Table S1: Oligonucleotides used in this study

Name	Sequence	Description
EDR262	GCATCAGCACTGGTAACATTGG	Antisense primer binding to nucleotides 689-710 of the SUP35 open reading frame
EDR301	CGTCACAGTGTTCGAGTCTG	Sense primer binding 398-379 nucleotides before the SUP35 start codon
EDR302	GGCAGAATATCTGTCAACCACAC	Sense primer binding 514-492 nucleotides before the SUP35 start codon
EDR304	GTTTCGTACTCACCCTTTCTGG	Antisense primer binding to nucleotides 1133-1112 of the SUP35 open reading frame
EDR1314	TCCTTTCAAGTTAGATATTGTTTTCCCTTCACTTAT ATTCTATTTCAGATTGTACTGAGAGTGCACC	Sense primer to amplify HIS3 from pRS313. Used to knock out the HIS3 gene in YER632/pJ533 to make YER709
EDR1315	CTAAAAACCAATGTGCTTTCCAGGCAAAACCAATC TTAGCAACAGCTACATAAGAACACCTTTGGTGGAG	Antisense primer to amplify HIS3 from pRS313. Used to knock out the <i>HIS3</i> gene in YER632/pJ533 to make YER709
EDR1377	CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT NNBNNBNNBNNBNNBNNBNNBNNBNNBNNBCCTC AAGGAGGCTACCAGCAATACAAC	Sense primer to mutagenize the third repeat of the Sup35 ORD. Spans nucleotides 158-249 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
EDR1380	GCAAAACTACCAGCAATACAGCCAGAACGGTNNB NNBNNBNNBNNBNNBNNBNNBTACCAAGGCTACC AGGCTTACAATGC	Sense primer to mutagenize amino acids 21-28 in the Sup35 ND. Spans nucleotides 30-110 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1388 to make conservative changes that facilitate binding.
EDR1384	GAGGCTACCAGCAATACAACCCTCAAGGCGGTTAT CAGCAGCAATTCAATCC	Sense primer spanning nucleotides 230-281 of the <i>SUP35</i> open reading frame, making a series of conservative changes to facilitate binding by EDR1377.
EDR1385	GATAGCCACCTTGTTGGTACCCAG	Antisense primer binding to nucleotides 181-158 of the <i>SUP35</i> open reading frame. Complementary to the non-degenerate 5' region of EDR1377.
EDR1388	CAAGGCTACCAGGCTTACAATGCTCAAGCCCAACC TGCAG	Sense primer spanning nucleotides 88-127 of the <i>SUP35</i> open reading frame, making a series of conservative changes to facilitate binding by EDR1380.
EDR1389	GTTCTGGCTGTATTGCTGGTAGTTTTGCTGATTGTT GCCTTGGTTTGAATCC	Antisense primer binding to nucleotides 57-6 of the <i>SUP35</i> open reading frame. Complementary to the non-degenerate 5' region of EDR1380.
EDR1471	CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT CCAGTTTATGATCATATTTATTATGCTTCTCCTCAA GGAGGCTACCAGCAATACAAC	Sense to mutate the third repeat of the SUP35 ORD to PVYDHIYYAS. Spans nucleotides 158-249 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
EDR1472	CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT TATAATGGTATTAATGCTTATTTGTTTAATCCTCAA GGAGGCTACCAGCAATACAAC	Sense to mutate the third repeat of the SUP35 ORD to YNGINAYLFN. Spans nucleotides 158-249 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
EDR1473	CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT ACTGCTAGATATGGTGCTGCTTTTGGTTATCCTCAA GGAGGCTACCAGCAATACAAC	Sense to mutate the third repeat of the SUP35 ORD to TARYGAAFGY. Spans nucleotides 158-249 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
EDR1480	CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT	Sense to mutate the third repeat of the SUP35 ORD to LIVVIGFIPT. Spans nucleotides 158-249 of

