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ABSTRACT This note describes two results: (i) a sharp
Hausdorff-Young inequality for the Fourier transform on
LP(Rn) which extends an earlier result of Babenko; and
(ii) a sharp form of Young's inequality for the convolution
of functions on Rn. That is, best possible constants are
obtained for the following LP(Rn) inequalities: IIVfIIP <
CAif P, 1 < p < 2, and i/p + lip' = 1; and I|f*glIr <
Cp,q,r fI|IP IgI|q, 1 < p,qr < X with 1/r = i/p + 1/q - 1. Cp
= [plIP/p1I/P'ln/2 and Cp,q,r = CpCqCr.

Two classical inequalities in Fourier analysis are the
Hausdorff-Young inequality for the Fourier transform

k1f3IP' . lfflAP [1]
f E LP(Rn), 1 < p < 2, and 1/p + l/p' = 1, and
Young's inequality for convolutions

J1f *9g|r < |flIPj19jpq1 [2]
f E LP(Rn), g E LI(Rn), 1 < p,q,r < c, and 1/r =
1/p + 1/q - 1. Here the Fourier transform is defined
for integrable functions by

(Of) (x) = exp (27rixy)f(y)dy [31
Rn

and

(f * g) (x) = f(x - y)g(y)dy [41
Rn

These inequalities have their origin in the efforts of
W. H. Young in 1912 to generalize Parseval's theorem
for Fourier series to other LP-classes, and they extend
naturally in the context of analysis on locally compact
abelian groups. For the circle group T ; R/Z the
corresponding inequalities are sharp, but for the Fourier
transform on LP(R), K. I. Babenko proved in 1961 that
IfH1p' < AvPIf pwithAp = [pl/P/p I l/P']'/2 for the special
case where the upper exponent was an even integer,
i.e., p' = 2k and p = 2k/(2k - 1) (refs. 1 and 2).
Babenko's proof used methods of entire functions and
showed that gaussian functions exp(-axl), a > 0 were
extremal functions. This result together with a con-
vexity argument implied that in general inequalities
[1] and [2] would have new sharp forms. The applica-
tion of probabilistic methods to the study of the
Hermite semigroup in recent work of Nelson (ref. 3)
and Gross (ref. 4) suggested a different approach to this
problem, and we have obtained the following theorem
extending Babenko's result.

THEOREM 1. Forf C L'(Rn) define (5f)(x) = f exp
(27rixy)f(y)dy. Then the Fourier transform aF extends to a
bounded linear operator on LP(Rn) to LP'(Rn) with
1 < p < 2, 1/p + 1/p' = 1 and

[5]
[6]

=flIP, < (Ap)n/p ff]
A = [p"/P ,p, 1,~/2

We sketch some of the ideas involved in the proof of
Theorem 1 for one dimension. The n-dimensional result
will follow from an application of Lemma 2 below.
Consider the operator T. defined by the 1\Iehler kernel

T,(xy) = (1 - W2)-1/2
X -(w/22+2xy

2(l-W2 1 - W2f [7]

on LI(dM) with du(x) = (27r) -/2 exp (-x'/2) dx and
Iw| < 1. The operator T. maps polynomials into poly-
nomials, i.e., if Hm denotes the mth Hermite poly-
nomial corresponding to the measure dIu, then T.H,,n =

WmHm. We first observe that, essentially by a change of
variables argument, Theorem 1 for n = 1 is equivalent
to the following multiplier theorem for the Hermite
semigroup.
THEOREM 2. Let g G LP(dM) and define (Tsg) (x) =

fT,(xy)g(y)do(y). Then for co = i\p - 1, 1 < p < 2,
and I/p + 1/p' = 1, Tsg E LP'(d1u) and

T ,g| LP'(dA) . |9 LI(djA) [81
We prove this multiplier inequality for a dense set of

functions, namely polynomials, and the crucial step is
to obtain the gaussian measure dMu as a limiting proba-
bility distribution using the classical central limit
theorem. Suppose we consider a sequence of Bernoulli
trials; let dv be the discrete probability measure with
positive weight 1/2 at the points x = i1, and define
dvn(x) as the n-fold convolution of dv(V/nx) with
itself. Then dvn converges to du in Co(R)*, and in addi-
tion the moments of dvVn converge to the moments of
dIu. Note that fh(x)dvn(X) = fh(xl + + xn)
dv(Vnxs) ... dv(V/nxn).

