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ABSTRACT In this paper a variational formula is
obtained for the principal eigenvalue for operators with
maximum principle. This variational formula does not
require the operators to be self-adjoint. But ifthey are self-
adjoint this formula reduces to the classical Rayleigh-
Ritz formula.

Let X be a compact metric space, and for t > 0 let TP
be a strongly continuous semigroup mapping C() -mi
C(X) having the properties that if f 2 0, then Tjf > 0
and Tj1 = 1. Under these hypotheses the infinitesimal
generator L of T, will have domain D dense in C(X),
and L will satisfy the maximum principle. Examples of
operators L arising from such semigroups are

(a) X is a compact manifold and L is a second order
elliptic operator with reasonable coefficients.

(b) (Lf) (x) = f [f(y) - f(x)]r(x,dy) where 7r(x,dy) is

a nonnegative measure on X for each x E X and is
weakly continuous in x.

In fact, the most general L satisfying our assumptions is
a limit of examples of type (b).

Let V(x) E C(X) and let Xv be the principal eigen-
value of the operator L+V. If the operator L is self-
adjoint with respect to a measure v on X, then there is a
classical variational formula (Rayleigh-Ritz) for Xv,
namely,

Xv = sup [ V(x)fl(x)v(dx) + (Lff). [1]
fEL2(p)_X_
11 1121

In this note we obtain a variational formula for Xv for all
L considered above whether L is self-adjoint or not. In
the self-adjoint case the new variational formula re-
ducesto [1].

Let D+ denote the functions u E 3) that are positive
and let Z be the space of all probability measures on X.
For each g (E WZ we define

The operator L+V is the infinitesimal generator of a
semigroup T:v given by a family of measures pv(t,x,dy),
i.e.,

T vf(x) = f f(y)Pv(txdY)

and we note

|ITgvi| = sup p(txdy).

Moreover, if we let 4(t,V) = log ||TtvlI, we see that
0(t,V) is subadditive in t and therefore

0(tV) 1
VO(V) = lim lim log sup J pv(txdy) = Xv

t-.a o t t- oXt xEX X

exists. Because T, is a positive semigroup, Xv is in the
spectrum of L+V and is in fact the principal eigen-
value. We will prove

THEOREM. The principal eigenvalue* Xv of L+V is
given by

Xv = sup [ V(x)M&(dx) - I(A)

where I(u) is defined by [2]. The theorem follows from
Lemmas 1 and 2 below. Let us define

d;(v) = lim - log sup f pv(t,x,dy),
ta t xEX X

,(V) = sup J V(x)M(dx) -I(;)

y62(V) = inf sup [V(x) + (Lu) (x)]*
uED + xEX u

The theorem states that +(V) = yt1(V). We will first prove
in Lemma 1 that +t1(V) < +(V) < +2(V) and then in
Lemma2 that y2(V) = 01

IO) = - inf -(L-)OA(dx).uED + xu
[2]

It is easy to see that I(,u) is nonnegative, lower semi-
continuous, and convex.

* In general +(V) is not an eigenvalue. However, it belongs to the
spectrum of L+V which is contained in [z:Re z < +(V)]. We
therefore call it the principal eigenvalue Xv.
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LEMMA 1.

CMV :5 O(V) < 4,2(V).
Proof: Let 0p2(V) = 1 and e > 0 be given. Then

there exists u C O+ such that for all x C X

V(x) + (L) (x) <l+.

For this u, let v(t,x) = u(x)e(l+e)t and we have

(L+V)v(t,x) = (x) + V(x)] v(t,x)

< (1+e)u(x)e(l+E)t.
Thus, for all x and t,

6Aat) > (L+V)v(t,x)

so that from the maximum principle we conclude

v(tx) 2 f v(Oy)pv(txydy) = f u(y)pv(txdy).

Since X is compact and u e J+ we have inf u(x) > 0,
zEX

and therefore for all x and t

Pv(txdy) < . e(
xmf u(x) minf u(x)

--EX E

Thus,

k(V) = lim 1log sup f pv(txdy) < 1+e,
t-.cot g X

and hence O(V) < 4,62(V).
Now suppose 4(V) = h. Let u(t,x) be the solution for

t > 0 of

au = Lu + Vu,

u(O,x) = 1,

i.e.,

u(t,x) = pv(t,xdy).

Since c(V) = h, corresponding to any e > 0 there is a to
such that t > to implies

sup u(t,x) < e(h+e)t. [3]
xE.X

Let Vf(x) = V(x) - h- e and u6(t,x) be the solution of

-u_ Lu6 + VeU6,

ue(0,x) = 1.

We see that u6(t,x) = u(tx)e-(h+ )t and from [3] we
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have for all t > to

sup U.(t,x) < 1.
xEX

In particular, u6(to,x) < 1 for all x C X. If we consider
then u6(t,x) for x E X and 0 < t < to, we have

b
= Lu. + Vfu.,

u6(0,x) = 1,

U0(tox) < 1,

and u6(t,x) is bounded below. Thus,

a log U, _ Lu. + Ve
at U.U

so that for any 1 C Z and 0 < t < to

f a log U6(tx)
A(dx) = (Lu.) (t,x)M(dx)

+ f V6(x)(dx).

Therefore,

f dt[ (Ue) (t,x)1u(dx) + V,(X),4(dX)]

= JW log u6 (tox),4(dx) log u.(O,x)1.(dx)

= Jb log uv(to~x)ju(dx) < 0.