TTGATTGTTGTTATTGGTTTTATTCCAACTCCTCAA GGAGGCTACCAGCAATACAAC

- EDR1481 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT GATGATACTAATTTTAGATGTTTGATTAGACCTCA AGGAGGCTACCAGCAATACAAC
- EDR1482 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT GGTAGAGTTTTGTTTAGAAATGGTATTGGTCCTCA AGGAGGCTACCAGCAATACAAC
- EDR1490 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT GGTGCTATTAATTATACTTATTGTGTTGCTCCTCAA GGAGGCTACCAGCAATACAAC
- EDR1491 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT TATAATATTACTTATGATGTTACTTATAATCCTCAA GGAGGCTACCAGCAATACAAC
- EDR1492 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT TTTATTGATTATGCTCCACCAAATGCTTATCCTCAA GGAGGCTACCAGCAATACAAC
- EDR1493 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT ACTAGACCAGATCCAATTTGTAATTTGAGACCTCA AGGAGGCTACCAGCAATACAAC
- EDR1494 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT AGAGATATTTGTCCAAGAATTTTTCCAGATCCTCA AGGAGGCTACCAGCAATACAAC
- EDR1495 CTGGGTACCAACAAGGTGGCTATCAACAGTACAAT TTGATTTTGGCTTTGAGAAATAATATTAATCCTCAA GGAGGCTACCAGCAATACAAC
- EDR1890 CAGCAGCAGTTCAACCCACAAGGTGGCCGTGGAA ATTACAAAAACTTC
- EDR1891 ACCGGCGTCGGGATTGTACTG
- EDR1892 CAGTACAATCCCGACGCCGGTTTACAGCAACAATT GAATCCTCAAGGAGGCTTACAACAATTGAATCCTC AAGGCGGTTTACAGCAGCAGTTCAACCCAC
- EDR1893 CAGTACAATCCCGACGCCGGTGTTCAGCAACAAGT TAATCCTCAAGGAGGCGTACAACAAGTCAATCCTC AAGGCGGTGTTCAGCAGCAGTTCAACCCAC
- EDR1894 CAGTACAATCCCGACGCCGGTTTTCAGCAACAATT

SUP35, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.

- Sense to mutate the third repeat of the SUP35 ORD to DDTNFRCLIR. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to GRVLFRNGIG. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to GAINYTYCVA. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to YNITYDVTYN. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to FIDYAPPNAY. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to TRPDPICNLR. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to RDICPRIFPD. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense to mutate the third repeat of the SUP35 ORD to LILALRNNIN. Spans nucleotides 158-249 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1384 to make conservative changes that facilitate binding.
- Sense primer spanning nucleotides 265-312 of the *SUP35* open reading frame, making a series of conservative changes to facilitate binding of EDR1892-1895 and 2156-2158.
- Antisense primer binding to nucleotides 204-184 of the *SUP35* open reading frame. Complementary to the 5' ends of EDR1892-1895 and 2156-2158.
- Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to leucine. Spans nucleotides 184-283 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.
- Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to valine. Spans nucleotides 184-283 of *SUP35*, but does not bind directly to the *SUP35* open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.
- Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to

	CAATCCTCAAGGAGGCTTTCAACAATTTAATCCTC AAGGCGGTTTCCAGCAGCAGTTCAACCCAC	phenylalanine. Spans nucleotides 184-283 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.
EDR1895	CAGTACAATCCCGACGCCGGTATTCAGCAACAAAT CAATCCTCAAGGAGGCATACAACAAATTAATCCTC AAGGCGGTATACAGCAGCAGTTCAACCCAC	Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to isoleucine. Spans nucleotides 184-283 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.
EDR2156	CAGTACAATCCCGACGCCGGTTGGCAGCAACAATG GAATCCTCAAGGAGGCTGGCAACAATGGAATCCTC AAGGCGGTTGGCAGCAGCAGTTCAACCCAC	Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to tryptophan. Spans nucleotides 184-283 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.
EDR2157	CAGTACAATCCCGACGCCGGTGCACAGCAACAAG CTAATCCTCAAGGAGGCGCACAACAAGCTAATCCT CAAGGCGGTGCTCAGCAGCAGTTCAACCCAC	Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to alanine. Spans nucleotides 184-283 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.
EDR2158	CAGTACAATCCCGACGCCGGTATGCAGCAACAAAT GAATCCTCAAGGAGGCATGCAACAAATGAATCCTC AAGGCGGTATGCAGCAGCAGTTCAACCCAC	Sense primer to mutate the tyrosines in the third through fifth repeats of the Sup35 ORD to methionine. Spans nucleotides 184-283 of <i>SUP35</i> , but does not bind directly to the <i>SUP35</i> open reading frame. Requires pre-amplification with EDR1890 to make conservative changes that facilitate binding.

