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S1. Parameters’ Values and Assumptions
Our model is based on the model proposed by Sprinzak et al. (1),
which well-fitted their experimental results designed to measure
the interaction between Notch and Delta, both in cis- and trans-.
Their experimental results suggest a Hill coefficient for Notch
activity close to 2 and this value was chosen to represent the
NICD activation of Notch ðnNÞ and inhibition of Delta ðnDÞ. For
the case of NICD modulation of Jagged, a higher Hill coefficient
ðnJ = 5Þ was chosen to represent both direct activation of Jagged
by NICD and indirect modulations by miRNA––Jagged is strongly
repressed by miR200 (2); however, miR200 is repressed by Snail
(3), which in turn is activated by NICD (4), resulting in a effective
strong activation of Jagged by the signal. A strong activation of
Jagged is required for the maintenance of the (S/R). As shown in
Fig. S6, for nJ = 4 the range of existence of the S/R state is sig-
nificantly decreased and for nJ = 3 this state is no longer ob-
served. Previous work (1) shows that cis-inhibition rate ðkCÞ is
approximately 10 times higher than transactivation rate ðkTÞ for
Notch–Delta interaction and we assumed the same values for
Notch–Jagged interaction when the effect of Fringe is not taken
into account. Unlike the previous model (1) in which the rates are
in units of relative fluorescence units, our variables represent the
number of proteins in the membrane for Notch, Delta, and Jagged,
and the number of proteins inside the nucleus for the signal
(NICD). Because of that, we scaled the values of cis-inhibition
and trans-activation rate accordingly.
The rapid degradation of the signal is an important feature in

the Notch signaling (5) and, because of that, we considered the
NICD degradation rate ðγIÞ to be 5 times higher than the
typical protein degradation rate γ = 0:1 h−1. The values of N0,
D0, and J0 which represent the production rate of the proteins
were chosen to keep the maximum number of proteins in the
membrane up to ∼5,000 per cell. This value is consistent with
experimental results where the concentration of the proteins
varies up to a few hundred ng/ml (6)––or a few thousand pro-
teins per cell. Once most proteins are exported to the mem-
brane, we should expect a few thousand proteins in the mem-
brane when the expression is up-regulated. Similarly, the number
of NICD inside the nucleus varies up to a few hundreds and
because of that, we select the threshold of the Hill function
ðI0Þ to be 200.
For the effect of glycosylation of Notch by Fringe, we assumed

that the fraction of glycosylated Notch increases with the signal
(NICD), represented by a Hill coefficient ðnF = 1Þ. We assumed
that glycosylation of Notch increases its affinity to Delta by
a factor of 3 ðλFD = 3:0Þ and decrease its affinity to Jagged by 70%
ðλFJ = 0:3Þ. Experimental evidence for modulation of Notch by
lunatic Fringe shows a 4.4-fold reduction for Jagged1-mediated
signaling and at least a twofold increase for Delta1-mediated
signaling (7). Finally, λN = λJ = 2:0 for Notch and Jagged repre-
sents an activation of their production by the signal and λD = 0:0
for Delta represents its inhibition by the signal.

Assumptions of the Model.

i) Degradation rates of Notch, Delta, and Jagged are the same.
ii) Number of receptor and ligands are on the order of thou-

sands of molecules when overexpressed and the number of
NICD inside the nucleus is on the order of hundreds of
molecules.

iii) The affinity between Notch–Delta and Notch–Jagged is the
same when Notch is not modified by Fringe.

iv) Jagged is strongly activated by NICD due to both direct and
indirect activation; therefore, we assumed a high Hill coef-
ficient for this activation ðnJ = 5Þ.

v) Fringe is activated by NICD and we assumed that the num-
ber of Notch modified by Fringe increases with the levels of
NICD. We did not consider the delay in this modification
that might occur due to the production of Fringe.

S2. Model Details
To include the effect of glycosylation of Notch by Fringe we
considered two types of Notch, whether it is modified or not by
Fringe. Also, NICD (I) activates Fringe and, because of that, we
considered that the fraction of glycosylated Notch increases
constitutively with the increase of NICD (I). We point out that
some time delay might be important in this process; the Fringe
produced at time t should modify Notch only at a later time t+ δ.
For simplicity, let us first consider the effect of Fringe only in the

trans-interaction between Notch–Delta. The cis-interaction between
Notch–Delta, and both cis- and trans-interaction between Notch
and Jagged are omitted; however, the same argument can be used
to understand the changes in these interactions due to glycosylation.
Let us consider the following reaction: Notch of the cellN binds

to external Delta Dext creating a complex NDext,

½N�+ ½Dext�⇌ ½NDext�: [S1]

