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ABSTRACT  R. A. Fisher’s 1930 “reproductive value” is
defined as the contribution made by a population’s initial age
elements to its asymptotically dominating exponential growth
mode. For the Leslie discrete-time model, it is the characteristic
row vector of the Leslie matrix, and for the integral-equation
model of Lotka the similar eigenfunction. It generalizes neatly
to a 2-sex model of linear diffirential equations, and to general
n-variable linear systems. However, when resource limitations
end the “dilute” stage of lineari?', reproductive value loses
positive definability. The present linear analysis prepares the
way for generalizing reproductive value to nonlinear systems
involving first-degree-homogeneous relationships.

For a linear female-dominant demographic system like that
of Sharpe and Lotka (1), or its discrete-time version of Leslie
(2), R. A. Fisher (3) defined the “reproductive value” of an
initial population element of a given age. Eschewing his an-
alogies to the compound-interest concepts of economics, we
may tersely define Fisher’s concept as the contribution made
by the system’s initial conditions to its asymptotically domi-
nating exponential-growth mode.

Review of discrete-time demography
Utilizing convenient matrix notation, we write our system as

x(t + 1) = Lx(t) (1]

in which x = [x;] is the column vector of a number of females
of age j; in which [L ;] = [m,] is the row vector of nonnegative
‘age-specific fertilities, with m,, > 0 if we ignore all post-fertile
ages older than n, and with mymy, ; > 0 for some choice of k
between 1 and n — 1; and in which the only nonzeros in Ls last
n — 1 rows are the positive age-specific survival fractions in the
sub-diagonal, 0< Ly, 1;=pi < 1=lo,pips... 06 =l <y
forl <k <n.

Now with L assured to be a primitive (nonnegative, acyclic,
irreducible) Perron-Frobenius matrix, it is well known that the
system approaches an exponential rate of growth

x,(t + 1)

li = i=1,... 1]
:EE o 1l+7r@G=1..,n),x0)>0 [2.1]
<
r > 0,
in which 1 + 7 is the positive root of
YA = im,l,_lx-f =1 [2.2]
n,
tim 2350 _ o0 g0
L o ) o[ ..., x,9] (2.3]
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This is a uniquely defined function, fulfilling Fisher’s purpose
and obeying

o[x%, ..., 2,0 = ?vjx,(O) = vx(0) [2.4]
. x;(t) == no_ -
,llni —Z'l'xj m X, Zl: =1 [2.5]

v and x being row and column eigenvectors of L corresponding
to its characteristic root of largest absolute value, 1 + 7:

Li=(1+7)% 15=1,1=(11,...,1) (3.1]
vL=v(l1+7r),vx=1. [3.2]

[Remark: 3_tx;(t)/ X Tcjx;(t), where ¢; > 0, approaches a
constant as ¢ — «; so there is no intrinsic bias from adding units
of different age on a one-for-one basis.]

Fisher’s vector of reproductive value is, by definition, pro-
portional to v. (He seems to suggest a normalization for v that
makes the reproductive value at birth unity, my v/v;; then his
v;/v) gives each age’s reproductive value compared to that at
birth.) It may be noted that, if we include in L some rows and
columns for post-fertile ages, we shall have L reducible and shall
have zeros for [vp 41, Unyo, ... |

Explicit formulas for X and v are given, as by Samuelson
(ref. 4, p. 396; ref. 5, pp. 400-401), by

xT=[%]=bLL(L + )Y ..., LL-(1 + r)™+1] [41]

bl=1+0LA+r) 1+, . +1,,(1 +r)mtl [4.2]
v=lo=a| £ mbies + r¥/lstt 4 571
=a[l, mo(l + )71 + ma(le/l)2 + ...
+ Mp(lp—1/ 1A + )™+ ma (14 7))
+ ma(la—1/ln-2)(1 + )72, m, (1 + r)7Y] [4.3]
in which
a=1/bg [4.4]
g=—(L+ Y[ +1]
1
=[1,...,my (1 + 7)7Y] l.n-l(l 4 p)ne [4.5]

Here b is the stable-age birth rate, x1(¢)/ Y_7x;(t), and g is the
stable-age “average length of a generation” (i.e., the weighted
average age of mothers when giving birth, the weights being
the stable-age [%;] = X).

¥ This is the first of two related papers. Part 2, “Nonlinear, homoge-
neous, biparental systems,” will appear in the December 1977
PROCEEDINGS. S
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Keyfitz (ref. 6., pp. 56-58) has provided a useful interpre-
tation of this v[x,%, . . ., x,°] function. It is the size that a sta-
ble-age population would have to be today to lead to the same
ultimate population level as our system will generate out of its
actual initial conditions x(0). This defined “equivalent™ sta-
ble-age system grows from the beginning at rate 1 + r, and it
continues to be “equivalent” to our actual system at ¢s after ¢
= 0; therefore, v[x)(t), ..., x,(¢)] must be a scalar with the
remarkable property of growing immediately (and not just
asymptotically) at rate 1 + r. Mathematical proof of this Fish-
erine property follows.

