<- 1-prod(P.lions[i,Birth.lions[i]:Sample.lions[i]])

# probability of getting a seropositive result upon testing

p.lions[i]<- qpos.lions*r.lions[i] + qneg.lions*(1-r.lions[i])

# Likelihood of data (titre binary results)

X.lions[i] ∼ dbern(p.lions[i]) }

#Dog probability of infection given vaccinated status of its village

for(i in 1:Ndogs){
for(t in 3:Ntime){

U.dogs[i,t]<- H.dogs[t] - v1*H.dogs[t-1]*Vvacc[(i-1)*Ntime+(t-1)] - v2*H.dogs[t-2]*Vvacc[(i-1)*

Ntime+(t-2)] + phi.dogs[i,t]

phi.dogs[i,t] ∼ dnorm(0, tau.phi.dogs)

logit(u.dogs[i,t])<- U.dogs[i,t]

P.dogs[i,t]<- 1-u.dogs[i,t] }

# Probability of infection at t=1 & t=2 (AR time lags)

U.dogs[i,1] <- H.dogs[1]

logit(u.dogs[i,1])<- U.dogs[i,1]

P.dogs[i,1]<- 1-u.dogs[i,1]

U.dogs[i,2] <- H.dogs[2]

logit(u.dogs[i,2])<- U.dogs[i,2]

P.dogs[i,2]<- 1-u.dogs[i,2]

# probability of infection between birth and sample year

r.dogs[i]<- 1-prod(P.dogs[i,Birth.dogs[i]:Sample.dogs[i]])

# probability of getting a seropositive result upon testing

p.dogs[i]<- qpos.dogs*r.dogs[i] + qneg.dogs*(1-r.dogs[i])

# Likelihood of data (titre binary results)

X.dogs[i] ∼ dbern(p.dogs[i]) }
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#Priors

prec.lions<- 1/(sigma.lions*sigma.lions)

sigma.lions ∼ dunif(0,5)

prec.dogs<- 1/(sigma.dogs*sigma.dogs)

sigma.dogs ∼ dunif(0,5)

tau.phi.lions<- 1/(sigma.phi.lions*sigma.phi.lions)

sigma.phi.lions ∼ dunif(0,5)

tau.phi.dogs<- 1/(sigma.phi.dogs*sigma.phi.dogs)

sigma.phi.dogs ∼ dunif(0,5)

qneg.lions ∼ dbeta(0.5,25)

qneg.dogs ∼ dbeta(0.5,25)

qpos.lions ∼ dbeta(25,0.5)

qpos.dogs ∼ dbeta(25,0.5)

lambda<- 1/2

beta0 ∼ dnorm(0,0.001)

beta1 ∼ dnorm(0,0.001)

beta2 ∼ dnorm(0,0.1)

beta3 ∼ dnorm(0,0.1)

beta4 ∼ dexp(lambda)

omega0 ∼ dnorm(0,0.001)

omega1 ∼ dnorm(0,0.001)

omega2 ∼ dnorm(0,0.1)

omega3 ∼ dnorm(0,0.1)

omega4 ∼ dexp(lambda)

omega5 ∼ dexp(lambda)

omega6 ∼ dexp(lambda)

v1 ∼ dexp(lambda)

v2 ∼ dexp(lambda)

} #end model

Ntime (total number of years in time-series), Ndogs and Nlions (total of number of dogs

and lions sampled respectively), Coverage (regional-level vaccination coverage; i.e. pro-

portion of vaccinated villages per year), V vacc (binary variable indicating whether the dog

i came from a vaccinated village), Birth. (year of birth of each individual i, Sample. (year

when the serum sample of individual i was collected), and X (titre binary result where 1

indicates positive for CDV infection and 0 indicates negative) correspond to available data.
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S4. Results

Table S5 shows the parameter values resulting from the best model (model A.1) and

the estimated shrink factor values of the Gelman-Rubin convergence diagnostic. If both

the estimated value and the upper credible interval of the shrink factor are close to 1,

the chains are considered to have converged. Apart from the precision and dog-to-lion

parameters, all other parameters seem to have converged well, as also shown from the

visual observation of the trace plots. As a rule of thumb, a model is considered to be

appropriate if approximately 80% of the parameter estimates converged well [20]. Given

the large amount of samples involved in Hs,t (one per time point and species, i.e. 86), we

do not provide the Gelman-Rubin statistics for this parameter, however, similar to the

parameters in Table S5, Hs,t converged well.

