Table S1: RT-qPCR primers.

Gene	Primers ^a	Sequence (5' \rightarrow 3')	Product	Product	Annealing	PCR efficiency ^c	
			location ^b	length (bp)	temperature (°C)	Liquid media	Solid media
rpfA	rpfAF	GAGTCCGGCGGCAACTGGTC	+160 to	100	61	1.014 ± 0.022	1.020 ± 0.023
	rpfAR	GCTGGGACTTGCTCGCCTGG	+292	133			
rpfB	SCO3150F	AGTACGGCGGTCTGGACTA	+1220 to	111	60	N/A	N/A
	SCO3150R	CTTATCTGCTGGGAGCGACT	+1330	111			
rpfC	SCO3098F	GGCTCTACCAGTTCGACTCC	+236 to	61	57	1.045 ± 0.027	1.057 ± 0.029
	SCO3098R	TGCGCACGTAGAGCTTCTG	+296	01			
rpfD	SCO0974F	GTTCGTACGGCTACCAGGTG	+1079 to	00	60	1.041 ± 0.034	1.054 ± 0.038
	SCO0974R	GTCCGCTCTTCACGGAGAT	+1168	90			
rpfE	SCO7458F	ACCGGCAACGGCTACTAC	+199 to	1.47	66	N/A	N/A
	SCO7458R	CATCCCCTGCAGACGGG	+345	147			

^a Forward and reverse primers are denoted with letters F and R, respectively.

^b Nucleotide sites are numbered relative to the start codon.

^c Values are presented as mean ± standard deviation.

Table S2. Oligonucleotides used in this study

Primer name	Sequence (5' – 3')
SCO0974 F	GGCACCGCCGGTATCAGCCGAACA
SCO0974 R2	GCTGCTCGTCCTGCCGTCTTCC
SCO0974 up	AGTGCTCATTGGGTTGGCTC
SCO0974 down	CAGGTGATACCGGCGAGTG
SCO3097FWD	CAGCTCACCTCGCAGGCGTCGGTGAGGGGGATCAACCATGATTCCGGGGGATCCGTCGACC
SCO3097REV	CACGCACCGGGGGGGGGGGGGCCGGCGCCGCCGCTTATGTAGGCTGGAGCTGCTTC
SCO3098FWD	CCGCGTGGTCCCCGTCGTCTTGTGAAAGGTCGTCGCATGATTCCGGGGGATCCGTCGACC
SCO3098REV	GGGACATACGGTCTCTAACCGTGACGCGAACTCCCTCTATGTAGGCTGGAGCTGCTTC
SCO3098 up	CGTGATCTGCGCGGCATGAAC
SCO3098 int	GCAGGCCGCCGTAGTACC
SCO3150FWD	CTGGGGGCCCGATCGGGACCCCTGGAGCGTGTGGGCGTGATTCCGGGGATCCGTCGACC
SCO3150REV	GCTCACCCCGCAAGAGTAGCCGGGGGGCCGGGCGGCCTCATGTAGGCTGGAGCTGCTTC
3150 up	TTCAAGAACGCCCAGAACCTG
3150 down	ACCGTGTTGGCGTCGATGAC
3150 internal	AGCAGTTCACTCACGTCGTC
SCO7458FWD	GGGCGACCGGTGGTCACCTGGTGTAACAGTCTTCTTATGATTCCGGGGATCCGTCGACC
SCO7458REV	GTCAACCCGGCGCGGGCCCGGGCCCGGTTTGGCACCGTCATGTAGGCTGGAGCTGCTTC
7458 up	ACAAGGAGGCGGTCCACG
7458 down	GTTGGTCGGCCTACTCGG
7458 internal	CGACATCCCCTGCAGACG
SCO0974PP 5'	CAGTACCATATGGCCGACGCGCGACCTGGGAC
SCO0974PP 3'	CAGTACGGATCCTCAGATCCTGACGCCGGCCGGC
SCO3097PP 5'	CAGTACCATATGGCCACCGCGTCCGAGTGGGAC
SCO3097PP 3'	CGAAGTGGATCCTTACTTCAGGTGCAGCTGCTG
SCO3098PP 5'	CAGTACCATATGGCCGACTCCACGAACTGGGAC
SCO3098PP 3'	CAGTACGGATCCCTACTTTTCGCCCGATTCGCC
SCO3150ADUFPP5'	CAGTAC <u>CATATG</u> GCGACCGGCTTCCCGC
SCO3150PP 5'	CAGTAC <u>CATATG</u> GCCAAGGACAAGGCGGTCGAG
SCO3150PP 3'	CAGTAC <u>GGATCC</u> TCATTCCCGCAGCCGGGCGCC
SCO7458PP 5'	CGAAGT <u>CATATG</u> GCGCCCTCGGCGCC
SCO7458PP 3'	CGAAGT <u>GGATCC</u> TCAGGCGCAGCCCC
PrpfA-F	GCACT <u>GGATCC</u> AAAAGTAGAGGGAGTTCGCG
PrpfA-R	GCACT <u>GGTACC</u> GAGCGGTCATGACCGTAGAC
SCO3152 pFlux Fwd	TGATGA <u>GGATCC</u> TCTGAGGGGGATCCATAGGGC
SCO3152 pFlux Rev	TGATGA <u>GGTACC</u> CACGGCGCTCTCACTCAT
SCO3098 pFlux Fwd	TGATGA <u>GGATCC</u> GCATCCACTACTGCCTCGG
SCO3098 pFlux Rev	AAGAAG <u>GGTACC</u> GACGACCGTTCCCGGAGAG
<i>rpfD</i> pFlux Fwd	TGATGA <u>GGATCC</u> CCTAGTGACCTTGGTGTCCG
<i>rpfD</i> pFlux Rev	AAGAAG <u>GGTACC</u> CGGTTGATCCTGTTCGGCTG
<i>rpfE</i> pFlux Fwd	TGATGA <u>GGATCC</u> CCGTGTCCATCGTCTCCAC
<i>rpfE</i> pFlux Rev	TGATGA <u>GGTACC</u> AAGAAGACTGTTACAGGTGAC
ermEF-B	GCACT <u>GGATCC</u> AGCCCGAGCCCGCGCGC
ermER-K	GCACTGGTACCGATCCTACCAACCGGCACGA