This implies that there is some point 0 < t' < to such
that

f (Lu6) (t',X)M(dX) + V6(x),u (dx) < 0,

and hence, letting u(x) = u6(t',x), we see that for each
uE on1Z there is a u e D+ such that

f u
( ;) (x)1(dx) + V6(x)1.s(dx) < 0.

This means

sup inf J(Lu) (x)1(dx) + L V"(x)(dx) < 0,
,uEOR' uE + g UX

and thus, from the definition of I(u), we have

suP [ IiA +f VE(X)IA(dx)] <0
i.e., iV1(V6) < 0. But obviously ip1(1V) = V/1(V) - h-,
so that 4'1(V) < h+e which implies V1(V) < k(V).
LEMMA 2.

t'(V) = J2(V)
Proof: We must show #,2(V) < N1(V). Let #1(V) = 1

and e > 0 be given. We then want to find uf EE O+ such
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that for all x E X

(LU) ($W + V(X) < 1+e.

Since *1(V) = 1, we have from the definition of I(G&)

sup inf Lu (x)z(dx) + V(x)u(dx)] = 1.
Thus, for any u E- and our given e > 0, there exists

ev A A+ such that

('(LUEI.'e )IA (dx) +t V(x)M(dx) < I +

Since the left side of this last inequality is continuous in
the weak topology on I, there exists a neighborhood
Ng of A such that if X E N,

fI (at~') (x)X(dx) + V(x)X(dx) < I +

Thus U N." is an open covering of the compact space

M. Hence, there exists a finite covering N,1,Ng,...
N;,,. Let uj = Ue,;, for i = 1,2,.. ,k so that we now have

sup inf [fLuY (x))(dx)
aEim 1 <. <k XU

+ fV(X)dx)j < I + [4]

From the definition of the infinitesimal generator,

Thu, -- Ut - Lu, uniformly in x ash 0. Since ut has a
h

positive lower bound, and

C Thui - Ut'/Lu;\ (x)M/dx)
Ix \. hu1 ) (X)M(dX) JA (LUJ)(X)U(dx)X hui Ut

uniformly in M, we conclude from [4] that there exists
an ho such that if h < ho

sup inf [fh(Thus-u) (x)M(dx)
I&E l <i<k x u-a

+ V(x)M~ix)].< I+ [5]
Since uj is continuous and is bounded above and
bounded below by a positive constant, we can write us
= e" where gt E C(X). Let G be the convex hull of
{glg2,...,9k}. From [5 ] we obtain for h < ho

sup inf [T((Te'- ()(d
PEgEG Lx he'(

+f v(x),u(dx)] < 1 + - [6]

Since Th is bounded and nonnegative it is easy to see

that Tee e is a convex functional of g for each x £he'

X. Hence, we have from one of the mini-max theorems
(see e.g., ref. 1, Thm. 3.4) that

inf su Tihe' - e) (x)M(dx)
gEGiEM x he'

+f V(x)A(dx) .I+ X [7]

which implies

inf sup e) (x) + V(x)] < +
Since G is compact the infimum is attained at some
point of G. call it gj, i.e., for all x E X

hTe' }(X) + V(X) < I +
Letting uh = e"' we have for all x E X and h < ho

( Thuh- )uh ()+V(x)l

uh 3
[8]

Since the family {UyJ for h < ho belongs to a compact
set, we can assume without loss of generality that Uh
uo as h 0 where uo CC+(X) (continuous functions on
X bounded below by a positive number) and uo =e
where g E G. Without loss of generality we can assume
Uk E D+ because 2D+ is dense in C+(X). Hence, we get
from [8]

[(T AUh) (X) + V(X)] < I + 2

for all x E X, h < ho, and where uh -s uo as h -o 0 with
uh G +. Since uh EE S + we can rewrite this last as

rL (-tTTuhcl1
L h° ]~(X) + V(X) < 1 + - [9]
L Uh J2

for all x E X and h < ho. Let

l h
%= TSuhds E A +.

h

Since uh -s uo and T, is a strongly continuous semigroup,
wehavevh-u ash--0. Nowfrom [9 ] we'get for all x

X and h < ho

(vh V h) + V(x) < + 2

or

(Lvh'
\ Vh/

(x) + V(x) . (I + 2) + (u,&x- 1)

X (I + + V(x) (1 - uG)

< (l+ e)+ I( + e) + |l VI] |Uh 1| )
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But uah uO uniformly and, as noted earlier, Va -o U0

that Uh uniformly, i.e., for h sufficiently small
Vh

Thus, there is an hi such that for all x E X

(Lv) (x)+ V(x)< +
the

which gives *P2(V) < #61(V). This completes the proof
of Lemma 2 and the theorem.
Now in ref. 2 the authors proved (Section 4 of ref. 2)

that if L is self-adjoint with respect to a reference mea-

sure v on X and if I() < X for some y E MZ, then

under mild assumptions;& << v and letting g = and
do

and f = gl/2 we have

I(A) = - (Lff).

This shows that in the case where L is self-adjoint the
variational expression in the theorem reduces to the
classical formula [1].
The relation between +(V) and I(ju) is clearly that

they are conjugate convex functionals. The relation
+(V) = *I2(V) has been noticed before. See, for instance,
ref. 3.
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