Table S2: Plasmids

Name	Туре	Markers	Description	Experiment used	Reference
pER589	cen	URA3, amp ^R	P _{SUP35} -SUP35MC; modified version of pJ533	Prion formation library experiments	This study
pJ533	cen	URA3, amp ^R	P _{SUP35} -SUP35	Prion maintenance library experiments	1
pJ526	cen	LEU2, amp ^R	P _{SUP35} -GFP-SUP35MC	Cloning vector for pER635-637, 642-650, 761-764, and 923-925	2
pER1112	cen	URA3, amp ^R	P _{SUP35} -SUP35-27; modified version of pJ533	Prion maintenance library experiments	This study
pER188	cen	LEU2, amp^R	P _{SUP35} -GFP-SUP35-27	Fig. 3B	2
pER613	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence GGCNGEVFFH	Fig. 3B	This study
pER614	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence PHFALVHSTH	Fig. 3B	This study
pER615	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence VIVDRGQICG	Fig. 3B	This study
pER616	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence IDYSGRSLLL	Fig. 3B	This study
pER635	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence PVYDHIYYAS	Fig. 5	This study
pER636	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence YNGINAYLFN	Fig. 5	This study
pER637	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence TARYGAAFGY	Fig. 5	This study
pER642	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence LIVVIGFIPT	Fig. 5	This study

pER643	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence DDTNFRCLIR	Fig. 5	This study
pER644	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence GRVLFRNGIG	Fig. 5	This study
pER645	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence GAINYTYCVA	Fig. 5	This study
pER646	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence YNITYDVTYN	Fig. 5	This study
pER647	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence FIDYAPPNAY	Fig. 5	This study
pER648	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence. TRPDPICNLR	Fig. 5	This study
pER649	cen	LEU2, amp ^R	Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence RDICPRIFPD	Fig. 5	This study
pER650	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the third repeat of the ORD has been replaced with the sequence LILALRNNIN	Fig. 5	This study
pER761	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the ORD have been replaced with leucines	Fig. 6	This study
pER762	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the ORD have been replaced with isoleucines	Fig. 6	This study
pER763	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the ORD have been replaced with valines	Fig. 6	This study
pER764	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the ORD have been replaced with phenylalanines	Fig. 6	This study
pER923	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the	Fig. 6	This study

			ORD have been replaced with tryptophans		
pER924	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the ORD have been replaced with alanines	Fig. 6	This study
pER925	cen	LEU2, amp ^R	Modified version of pJ526. Expresses from the <i>SUP35</i> promoter a modified version of Sup35 in which the tyrosines in the third through fifth repeats of the ORD have been replaced with methionines	Fig. 6	This study
pKT24	2 µm	TRP1, amp ^R	Vector for building induction plasmids. Contains the <i>GAL1</i> promoter and <i>ADH1</i> terminator, with a multiple cloning site in between.	Fig. 6C, E; Cloning vector for induction plasmids	2
pER548	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses Sup35NM (the N-terminal PFD and middle domain) from the <i>GAL1</i> promoter	Fig. 6C, E	2
pER756	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with leucines	Fig. 6C, E	This study
pER757	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with isoleucines	Fig. 6C, E	This study
pER758	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with valines	Fig. 6C, E	This study
pER759	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with phenylalanines	Fig. 6C, E	This study
pER926	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with tryptophans	Fig. 6C, E	This study
pER955	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with alanines	Fig. 6C, E	This study
pER956	2 µm	TRP1, amp ^R	Modified version of pKT24. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM in which the tyrosines in the third through fifth repeats of the ORD have been replaced with methionines	Fig. 6C, E	This study
pER760	2 µm	TRP1, amp ^R	Expresses yeast-optimized GFP (3) from the <i>GAL1</i> promoter. Contains BamHI and XhoI restrictions sites immediately before GFP to allow for in-frame GFP fusions.	Fig. 6B; Cloning vector for all GFP fusions	4
pER851	2 µm	TRP1, amp ^R	Modified version of pER760, expressing Sup35NM-GFP from the <i>GAL1</i> promoter.	Fig. 6B	4