Table S5: Median posterior estimates with associated 95% credible intervals and Gelman-
Rubin shrink factor (estimated value [upper credible interval]) of the best model (A.7).

Species Variable Param. Median (95% CI) Shrink factor

Lions Intercept β0 -12.127 (-61.32, 10.61) 1.33 [2.45]

Linear trend β1 0.201 (-0.17, 1.19 ) 1.22 [1.81]

AR(1) β2 -0.666 (-1.47, 0.61 ) 1.02 [1.04]

AR(2) β3 -0.057 (-0.673, .642) 1.01 [1.01]

Dog-to-lion transmission β4 0.883 (0.08, 2.48) 1.40 [2.27]

Precision σ 0.070 (0.04, 0.40) 1.43 [3.63]

Correct detection q+ 0.939 (0.86, 1.00) 1.00 [1.00]

False detection q− 2.264·10−3 1.04 [1.12]

(4.60·10−6, 2.49·10−2)

Dogs Intercept ω0 -5.072 (-13.85, -0.95) 1.02 [1.08]

Linear trend ω1 0.020 (-0.12, 0.28) 1.00 [1.00]

AR(1) ω2 0.629 (-0.09, 1.13) 1.01 [1.01]

AR(2) ω3 -0.430 (-0.82, 0.23) 1.01 [1.05]

Lion-to-dog transmission ω4 0.032 (0.00, 0.20) 1.14 [1.49]

Regional vacc. (lag 1) ω5 0.862 (0.01, 22.28) 1.01 [1.02]

Regional vacc. (lag 2) ω6 0.955 (0.01, 0.03) 1.03 [1.05]

Village status (lag 1) v1 0.008 (0.00, 0.03) 1.01 [1.02]

Village status (lag 2) v2 0.008 (0.00, 0.04) 1.00 [1.01]

Precision σ 0.235 (0.06, 0.98) 1.12 [1.44]

Correct detection q+ 0.991 (0.91, 1.00) 1.01 [1.03]

False detection q− 3.421·10−4 1.00 [1.01]

(6.11·10−7, 4.03·10−3)
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Annual probability of infection

Figure S4 shows Hs,t estimated from the best model, i.e. mean (line) annual probability

of infection estimated for lions (top panel) and dogs (bottom panel) in the logit scale,

and respective credible intervals 50% (dark colour), 75% (medium colour) and 95% (light

colour). This figure allows us to resolve differences at low probabilities that may arise

from Figure 3 (i.e. annual probability of infection shown in the main text of this paper),

including the power of the mean estimates. Although the uncertainty in the first decade is

large, from ∼1980 the estimates are robust with tighter credible intervals, especially when

viewed at 75% credibility. This figure shows a higher frequency in peaks of infection in

lions than dogs, in particular from 1994 onwards. The peaks that have lower uncertainty

before 1994 (∼1981, 1994) are preceded by peaks in the dogs. However, the 2000 infection

peak occurred concurrently in both species.

Lo
gi

t p
ro

b.
 in

fe
ct

io
n

1970 1975 1980 1985 1990 1995 2000 2005 2010

−
40

−
20

0
10 Lions

Time

Lo
gi

t p
ro

b.
 in

fe
ct

io
n

1970 1975 1980 1985 1990 1995 2000 2005 2010

−
40

−
20

0
10 Dogs

Figure S4: Dog and lions annual probability of infection in the logit scale. Shaded areas

around the mean difference (bright line) correspond to 50% (dark), 75% (medium) and

95% (light colour) credible intervals.