Function Disruption of rpfD Disruption of rpfD *rpfD* complementation and disruption confirmation *rpfD* complementation and disruption confirmation *rpfA* knockout *rpfA* and *rpfA/C* knockout *rpfC* and *rpfA/C* knockout *rpfC* knockout rpfC knockout confirmation rpfC knockout confirmation rpfB knockout rpfB knockout *rpfB* knockout confirmation *rpfB* knockout confirmation rpfB knockout confirmation *rpfE* knockout rpfE knockout rpfE complementation and knockout confirmation rpfE complementation and knockout confirmation rpfE knockout confirmation Overexpression of RpfD

Overexpression of RpfD Overexpression of RpfA Overexpression of RpfA Overexpression of RpfC Overexpression of RpfC Overexpression of RpfB∆DUF348 Overexpression of RpfB Overexpression of RpfB Overexpression of RpfE Overexpression of RpfE Cloning of *rpfA* promoter Cloning of *rpfA* promoter Cloning of SCO3152 promoter Cloning of SCO3152 promoter Cloning of *rpfC* promoter Cloning of *rpfC* promoter Cloning of *rpfD* promoter Cloning of *rpfD* promoter Cloning of *rpfE* promoter Cloning of *rpfE* promoter Cloning of *ermE** promoter Cloning of *ermE** promoter

Protein	Size (kDa)*	[IPTG] (mM)	Induction time (h)	Induction temperature (°C)	[Imidazole] (mM) for elution	
RpfA	21.7	1	2.5	30	250	
RpfB	36.6	0.25	14	16	250	
RpfB∆DUF348	21.5	0.25	14	16	250	
RpfC	40.0	1	14	16	150	
RpfD	42.6	1	14	16	70	
RpfE	10.2	1	2.5	30	250	
sIHF	13.3	1	14	16	250	

 Table S3. Conditions for Rpf protein over expression and purification.