Consider the measure space of functions over the
product measure dv(n-xi)... dv(Vnxn), observe that
all such functions are polynomials of degree at most
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one in each of the separate variables, and define
operators C,, ,k a + bxk- a + cobXk, where a and b are
functions of the remaining n - 1 variables, and
Kn = Cn, I.. Cnn. First, we show that C = Cll is a
bounded linear operator on LP(dv) to LP(dz) with norm
1, and then by a lemma on products of operators this
"two-point inequality" will imply that Kn is a bounded
linear operator with norm 1 on LP [dv(nxi) ...

dv(Vn*xn)] to LP"[dv(V/nxi) ... dv(z(/nfxn)]. Clearly the
restriction En of Kn to the subspace of functions sym-
metric in the n variables will also be a linear operator
of norm 1. We denote this measure space of symmetric
functions by Xn.
The functions pn,,(xl... xn) = ! (xl,. ..Xn),

o < I < n, where the a's are the elementary symmetric
functions in n variables, form an orthogonal basis in
L2 [Xn], and, with respect to the limiting process
dn -- d4u, the functions pn~l will "converge" in some
sense to the Hermite polynomial H1. In fact,
n,I(xi,... ,xn) = Kt(x1 + . + xn) + other terms, these

additional terms "going to zero in norm over the mea-
sure space Xn." Note that the xi assume only two values,
l1/V/n. We remark that cnyn l = wcPon,,, the state-

ment that Kn maps LP[Xn] into LP` [Xn] with norm 1, is
an analogue of the multiplier inequality contained in
Theorem 2, and a more detailed convergence argument
using the relationship between cn,, and H, will show
that the operators Rn having norm 1 implies that T. has
norm 1 on LP(dcu) to LP"(doA) where w = i-/p - 1,
1 < p < 2 and 1/p + l/p' = 1.

LEMMA 1. C: a + bx -- a + cobx is a bounded linear
operator with norm one on LP(dv) to IPJ(dv) with co =
i/p - 1, 1 <p < 2, and 1/p + i/p' = 1; that is, for
all ab E C

{la + wbjP" + la - wobl4 I/PI
2 t

la + blP + la - bvP / [9]

By some algebraic manipulation and use of the classical
Minkowski inequality, this inequality can be reduced to
observing that for fixed y > 0 the function

P A [101

- ~ ~~~2]

is monotone decreasing as a function of p, 1 < p < c.

LEMMA 2. Consider two linear operators T1 and T2
defined by kernels; suppose

IITill < 1

With the addition of some measure-theoretic remarks
about integration over product measures, the following
steps that essentially contain the proof of this lemma
can be made rigorous.

{fff (TIT2f) (XIX2) ldX,(xl)dX2(X2)} 1/q
< {fdX2(x2) [f (T2f) (Y1,X2) iPdp1(y1) ]/Pz} N

< jfdp1(yi) [f (T2f) (yi,X2) jqdX2(X2) "P/Q}IVP
< {ffjf(yI2y2) Pdpd(yl)dp2(y2) } 1/P

Here we have used that both T1 and T2 are operators
of norm one, and we have interchanged orders of
integration using Minkowski's inequality for integrals. t
The relationship between the Fourier transform and

convolution is basic to the study of harmonic analysis.
Under the action of the Fourier transform convolution
goes over to pointwise multiplication; that is, for in-
tegrable functions T(f * g) = (Tf) (3:g). Because of this
relationship there is a duality between the basic in-
equalities for these two operators. As a general result,
we have obtained the following sharp form of Young's
inequality for convolutions.

THEOREM 3. For f £ LPW(R), g E L(f(Rn), 1 <
p,q,r < co and 1/r = 1/p + 1/q - 1

lif * gI|| < (ApAqAr1)n"IfIlpIPgIql [11]
Am = [ml/m/mll/m']l/2 and primes always denote dual
exponents, 1/m + 1/m' = 1.