pER1003	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the Sup35 ORD have been replaced with leucines.	Fig. 6B	This study
pER1004	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the ORD have been replaced with isoleucines	Fig. 6B	This study
pER1006	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the ORD have been replaced with alanines	Fig. 6B	This study
pER1007	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the ORD have been replaced with methionines	Fig. 6B	This study
pER1015	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the ORD have been replaced with tryptophan	Fig. 6B	This study
pER1035	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the ORD have been replaced with phenylalanines	Fig. 6B	This study
pER1238	2 µm	TRP1, amp ^R	Modified version of pER760. Expresses from the <i>GAL1</i> promoter a modified version of Sup35NM-GFP in which the tyrosines in the third through fifth repeats of the ORD have been replaced with valines	Fig. 6B	This study

Plasmids are listed in the order that they appear in the text.

References

- 1. Song, Y., Y. X. Wu, G. Jung, Y. Tutar, E. Eisenberg, L. E. Greene, and D. C. Masison. 2005. Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryot. Cell 4:289-97.
- 2. Ross, E. D., H. K. Edskes, M. J. Terry, and R. B. Wickner. 2005. Primary sequence independence for prion formation. Proc. Natl. Acad. Sci. USA 102:12825-12830.
- 3. Cormack, B. P., G. Bertram, M. Egerton, N. A. Gow, S. Falkow, and A. J. Brown. 1997. Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143:303-11.
- 4. Gonzalez Nelson, A. C., K. R. Paul, M. Petri, N. Flores, R. A. Rogge, S. M. Cascarina, and E. D. Ross. 2014. Increasing prion propensity by hydrophobic insertion. PLoS ONE 9:e89286.

Table S3. Sequences of the mutagenized region from each library. Asterisks indicate non-propagating clones that were analyzed for presence of a species barrier.