The equations for this reaction for both the glycosylated Notch
and the nonglycosylated Notch, N* and N′, respectively, are
given by

dN*

dt
=N*

0H
SðI; λNÞ− γN* −

�
k*T+N*Dext − k*T−

h
N*Dext

i�
; [S2]

dN′
dt

=N0′HSðI; λNÞ− γN′−
�
kT+′ N′Dext − kT−′

�
N′Dext

��
; [S3]

where the kT+ and kT− represent the binding and unbinding rate,
respectively. Then, the equations that represent the ½NDext� com-
plex are

d
h
N*Dext

i
dt

= k*T+N*Dext − k*T−
h
N*Dext

i
− k*I

h
N*Dext

i
; [S4]

d
�
N′Dext

�
dt

= kT+′ N′Dext − kT−′
�
N′Dext

�
− kI′

�
N′Dext

�
; [S5]

where the last term represents the release of the signal (NICD)
that occurs with a rate kI and leads to the degradation of both
proteins. Assuming the quasi-steady state for ½N*Dext� and
½N′Dext�, we obtain

h
N*Dext

i
=

k*T+
k*T− + k*I

N*Dext; [S6]

�
N′Dext

�
=

kT+′
kT−′ + kI′

N′Dext: [S7]
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Now, let us define N =N′+N*. We can write N′= ð1− f ÞN
and N* = fN, where f : ½0; 1� represents the fraction of Notch that
has been modified by Fringe.
Then,

dN
dt

=N0HSðI; λNÞ− γN − kTð1+ af ÞDext; [S8]

where

kT =
kT+′ kI′
kT−′ + kI′

[S9]

and

a=
k*T+k

*
I

kT+′ kI′
ðkT−′ + kI′Þ�
k*T− + k*I

�− 1: [S10]

Similar procedure can be done for both Notch–Jagged and cis-
interaction. Then, the model becomes

dN
dt

=N0HSðI; λNÞ−N
�ðkCD+ kTDextÞ½1+ ad f ðIÞ�

+ ðkCJ + kTJextÞ
�
1+ ajf ðIÞ

��
− γNN;

[S11]

dD
dt

=D0HSðI; λDÞ− kCDN½1+ ad f ðIÞ�− kTDNt − γDD; [S12]

dJ
dt

= J0HSðI; λJÞ− kCJN
�
1+ aj f ðIÞ

�
− kTJNt − γJ J; [S13]

dI
dt

= kTN
�
Dext½1+ ad f ðIÞ�+ Jext

�
1+ aj f ðIÞ

��
− γI I: [S14]

We considered that f =H+ðIÞ is a positive Hill function that
increases when the signal increases. In this case, we can rewrite
the term related to the Fringe effect in terms of shifted Hill
functions: kðIÞ= k½1+ aH+ðIÞ�= kHSðI; λFÞ where λF = 1+ a. Then,
the equations above become

dN
dt

=N0HSðI; λNÞ−N
�ðkCD+ kTDextÞHS�I; λFD�

+ ðkCJ + kTJextÞHS�I; λFJ ��− γNN;

[S15]

dD
dt

=D0HSðI; λDÞ− kCHS�I; λFD�ND− kTDNt − γDD; [S16]

dJ
dt

= J0HSðI; λJÞ− kCHS�I; λFJ �NJ − kTJNt − γJ J; [S17]

dI
dt

= kTN
�
Dext HS�I; λFD�+ Jext HS�I; λFJ ��− γI I: [S18]

S3. Two-Cell Model Equations
In the next subsections we describe the model for two in-
teraction cells for the three models: Notch–Delta only (N–D),
Notch–Delta–Jagged (N–D–J), and the model considering
the Fringe effect (N–D–J–F). The model represents the dy-
namic of the proteins for the cell 1 that interacts with cell 2.
Similar equations represent the dynamic of the proteins in
cell 2.