But as a consequence of the sharp Hausdorff-Young
inequality of Theorem 1, we can obtain immediately
the following partial result.

THEOREM 3'. For 1 < p,q,r' < 2 and 1hr = i/p +
1/q - 1

11f * 91|r < (ApAeAr )njjfjjpjjgjl ,

Note that at least two of these exponents will always
be < 2. Considern = 1 and observe that I1f * 9IIr < Ar,
II(5f)(5g) r' < Arl5Illlig, < Ar7(ApJjfIjp)(AqjJqIjq)
for 1/r' = i/p' + 1/q'. In addition, the sharp Haus-
dorff-Young inequality of Theorem 1 for the special
case where p' is an even integer can be obtained directly
from the sharp Young's inequality for convolutions in
Theorem S. Theorems 1, 2, and 3' were obtained about
a year ago. Influenced by these results, Brascamp and
Lieb have recently obtained an independent proof of
Theorem 3.
To obtain the general result of sharp convolution in-

equalities in Theorem 3, the basic problem is to calculate
the one-dimensional norm

e = sup If I1pIqI1 - sup [12]
T2:IJ[dp2] L.*[dX2] IT2!! . 1

then the product T1T2: LP [dpi X dp2 I -- iLv [dx1 X dX22]
with || T1T211 < 1 if p < q.

t See E. M. Stein (1970) Singular Integrals and Differenti-
ability Properties of Functions (Princeton University Press,
Princeton, N.J.), p. 271.
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with 1 < p,q,r < o and 1/r = i/p + 1/q- 1. Ob-
serve that on R" the convolution operation has a
product structure, in that it acts on the variables
separately with respect to dimension, and it takes
positive functions to positive functions.

LEMMA 3. The convolution norm for n-dimensions
will be en where e is the one-dimensional norm.

Consider n = 2 and observe that for positive functions
on R2

(f *g * h)(x) = ff(x - y - z)g(y)h(z)dy dz

< ef[rff(xi - y -zlt)Pdt]'P[lg(yi~t) jqdtjllq
X [flh(zi,t)JIdt]1IT'dyidzi < e2fJfjJv||g|fJ|jhfJ-,

But the two-dimensional norm is seen to be at least C2
by considering products of functions in one variable.
Note that the content of this lemma extends to the case
where we consider the convolution of an arbitrary
number of functions. In the general consideration of
convolution inequalities the following lemma (refs.
5-7) allows a restriction to radial functions that are
decreasing.

LEMMA (Hardy and Littlewood, F. Riesz, Sobolev)

f h(x) (fi* * *fm)(x)dx

< J h(x) * ... *Cm) (x)dx [13]

f denotes the equimeasurable symmetric decreasing re-
arrangement Of f.
The original lemma was proved for rearrangements
of three functions, but it is not difficult to extend this
result to an arbitrary number of functions.

In a rough sense the interplay between these two
lemmas would force an essentially unique extremal solu-
tion for which the maximum norm is attained to consist
of gaussian functions. That is, for measurable functions
on R" the only way for a product of functions, each
radial in separate variables, to also be radial in the
variables jointly is for the functions to be gaussian.
We modify the convolution problem in a natural way
so that a smooth extremal solution will exist in two
dimensions. In this modification, or regularization, we
have retained the product structure of the convolution
operation, which can then be used to show this smooth
extremal solution must consist of gaussian functions.
We then calculate the norm for the modified problem,
and obtain through a limiting argument the norm for
the original convolution inequality.