	Prion form	nation libraries		Prion propagation libraries			
ND Library		ORD library		Standard method		With preselection for ability to add	
						onto wild-type aggregates	
Unselected	$[PSI^+]$	Unselected	$[PSI^+]$	Red ([<i>psi</i> ⁻])	White $([PSI^+])$	Red ([<i>psi</i> ⁻])	White $([PSI^+])$
LIARSNHC	RNVFLVGL	PTDVCASFVR	FYGVLVCHVV	RGVYCAVIGA	PYSYVRCSCD	VAFITAYFRF	SYISGSNVVR
LRGGGGHI	YHMIGVVW	RVFGVSFGVV	YYPIVVTGTS	NFRPLHAVAR	YTGGISAAGT	CSAPYNYFSY	GALNNFDLSH
LRIILDGA	GFFTSSVF	SGGIHRTGYG	FHGAFSAVAG	LYTYDASMAF	CPCAPLGCDW	MVLHNFASHF	SCPRRSGSNG
RRAYFSLP	GYLSSCVF	RGLCRWQGES	STVYMCASGN	SRIRRRTSFH	IVAPVHGWSC	DMYSFYGGEL	NRPAFFPHRD
CGAHDGGR	GGTFIFGC	LIGAGATGPF	VGGVFVCNLR	AHCSGFSGRV	HYAAGYPCAS	VFSGFYYFSI	NGPGCAIRNT
LTWLWTLD	VNRVTCNV	AFCRAGADFD	TFNIYPNGVH	VWCRGSVDAL	VYDRRGVGRE	NLCCGWVHGA	GHSDHSQVRC
CVCCGLDG	AITICGGV	PFNHLACVEL	GIIFGFHSYY	HARTSMDHLA	VRSGYYLYNY	AIPVVHFMCC	FAGGRIGPDI
SCGSNVML	FVGAFGIF	SGAALVDLCS	ADFSHVSGYG	RHDITVNFGD	SGSFCSFGRY	TFHCAHAAQS	DAVYGCTRKS
RYGSALWC	YISVYVAG	IIRFIERDRH	NFSSYPGRVY	IDHVISDSFR	LPGYGNHEFV	VNVLWVSHNA	VAACSFLADL
AYNVSQRF	CGYFNAYC	TLSRYCVHSP	ADSCFLGAFC	YAVVGSANHC	QFCQASFSAG	NGFCVCSFTR	VAGSRSVECV
PIRGNVLM	RDAIYYSR	YSIGCGVYTR	TAGGLSMDIS	SRCSHVSISR	HHVPWVSTNC	SFGFRYCAFS	VTIHARNGND
SLHYLGWG	TGNGGPGL	DMAQGYGHGC	IAALYVPMSG	RFGGTDDVDV	SPTPGLYAAS	IGHPYYRHTG	RGERMGVYVG
TRIRRICV	GACNGLFV	SSIRPNPSAY	CAENLIGWFN	FAISRSVLRG	DGYHFCQWDC	NLYDFYFSSR	YHDDADSEGV
DHALGDWG	TSYVFGPC	YDYRYSSYAA	LLSCGIGSFA	HYVVASGDRR	PLRGFYYHAF	GISVAHLPFF	SVVNVSVDSG
RVVRASPS	GLICHIYN	RAFRGVDNTW	SFLYYFDVCA	RRSTAVMHVA	GFYYSGIRDT	IIHFSVGSAF	GGLVVMDVTH
QCASTGIS	NVMWLTSG	VIRGFCVSGR	HLCFDSNRCH	RRTRTRVRCT	GSNGYPGNCW	GHYGWFLGSF	FYGVVSCYSR
IGSQSPCA	FHVEIYLN	VYRLSGYGGL	YCLCTGRSHK	RAGVDHSSRG	DVFASIYRAC	YFCSGHGGVF	DASHAISYCL
SRGDRSSG	DFCASYVI	CCRIRGGYGL	LYTWTSSGFY	GALVPDTSLL	SNRCPAYRSS	GGCCTYGVNY	PVNGCGCVGV
FVLARRTG	LIFGISTV	AGCAIVIIPC	DLVWPFGMSA	WDFSVDAALG	LFTLRFPFSV	SFEHHIINLC	DALGVDLCGD
GIRRDCGC	HWLFCFGN	IVCRVFDELS	SPYTIFRGSM	GCRSRINGFN	SHYMSGVASD		GCDVSVDDCD
GCSWQPSL	SSGSICVS	DTVIFYDKWR	GCCNDVLFPY	SPGIFRGSAL	SFEGNVLRHP		GTNYVCGYVV
GNPYDGGP	GCSWQPSL	WSCDGNICLI	VNVTVRAAAR	RSGWRSRGSV	TFYTNSSAPV		IGTRATPGVD
GRVYPVCV	IHIHNSGR	CGSFGDVTGF	ASCNCRLGGP	FYSVSILDRR*	WDLCGDVALG		ACASYGRYVC
SGVTGSDY	SALGHNVS	VVLPCISTKY	GGCLNHFHAC	GCPRVVIHVD*	FLGIGSLCAG		FRRGSLCPGD
PNSCRLTG	TYFDQYGC	GYRHGPPCYA	NAGRSPCHTS	ADACLSLVSV	HGDTSYADAS		GNFSDAMLDS
TIGDGNVR	SLTTCFCA	ASGSGGRRAS	GDGCGGFHCA	AVRSRRRENR	ACSGGHAGTT		RGDVLPVDNV
YGGLMHRL	TVFFIGDL	WATVDDDHGD	IGTQFDSYRA	NRYSIHGNGV	RDLSGYFDGG		
QASGGYVD	IFTTHFSR	FRGAYFEYGI	SNARRAWCFS	ATCIDSSTNS	VVSPSLGATT		