N–D Model.

dN1

dt
=N0HSðI1; λNÞ−N1ðkCD1 + kTD2Þ− γN1; [S19]

dD1

dt
=D0HSðI1; λDÞ−D1ðkCN1 + kTN2Þ− γD1; [S20]

dI1
dt

= kTN1D2 − γI I1: [S21]

N–D–J Model.

dN1

dt
=N0HSðI1; λNÞ−N1½kCðD1 + J1Þ+ kTðD2 + J2Þ�− γN1;

[S22]

dD1

dt
=D0HSðI1; λDÞ−D1ðkCN1 + kTN2Þ− γD1; [S23]

dJ1
dt

= J0HSðI1; λJÞ− J1ðkCN1 + kTN2Þ− γJ1; [S24]

dI1
dt

= kTN1ðD2 + J2Þ− γII1: [S25]

N–D–J–F Model.

dN1

dt
=N0HSðI1; λNÞ−N1

�ðkCD1 + kTD2ÞHS�I1; λFD�
+ ðkCJ1 + kTJ2ÞHS�I1; λFJ ��− γN1;

[S26]

dD1

dt
=D0HSðI1; λDÞ− kCHS�I1; λFD�N1D1

− kTHS�I2; λFD�D1N2 − γD1;

[S27]

dJ1
dt

= J0HSðI1; λJÞ− kCHS�I1; λFJ �N1J1 − kTHS�I2; λFJ �J1N2 − γJ1;

[S28]

dI1
dt

= kTN1
�
D2HS�I1; λFD�+ J2HS�I1; λFJ ��− γI I1: [S29]

S4. Dimensionless Version of the Model
To write the dimensionless version of the model, let us define the di-
mensionless variables: n= γN=N0, d= γD=D0, j= γJ=J0, and i=
I=I0. Note that N0, D0, and J0 represent the production rate of
the proteins (in molec/h), whereas I0 is the threshold of the Hill
function (in molec).
For the case of Notch–Delta model, Eqs. 5–7 become

τ
dn
dt

=
�
1+

ip

1+ ip

	
− αdnd− ðβd + 1Þn; [S30]

τ
dd
dt

=
1

1+ ip
− αnnd− ðβn + 1Þd; [S31]

di
dt
= βiβd n− i; [S32]

where t≡ tγI , τ≡ γI=γ, αd ≡ kcD0=γ2, βd ≡ ktDext=γ, αn ≡ kcN0=γ2,
βn ≡ ktNext=γ, and βi ≡ ðN0Þ=ðI0γIÞ.
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Similarly, for the case of Notch–Delta–Jagged model, Eqs.
1–4 become

τ
dn
dt

=
�
1+

ip

1+ ip

	
− n

�
αdd+ αjj

�
− ðβ+ 1Þn; [S33]

τ
dd
dt

=
1

1+ ip
− αnnd− ðβn + 1Þd; [S34]

τ
dj
dt
=
�
1+

ipj

1+ ipj

	
− αnnj− ðβn + 1Þj; [S35]

di
dt
= βiβn− i; [S36]

where αj = kcJ0=γ2, β= βd + βj, and βj = ktJext=γ.
Lastly, the dimensionless version of the Notch–Delta–Jagged–

Fringe model (Eqs. 8–11) is

τ
dn
dt

=
�
1+

ip

1+ ip

	
− n

�
αddHS�i; λFD�+ αjjHS�i; λFJ ��

− n
h
βdH

S�i; λFD�+ βjH
S�i; λFJ �+ 1

i
;

[S37]

τ
dd
dt

=
1

1+ ip
− αnndHS�i; λFD�− ðβn + 1Þd; [S38]

τ
dj
dt
=
�
1+

ipj

1+ ipj

	
− αnnjHS�i; λFJ �− ðβn + 1Þj; [S39]

di
dt
= βin

h
βdH

S�i; λFD�+ βjH
S�i; λFJ �

i
− i: [S40]

S5. Parameter Sensitivity Analysis
We first perform the sensitivity of the model applied to the steady
state by quantifying the changes of the signal as function of the
changes of the parameters. Each parameter was increased and
decreased its value 10% off its values described in Table S1. The
relative change in the steady state of the signal is presented in
Fig. S1. These results indicate that the most important param-
eters––in which a change in its value by 10% generates a higher
change in the signal––are the same in the three models, thus
showing a good consistency among the models. The most im-
portant parameters are the production and degradation rate of
Notch N0 and γN , respectively, the production rate of Delta D0,
and the transactivation rate kT . Note that in this analysis we
considered different parameters for the degradation rate of
Notch, Delta, and Jagged ðγN ; γD; γJÞ whereas in the model we
considered them to be the same (γ). To evaluate the influence of
these four parameters in the shape of the bifurcations curves, we
changed by 10% the values of each parameter. The limit point
where the system changes from one state to the other is very
sensitive to changes in these parameters (Fig. S2); however, the
overall behavior of the circuit remains the same, therefore sug-
gesting a good robustness of the model.
We also evaluate the relative changes in the steady state of the

signal (NICD) with respect to changes in the parameters for
the dimensionless version of the model. This analysis shows that
the most sensitive parameters are the ones related to the quadratic
term of the equations: αN ; αD; αJ , and the ones related to the term