In order to compare the probability of infection among species, Figure S5 shows hdogs(t)−

hlions(t), i.e. the difference between the probability of infection in dogs with lions estimated
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for each draw of the posterior distribution. After the initial first decade of uncertainty, this

figure shows an interval of approximately 5 years (∼1976-1981), where the probability of

infection in dogs was higher than in lions as seen from the positive values of the difference

between the probability of infection in dogs and lions. This is followed by a period of

approximately 10 years (∼1982-1991) where the probability of infection in dogs and lions

was similar (i.e. the difference is zero), which corresponds to the time where infection is

thought to have disappeared form the system (see Figure 3 in main text). However, from

mid-1990s there was an increase in the probability of infection in lions compared to dogs,

as shown by the negative values in the difference during these times. This also reflects

the unstable nature of CDV dynamics in both lions and dogs.
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Figure S5: Difference between dog and lion probability of infection. Shaded areas around

the mean difference (black line) correspond to 50% (dark grey), 75% (medium grey) and

95% (light grey) credible intervals.

Prediction models

To investigate the impact of cross-species transmission on CDV dynamics, we compared

the forecast of the annual probability of infection in lions and dogs, with and without the

cross-species transmission parameter (Fig.S6). The similarity of the predictions of the

mean probability of infection in dogs and associated 95% credible intervals, with (Fig.S6,

green) and without (Fig.S6, blue) lion-to-dog transmission, indicates that transmission

from lions into dogs is negligible. The lion prediction model was imprecise (see 95% cred-

ible intervals in Fig.S6 right panel), likely due to small sample sizes, and was therefore

uninformative. However, it is likely that the uncertainty and/or temporal variation in the

disease dynamics are masking the effect of this parameter in the prediction models, as
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the effect size of the parameters governing dog-to-lion transmission (β4=0.283 [0.08-2.48])

resultant from the best model, was ten times larger than that of the lion-to-dog transmis-

sion parameter (Fig.S7), providing evidence that cross-species transmission dynamics are

dominated by dog-to-lion transmission .
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Figure S6: Predictions of the sensitivity model evaluating the effect of cross-species trans-

mission. Left panel) Annual predicted mean probability of dog infection with (green) and

without (blue) lion-to-dog transmission; Right panel) Annual predicted mean probability

of lion infection with (green) and without (blue) dog-to-lion transmission. Shade corre-

sponds to associated 95% credible interval and dotted line to its upper bound.
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Figure S7: Histogram of the posterior distribution of the cross-species transmission pa-

rameters.

In order to investigate the role of dog vaccination on the dynamics of CDV infection

in dogs, we compared the forecasts of the dog annual probability of infection with and

without vaccination at the village- (Fig.S8, left panel) and regional-levels (Fig.S8, right

panel). These figures show that whether a dog originated from a vaccinated or unvacci-

nated village had a small positive effect on the overall CDV dynamics in domestic dogs
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as both the mean and credible intervals of the predicted annual probability of infection,

with (Fig.S8, grey) and without (Fig.S8, red) village-level vaccination, were very similar.

However, for the period when the regional vaccination coverage was consistently greater

than 30%, i.e. after 2003, there was a large marked effect of vaccination on the probabil-

ity of a dog being infected, as demonstrated by the ∼5% increase in the predicted mean

probability of infection from 2003 onwards when this regional-level vaccination effect is

set to zero (Fig.S8, green compared to red).
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Figure S8: Predictions of the sensitivity evaluating the effect of vaccination. Left panel)

Annual predicted mean probability of dog infection with (grey) and without (red) a

village-level vaccination parameter; Right panel) Annual predicted mean probability of

dog infection with (red) and without (green) a region-level vaccination parameter. Shade

corresponds to associated 95% credible interval and dotted line to its upper bound.
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Figure S9: Age seroprevalence of domestic dogs from the districts of Serengeti and Mu-

soma (west of Serengeti National Park) between 1997 and 1999.
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