*Calculated excluding the signal peptide but including the 6 × His tag from pET15b.

Figure S1. Primer location for luciferase assays. Primers for luciferase assays were positioned to amplify the promoter region for each *rpf* gene, based on previously published RNA sequencing data (Moody *et al.*, 2013). Graphs show the number of reads at each nucleotide for both the protein-coding sequence and region upstream of each *rpf*. Protein-coding sequences are indicated with grey arrows. Primer locations are indicated with black arrows.

Figure S2. **Construction of multiple** *rpf* **mutants.** *rpf* genes were replaced with antibiotic resistance cassettes in the order shown. Double diagonal lines represent 'scar' sequences left after removal of the antibiotic resistance cassettes. Abbreviations: *aac(3)IV*, apramycin resistance cassette; *vph*, viomycin resistance cassette.

SC02326 SC05029 RpfB/SC03150 RpfC/SC03098 RpfE/SC07458 RpfA/SC03097 RpfD/SC00974 RpfB-Mtb	1 (1 · 1 · 1 · 1 · 1 · 1 ·	GDSAEFQCFSKIV ADHLNWQGLA ADSTNWDQVA -APLRTDWDAIA ATASEWDAVA ADAATWDKVA IDGSIWDAIA	DHESDWNIH NHESSWNYQ ACESGGRA-1 ECETGGAW-3 ACESSGNW-4 QCESGGNW-3 ACESTDDW-1 GCEAGGNW-3 *	ATNASSGAYGI AVNASSGAYGI DAVDPSGTYGG SQNSGNGYYGG QANTGNGYYGG SINTGNGYYGG DINTGNGYYGG AINTGNGYYGG	V-QAL F-QAL LYQFDSATWH L-QLSQDAWH L-QFARSSWI L-QFARSSWI L-QFTQSTWH V-QFDQGTWH **	PGSKMAS/ PAGKYAS/ IGLGGEGR 2QYGGLDYAP IAAGGLKYAPI AAYGGTQYAS 2AFGGTRYAPI 2ANGGLRYAPI	AGDDWKTN AGADWRTN - PEDASA - SADQASR - RADLATR - RADLATR - RADLATR - RADLATR -
SCO2326 SCO5029 RpfB/SCO3150 RpfC/SCO3098 RpfE/SCO7458 RpfA/SCO3097 RpfD/SCO0974 RpfB-Mtb	53 2 40 1 53 · 55 · 55 · 55 · 55 ·	AATQIEWGLDYMK PATQIKWGLSYMD -AEQTYRAQK -SQQIRIAEK -GEQIAVAER -SQQIQIAEK -EQQIAGAEK -EEQIAVAEV	DRYGSTCDA NRYGSPCDA LYVRS <mark>G</mark> ADA IHASQGIAA LARLQGMSA VLAGQGKGA VLDTQGPGA TRLRQGWGA	WTFWQSNGWY- WAFWQANHWY- WPHCGARLRE- WPTCGLLAGLG WGCA WPVCGTGLSGA WPVCSERAGL- WPVCAARAGAR			

- * Active site residues
- * Key cleft residues

Figure S3. Alignment of distantly related Rpf-like domains from SCO2326 and SCO5029 with RpfB from *Mycobacterium tuberculosis* and the more closely related Rpfs from *S. coelicolor*. Identical amino acid residues are highlighted in black, while similar residues indicated in grey. The red asterisk marks the key catalytic residue, while the blue asterisks mark important substrate-binding residues.

Figure S4. Partial complementation of $\triangle rpfD$ and $\triangle rpfE$ confirmed by examining germination profiles. Spores of complemented and vector alone-containing *rpf* mutants were plated on MS agar overlaid with cellophane discs. Spores were monitored for the presence or absence of germ tubes at the indicated time points. Data are representative of three independent trials (N > 100 per timepoint per strain). WT, wild type.

Figure S5. Alignment of the Rpf domain of RpfC orthologues from diverse *Streptomyces* **species.** The key catalytic residue is indicated with a red asterisk, while important substrate-binding residues are marked with blue asterisks.