of the production of the signal: βI ; βD; βJ . All these parameters are
related to the N0, γN , D0, and kT , therefore showing that both
sensitivity analyses are consistent with each other.
For most parameters, changes in value of 10% lead to very

small changes in the signal. On one hand, this means that the
results and predictions of the model are quite robust by changes in
the parameters. On the other hand, this means that some extra
caution must be taken when planning an experimental validation
of the values of these parameters. Themost simple experiment for
validating this model is to measure the intensity of the signal using
a report protein. If this kind of experiment is used to fit the
parameters, we should expect that many parameters will have
a large range of values in which they fit the experimental data well.
This should occur once changes in the majority of the parameters
lead to small changes in the signal, therefore characterizing the
model as sloppy (8). For this reason, experiments to validate the
values of the parameters should be carefully designed.

S6. Considering the Effect of both Soluble and Membrane-
Bound Ligands
Experimental evidence suggests that membrane-bound ligands
should activate the signal strongly compared with soluble ligands.
This happens because soluble ligand does not have enough
mechanical pulling force to activate the signal (9). However,
alternative mechanisms such as ligand multimerization can lead
to sufficient mechanical force for ligand activation (10). Further
evidence that membrane-bound should activate the signal strongly
is that lower lateral mobility of the ligand leads to higher signaling
(11). Therefore, a model that considers both soluble and mem-
brane-bound ligands should have two terms in Notch equation for
interaction with both forms of these ligands. For example, the
model presented in Eqs. 1–4 would be

dN
dt

=N0HS+ðIÞ− kCNðD+ JÞ− kmT N
�
Dm

ext + Jmext
�

− ksTN
�
Ds

ext + Jsext
�
− γN;

[S41]

dD
dt

=D0HS−ðIÞ− kCDN − kmT DNext − γD; [S42]

dJ
dt

= J0HS+ðIÞ− kCJN − kmT JNext − γJ; [S43]

dI
dt

=N
�
kmT

�
Dm

ext + Jmext
�
+ ksT

�
Ds

ext + Jsext
��

− γI I; [S44]

where Dm
ext and Jmext represent membrane-bound Delta and Jag-

ged, respectively, and Ds
ext and Jsext represent soluble Delta and

Jagged, respectively. kmT and ksT represent the transactivation rate
for membrane-bound ligands and for soluble ligands, respec-
tively, and it is expected that kmT > ksT .