From the orthogonality properties of the full set of column
and row eigenvectors of L, we have

V(t + 1) = vx(t+ 1) = vLx(t) = (1 + r)vx(t)
=(1+7r)V(E)=(Q1 + rPV(0) = (1 + r)*[vx(0)]. [5]
This verifies that Fisher’s total reproductive value does grow
from the beginning like (1 + r)t, whereas any different linear
combination of the x;(t)s will only asymptotically grow like (1
+ r)*. Reference may be made to Vincent (7), Goodman (8), and

Keyfitz (6) for computations and interpretations of reproductive
values.

Review of continuous-time case

The integral-equation counterpart of Egs. [1-5] can be written
in terms of total female births; B(t), and of number of females
of age y at time ¢, N(y,t), once we are given invariant age-
specific survival and fertility functions, m(y) and I(y), as fol-
lows:

B(t) = J; ’ myNt)dx, 0<a<B<»  [81]

N(y,0) = N%y) = 0, a given nonnegative furiction
=10 Ny—0t-0y>0t>
10)=10(y) <0<y, 0<y<nly)=0yv=<y
m(y)>0,0<a<y=<pB<vy;my)=0,<y
Provided f§ N%y)dy > 0, it is known that
. ON(yt)/dt_ <
lim —=24— =5 =,
e Nt >
Fisher’s reproductive value at age y is then definable as

8
| Ny
lim ————
t—=  exp[pt]

[7.1]

= [Pownoway 172

. Ntdy = _
tim —YOIN N, (T N@y=1 173
¢ j:: N (u,t)du

in which p is the real root of
B

WR = [Im@lgemay=1 (14

and
N(y) = bl(y)e~»v [7.5]

]

b-1= j; u)e=rudu 7.6]

and

oly) =a j; ? m)lw)/lle—re—vdy  [1.7]
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8 —
f o Ny =1 7.8
a=1/bg
- , p -

=V =+ [ im@lwe-rdy. (19
As in the discrete-time case of Eq. 4.4, g and b are stable-age
average generation length and birth rate (on a pre-menopausal

population base).

Specifically, Eq. 7 shows that N(y,t) can be written asymp-
totically as follows

N~ Nigger: | [ owntwda]- @

It is worth mentioning that, when fertility and mortality
depend on total population, T, with

§.7 N, )

om(y,T)/dT <0, Ol(y,t)/dT <0
the nonlinear integral equation for B(t) becomes

B(t) = j; ® Ty, T)B(t —y)dy, t=8<0  [10.1]

and

T(t) =

lim B(t)=B* lim T(t)=T* [10.2]
t— t—
in which T* is the positive root for T in
1= f ? (g, Ty, T)dt (10.3]
and
* = T* v *
B*=T / j; Uy, T*)dy. (10.4]

Leslie (ref. 9, section 5) and the vast Verhulst (10) and Pearl and
Reed (11) literature recognize the realism of Eq. 10’s nonlin-
earity.

For the nonlinear model of Egs. 9-10, there is no existent
useful v(y) function that Fisher can find to employ to form

vie) = " olw)N iy
for which
V’(t)/V(t) = a constant.

Similatly, for the logistic model of Verhulst and Pearl and
Reed, which prevails in the post-dilute stage,

% =x(a — axz™1) [10.5]

lim x(¢) = £ for all x(0) > 0 [10.6]
t—®
and reproductive value of x(0) is inevitably zero.

In other words, the concept of “reproductive value™ loses
existence for general nonlinear demographic systems. Unfor-
tunately, the reality any theory of natural selection must face,
as Fisher (ref. 3, pp. 41-46) clearly understands, is of the nature
of Eq. 10 above rather than Eq. 6 above. Only in early dilute
stages of Malthus-von Neumann growth (ref. 12) will Egs. 1
and 6 have relevance; but it is precisely then that selection loses
its sting!

In Price and Smith (13) some difficulties with Fisher’s v(y)
concept are noted when m(y)l(y) in Eq. 7.4 is a varying func-
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tion of calendar time. The present critique cuts deeper: even
if the structure of the nonlinear system shows no change with
calendar ¢, Fisher’s concept of “reproductive value” encounters
grave definitional problems.

Linear differential and difference equations

Not all nonlinear systems render reproductive value nugatory.

To pave the way for an im t class of manageable nonlinear

systems, those involving biparental nonlinearities of the type

introduced by Kendall (14), we need first to generalize the

concept of reproductive value for the linear differential

(eqt;ations of biparental reproduction like those of Goodman
15).