We restrict our attention to symmetric decreasing
functions in two dimensions. Let k(xI,x2) = A exp
[- a(x12 + x22) ], a > 0, and IIkII,4 = 1 be a fixed gauss-
ian function, and consider the two-dimensional norm
for the convolution of four functions with one fixed.
That is,

[14]
f)
2=
p

fflJlAII911P.| IjhIlD
where 1 < PlP2,PSP4 < o and l/p'i + 1/P'2 + 1/Pf3 +
l/p'4 = 1. The fixed gaussian function k is smooth
and of rapid decrease, and the symmetric decreasing
functions f, g, h will have uniform majorizations on
bounded sets, i.e., if I|fiIpi < 1, then f(r) < [1/rr2]I/Pi.
These conditions insure by a weak compactness argu-
ment that a smooth extremal solution will exist so that
the norm 0D2 is attained. The gaussian function k splits
into the product of one-dimensional functions, and the
product structure of convolution allows us to consider
this problem as the product of one-dimensional opera-
tions. By so doing we obtain relations to show that the
extremal solution determined above must consist of
gaussian functions. It is then easy to calculate the one-
dimensional norm.

O = APAPYAPAP4 AP = [plI1P/p'1//j]/2 [15]

Letf, g, h be step functions, k(x) = B exp (-p'4x2) with
fjklfp, = 1 and in the limit p4 -) 1 we obtain

| = sup Ijf|||* hlI [16]

where now 1/p'i + 1/P'2 + 1/p3 = 1. More generally,
we obtain the following sharp form of Young's in-
equality for convolutions.

THEOREM 4. For f, C L'i(Rn) with 1 < p, < co and
1/p' + + l/P'm = 1/r', 1 < r < o, then

If,* ... *fm II r < [A P,* AvmA r, v.||iP I ||p [17 ]

A, = [p1/V/pt1/P']1/2 and in the limit p -- 1 or p -c,
lim AP = 1. As illustrated in our argument to obtain
the sharp convolution inequalities, certain gaussian
functions will be extremal functions on which the maxi-
mum norms are attained for Theorems 1, 3, and 4.
We would like to mention here the relation between

Nelson's inequality for the Hermite semigroup (ref. 3)
and sharp convolution inequalities on the line. The
notation is that used in Theorem 2.

LEMMA 4. For real w with 0 < a, < [(p - 1)/
(q - 1) ]1/2 and p < q, the inequality

$ Riesz remarks that this is an immediate consequence of the
method used by Hardy and Littlewood for the rearrangements of
series. For example, see the argument given on pp. 216-217 in
G. Sampson (1971) "Sharp estimates of convolution transforms
in terms of decreasing functions," Pac. J. Math. 38, 213-231.
This argument is independent of dimension.

[18]

is equivalent to the following convolution inequality on the
line

Ilk *fljT < (Az,,ApAr')lIlfll.IklP2 [19]
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where k is a gaussian function, f C LP1(R) and 1 <
p1,p2,r' < o with 1/r = l/p] + 1/P2 - 1.

In addition, it is possible to write down a multiplier
inequality on the Hermite semigroup that extends
Nelson's inequality to several functions and is equiva-
lent to the sharp convolution inequalities of Theorem 4
for n = 1. This multiplier inequality can be expressed
in terms of a kernel of several variables that generalizes
the classical Mlehler kernel, and the equivalence with
Theorem 4 for n = 1 reflects the same duality that
exists between Theorem 1 for n = 1 and Theorem 2.
These sharp results on Euclidean space also contain

the usual inequalities for the torus; that is, it is easy to
give a limiting argument so that the sharp inequalities
for the Fourier transform and convolutions contained
in Theorems 1 and 4 will imply the usual sharp in-
equalities for the torus Tn (R/Z) n, namely inequali-
ties [1] and [2].

Finally, we comment about the problem of sharp LP
inequalities for analysis on a locally compact abelian
group. First, there is a remarkable structure theorem
which states that any locally compact abelian group G
is topologically isomorphic to a product Rn X Go, where
Go is a locally compact abelian group which contains an
open compact subgroup Ho, and the dimension n is an
invariant of the group (ref. 8, Theorem 24.30). Essen-

tially this product structure for a locally compact
abelian group, together with Lemma 2 above and the
theorem of Hewitt and Hirschman for the Fourier
transform on groups Go (ref. 8, Theorem 43.13) allows
the natural extension of these sharp LP inequalities on
Rn to sharp LP inequalities on locally compact abelian
groups, thus affirming a conjecture of Hewitt and Ross
(ref. 8, p. 630 in Vol. II).
Detailed proofs and discussion of these results will

appear in the author's Princeton thesis.
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