S7. Temporal Dynamics and Stochastic Simulations
To evaluate the amount of time for reaching the steady state, we
represented the dynamics of 100 cells starting from different
initial conditions. For most cases, one of the three possible
equilibrium states was reached up to 100 h. This time scale is
consistent with the characteristic developmental time scale, Fig.
S3A. Similar results are found for a stochastic dynamics using the
Gillespie algorithm, Fig. S3B. Interestingly the intermediate S/R
state presents a large basin of attraction, Fig. S3C.
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Fig. S1. Parameter sensitivity analysis. Relative changes in the steady state of the signal (NICD) with respect to their value in the stable state when each
parameter is increased and decreased by 10% over its standard value described in Table S1.
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The initial conditions were chosen randomly. Concentration of Notch (N) as a function of time. (C) Representation of the trajectories presented in B in the
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circle represents unstable steady states, and the red filled circles represent the two stable states. (Right) Nullclines for the case of two interacting cells for: (D)
D1 × D2 for the N–D model; (E) D1 × D2 for the N–D–J model; (F) J1 × J2 for the N–D–J model; (G) D1 × D2 for the N–D–J–F model; (H) J1 × J2 for the N–D–J–F model.
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Fig. S5. Bifurcation curves for the levels of different proteins. In the main text only the curves for Notch levels are presented in Figs. 3C, 4 D and E, 5B (Right), and 5B
(Left), respectively. Here, we also include the eigenvalues and normal form coefficient for each limit point. For all limit points, the normal form coefficient is higher than
zero and therefore the system is nondegenerate. (A) Bifurcation for the N–D model (see Fig. 3C in the main text): Next =500. (B) Bifurcation for the N–D–J model (Fig.
4D): Next = 3,000 and Yext =Dext + Jext . (C) Bifurcation for the N–D–J model (Fig. 4E): Next = 1,000. (D) bifurcation for the N–D–J–F model (Fig. 5B, Right):
Next = 500, Jext = 3,000. (E) Bifurcation for the N–D–J–F model (Fig. 5B, Left): Next =500, Jext = 1,000. Normal form coefficients and eigenvalues: (A) (a1 = 3:95e−5,
a2 = 2:10e−5), eigenvalues (½N,D,I�1 = ½−1:87e−0,2:82e−8,− 5:43e−1�, ½N,D,I�2 = ½−2:28e−0,− 1:15e−8,− 6:6e−1�). (B) (a1 = 3:82e−5, a2 = 6:24e−5, a3 = 3:39e−5, a4 =
1:75e−5), eigenvalues (½N,D,J,I�1 = ½−2:58e−0, 1:24e−7,− 7:21e−1,− 6:51e−1�, ½N,D,J,I�2 = ½−2:31e−0,1:32e−7,− 9:92e−1,− 6:26e−1�, ½N,D,J,I�3 = ½−2:40e−0, 1:54e−8,
− 6:75e−1,−1:41e−0�, ½N,D,J,I�4 = ½−2:58e−0,− 1:90e−0,−1:99e−8,− 6:97e−1�). (C) (a1 = 2:33e−5, a2 = 6:10e−5, a3 = 6:27e−5, a4 = 2:75e−5), eigenvalues (½N,D,J,I�1 =
½−3:70e−0, 9:97e−8, − 5:45e−1,− 4:33e−1�, ½N,D,J,I�2 = ½−2:74e−0,− 7:23e−8,− 6:74e−1,− 5:22e−1�, ½N,D,J,I�3 = ½−2:58e−0, 9:59e−8, − 9:01e−1,− 5:78e−1�, ½N,D,J,I�4 =
½−2:47e−0,− 1:67e−0, 1:43e−8,− 6:78e−1�). (D) (a1 = 1:68e−5, a2 = 4:11e−5, a3 = 5:43e−5, a4 = 2:10e−5), eigenvalues (½N,D,J,I�1 = ½−4:58e−0,− 6:86e−1,− 2:73e−8,
− 2:82e−1�, ½N,D,J,I�2 = ½−3:54e−0,− 8:53e−1,− 6:45e−8,− 2:73e−1�, ½N,D,J,I�3 = ½−2:81e−0,− 1:32e−0,1:04e−7,− 3:24e−1�, ½N,D,J,I�4 = ½−2:49e−0,− 1:85e−0,− 9:24e−8,

Legend continued on following page
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− 4:75e−1�). (E) (a1 =2:55e−5), a2 =9:33e−5, a3 = 1:23e−4, a4 = 3:80e−5, eigenvalues (½N,D,J,I�1 = ½−5:13e−0,− 5:55e−1,− 2:25e−8,− 2:58e−1�, ½N,D,J,I�2 = ½−3:31e−0,
− 8:80e−1, 4:62e−8,− 1:85e−1�, ½N,D,J,I�3 = ½−2:98e−0,− 1:15e−0,− 5:41e−8,− 2:11e−1�, ½N,D,J,I�4 = ½−2:73e−0,− 1:80e−0, 6:95e−8,− 4:34e−1�).

Fig. S6. Phase diagram. (A) Same as Fig. 5B (Center). (B) Same as A for nj = 4. For values of nj < 4 the circuit does not present tristability, given all other
parameters chosen as given in Table S1.

A B

Fig. S7. Phase diagram. (A) Same as Fig. 5 (Center). (B) Same as A for Next = 1,000.
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Fig. S8. (A) Phase diagram as a function of the production rate of Jagged (J0) and production rate of Delta (D0). As the production of Jagged (J0) increases, the
cells tend to keep the same fate (lateral induction). Conversely, as the production of Delta (D0) increases, the cells tend to adopt alternate fate. (B) Same as Fig.
7D (D0 = 1,600 molec/h).

Table S1. Parameter values used in the simulations

Parameter Value Unit

γ 0.1 time−1ðh−1Þ
γI 0.5 time−1ðh−1Þ
N0 500*, 1,600†, 1,400‡ Number of proteins
D0 1,000*, 1,800†, 1,600‡ Number of proteins
J0 1,200†,‡ Number of proteins
kT 5e−5 time−1ðh−1Þ
kC 5e−4 time−1ðh−1Þ
I0 200 Number of proteins
nN ,nD 2.0 Dimensionless
nJ 5.0 Dimensionless
nF 1.0 Dimensionless
λN ,λJ 2.0 Dimensionless
λD 0.0 Dimensionless
λFD 3.0 Dimensionless
λFJ 0.3 Dimensionless

*Values for Fig. 3.
†Values for Fig. 4.
‡Values for Fig. 5. Values for Figs. 6 and 7 are the same as for Fig. 5.
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