Thus, consider the linear version of Eq. 1 that ignores age
differences but recognizes two sexes, x; for males and x; for
females. So long as the [x] are still so small that the resource
limitations of the finite environment are not yet binding, we
may model the system’s “dilute” stage by the following linear
version:

%1 = v1(B1x1 + Baxg) — 411y (11]
%2 = ya(B1x1 + Baxs) — daxg
1+ v2= 173, 6, 6 > 0, % = dx,/dt.

This can be written in matrix notation as

%= Ax (12]
As is well known,
i M = < =
,193 =" 30 (=12 [13.1]
f x,(2)
lim —— = o[x,°, x,%] = [vx(0)] [13.2]
t—o ef
lim 58—z i =1, [13.3]
‘ )

in which p is the largest real characteristic root of
detfA = M= (p = AN(Azg=A), p> A2 [13.4]

and X and v are p’s normalized eigenvectors.

AX=p%, Y%= (13.5]
=1 [13.6]

V(t) = vx(t) obeys V’(t) = pV(t). - (13.7]

Clearly [v1,05]) = v is the exact rendition of Fisher’s repro-
ductive value for a linear 2-sex model. To verify this, consider
the female-dominant version discussed by Goodman (ref. 15,
p. 218) in which 8; = 0.

In this case, males have no role in determining the ultimate

growth rate of the system. Does v show this? Indeed it does,

because now [v;,02] = [0,02]. Thus, other things equal, it would
be well to harvest only males for game, their reproductive value
and role in system growth being zero.

Qualifications and generalizations

As observed by Kendall (14), Goodman (8, 15), and Yellin and
Samuelson (16), and as Fisher does not fail to notice, the additive
form for the biparental birth function of Eq. 11 has the un-
realistic property that increasing the numbers of one sex alone
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adds unflaggingly to the birth rate. How the concept of re-
productive value is to be generalized for a more realistic
nonadditive birth function must remain as a separate task for
analysis.

The linear relations of Eq. 12 can easily be generalized ton
2 0. If either A is a primitive Perron-Frobenius matrix, or if
A has off-diagonal elements all positive, we are guaranteed that
it has a real root p that is dominant, and whose characteristic
row vector provides an appropriate measure of “reproductive
value.”

Similarly, if we replace L in Eq. 1 by any primitive matrix,
B, so that our biological system takes the form

[x(t + 1)] = [byl[x(t)], (14.1]

then for a dominating 1 + r, we have the characteristic row
vector

vibyl= v(1 + 1),0>0. ’ (14.2]

Thus, reproductive value is proportional to v. Even if some by
are negative, provided aI + B is for some real « a primitive
matrix, all our results will apply. Of course, (1 + r)* for a dif-
ference equation system corresponds to (e)! for a differential
equation system: indeed, 1 + r = e® and the systems 12 and 14
are identical for equally spaced values of ¢t if B = e4.

What if the system is not irreducible, so that A or B are re-
ducible matrices such that (i) either part of the system comes
to grow at a slower exponential rate than the rest, or (if) the
whole system’s ultimate level is independent of some of the
variables’ initial conditions? Then, as we've already seen in the
female-dominant model below Eq. 13, some of the biological
variables have a zero reproductive value in the Fisher sense.

What if the system is cyclic, so that B generates asymptoti-
cally a dominating (1 + r)* component, but one with coeffi-
cients for each exponential component that are each functions
of the initial [x,(0)] that are periodic functions of integral period
m? Then, strictly speaking, we have m different v[x,9, . . ., x,9]
functions, v[k; 21°, . . ., 2, 9], in which o[k + m; 2,9, ..., 1,9
=[k; x19% . . ., x,9] If we take a Cesaro mean of the biological
solution,

{x(0) + x(1) +... + x(t)}/t = X(t)

th(lan a specifiable 9[x9, ..., x,9) will give its reproductive
value.

Finally, differential and difference equations like 12 and 14,
but with no simple sign restrictions on the a;; and b, coeffi-
cients, could chance to have dominant exponential-growth
modes o[x;%, . . ., x,%x exp[pt] or v[x,5, . . ., x,°%(1 + 7)*. But
now the 27 v;x,(0) expression might involve some negative
reproductive-value v; coefficients. Before spending much time
in giving such phenomena a biological interpretation, we have
to remind ourselves that the linear modelling of a real-world
system is at best useful for the restricted domain of the variables
in which the system can be regarded as “dilute.” Logistic and
other saturation relationships, like that in Eq. 10, will soon
enough apply in situations where natural selection has genuine
relevance.

My greatest debt is to my collaborator Joel Yellin of the Massachu-
setts Institute of Technology. I owe thanks to the National Science
Foundation Grant 7708959 and National Institutes of Health Grant
1 RO1 HD 09081 for partial financial aid.
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