CVSGGCIS	IAISYVNA	VTHGGHGGWV	SSGIYLSPGG	TLDACYVCRR	SWNFYPCHGY	
CSPHSGSG	SATYSMVC	KLTGGCTDAI	VDHECACRAS	ASRIKRPLGE	VGNVGWGVAV	
NVERFYGF	PTHAFFNS	GSVVPIYGDS	AGFSHYYWIP	RVFGGGRACR*	YVCGHIDVFD	
SNYPSCFI	VVFLYSDV	SHTFGAVACR		PRPNVISFGA	YANYDPSHCT	
VVFGLGQG	GTGSIYFL	VVPCCRALFD		LVRVFSPPHS*	CGFSVFVGRC	
YICSISMD	LVIAGDIS	IDFSLNRALA		YDGADVFPPG	CSCLVTGFEP	
LYVITNFI	DIFRNCFY	TIGVLSVRGA		VVSVSDGIWC*	DCFRYCLSGV	
RCGCGRGP	PNVVSNVM	SERCFFSVSR		PVGGNFAAVG*	GACVAACFGA	
GSNDLDTS	GFVLAFDV	NHGITGSVMF		VRVTFLNRNG	DCVSRQTFGG	
WGCPSSGH		HSAPLRPALT		NSDCVACFLS*	YSLYGSFYPS	
SNSSCANL		DNSHPFDFAK		VPSYRRCAVV	VYASCVWSRI	
DVTSSLLM		RRVCIVGLFM		DPHPSTGDCF*	CDHGSYFDCG	
CDLECVGR		LVDSHSWCSM		GGCNGEVFFH*	CAFGSLRSSV	
YTLRTWRL		GPDHGGVVPR		LSAGVFGCAV*	PYPDCAYGSV	
YGRHTDAC		KRCHRGSRYP		RPAIARDNVG*	IRVSYHSPAP	
SSAFFRCV		IRVSYHSPAP		PHFALVHSTH*	LYFNRGSSRA	
QSADFSAF		LKISFNRPFS		VIVDRGQICG*	DHAHGIPRSC	
GAYQRGPV		RTASGGELPL		IDYSGRSLLL*	PNGSHIIFSF	
SSVIRYFA		FSLWISYCRP		IAIVGFGGTG	VLESSSFERF	
FGTRGTYG		RLPGYDDYIL		PGDRGLSRAR	GNCGSLHDER	
REDAGCNC		GPDSCTGRFN		HSVVRRCTLR	ACSAEHRWGL	
GGTFIFGC		NSYCSHLVRS		DSRLLRPGCS	TAAVRNFGAS	
HGSGHVAI		FSGTRGDNGR		HDTLCNGVRF	VAAAIRTAQT	
HFHIGSYG		SLVGSSFISR		RVSGVVSLHL	NSIRAGSCNL	
VRGRIICV		YGLTGYPLCL		FGRSLNSFRY	GITFFGDASG	
VGDVVGVA		PCVCIHFRRR		PRIGHSDLVN	SSTNYDYHRA	
SCGEPGLT		PVYAHDGGRR		PAGDDRNFVS	AANTHREWCF	
RIGSPAVG		AFDSYNSVAI		HCYCHRAVAR	LYPLFVVDTV	
NGVSGAAF		IDGMGRSSVG		ANLVVHCVTQ	CIDNVCRSGW	
GSGLVRWG		VRGAWPHCSG		RPVTRGHRYH	CIPDRYDCSA	
PGGDWLSM				RGPTSGPSGD	YGPPSVSVGD	
VFRTGYMH				YPRISHGGQC	SVGVAEFDRA	
GSSIGRIT				EITVMIAMSR	FDYFFNGDNT	
FGARGVGL				PRVVVVILNL	HVNFVAVAVH	
				DFRRHRHLGF	FVVLASRCAY	
				PQCDTSSSCG	VSVGSCVPGC	

		FGVPCVNVPV	DYVSGANHNS	
		PDNVVGNPPS		
		VVRPGLSDRS		
		CSGFLDDRCI		
		FMYGRDTRVS		
		PNHYRFGAVC		
		IIIVPSDRAL		
		LVRYFNVGDC		
		RKFAFSDSAG		
		LGASVYLVSG		
		ATSLTVLGNG		
		DTVGALHTRV		
		CHARGGCLVR		
		FAYFSVGSIT		
		RRKGYCGGFL		
		GYGGTVGFAH		
		IGCTSISLAP		
		RGSVTHGVGQ		
		SLSARVYCIS		
		VIGRSARYLL		
		DLELDVRTDM		
		IDDCMPPGDL		
		QSAFDDVPDL		