Differential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis

by the Rcs phosphorelay system

Xiao-Peng Guo^{1,2}, Gai-Xian Ren^{1,2}, Hui Zhu¹, Xu-Jian Mao¹, Yi-Cheng Sun^{1*}

¹MOH key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese

Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao,

Dongcheng District, Beijing, 100730, China.

²These authors contribute equally to this work.

*Corresponding author: Yi-Cheng Sun.

email: sunyc@ipbcams.ac.cn; phone: 86 10 6783 7366

Supplementary Tables

Supplementary Table S1: Strains and plasmids used in this study

Strain or plasmid	Genotype and/ or description	Reference or source
Y. pestis		
KIM6+	wild type (pCD1-), nonfunctional rcsA	1
CDY326	$\Delta rcsB::Km$	2
SY591	$\Delta hmsCDE$	This study
SY1567	$\Delta rcsD$ -N-terminal, hmsD-Myc ₂	This study
SY1568	$\Delta rcsB::Km, hmsD-Myc_2$	This study
SY1570	hmsD-Myc ₂	This study
SY1615	hmsD-Myc ₂ , RcsAXX ^a	This study
SY1726	functional rcsA, hmsD-Myc ₂	This study
SY1783	functional rcsA, hmsD-Myc2, RcsAXX	This study
SY1784	functional rcsA, hmsD-Myc2, RcsABX ^b	This study
SY1785	<i>hmsD</i> -Myc ₂ , RcsXAB ^c	This study
SY1786	hmsD-Myc ₂ , RcsABX	This study
SY1788	$\Delta rcsB::Km, hmsD-Myc_2, RcsAXX$	This study
SY1790	$\Delta rcsB::Km, hmsD-Myc_2, RcsABX$	This study
SY1856	functional rcsA, hmsD-Myc2, RcsXXX ^d	This study
SY1860	hmsD-Myc ₂ , RcsXXX	This study
SY1861	$\Delta rcsB::Km, hmsD-Myc_2, RcsXXX$	This study
SY1910	$\Delta rcsB::Km, hmsD-Myc_2, RcsXAB$	This study
SY1911	functional rcsA, hmsD-Myc2, RcsXAB	This study
Y. pseudotu- berculosis		
IP32953	wild type; serogroup O1	3
CDY331	nonfunctional rcsA	2

SY1798	hmsD-Myc ₂	This study
SY1799	nonfunctional rcsA, hmsD-Myc ₂	This study
SY1937	$\Delta rcsB::Km, hmsD-Myc_2$	This study
SY1939	nonfunctional rcsA, hmsD-Myc ₂	This study
SY1966	hmsD-Myc ₂ , RcsAXX	This study
SY1967	nonfunctional rcsA, hmsD-Myc2, RcsAXX	This study
SY1968	$\Delta rcsB::Km, hmsD-Myc_2, RcsAXX$	This study
SY1969	∆rcsB::Km, nonfunctional rcsA, hmsD-Myc ₂ , RcsAXX	This study

Plasmids

pBAD/ Myc-His	expression vector, araBAD promoter, Amp ^R	Invitrogen
pUC19	cloning vector for PCR products, Amp ^R	4
pGD926	<i>lacZ</i> translational fusion vector, Tet ^R	5
pVTRA	low level expression plasmid, IPTG induced, Cat ^R	6
pCBD179	functional rcsA in pUC18	2
pCBD209	<i>rcsB</i> in pBAD/ Myc-His	7
pYC287	hmsC 5' UTR::lacZ fusion in pGD926	This study
pYC300	hmsC 5' UTR (RcsAXX)::lacZ fusion in pGD926	This study
pYC301	hmsC 5' UTR (-10 box* ^e)::lacZ fusion in pGD926	This study
pYC332	rcsB in pUC19	This study
pYC484	hmsC 5' UTR (RcsXXX)::lacZ fusion in pGD926	This study
pYC485	hmsC 5' UTR (RcsXAB)::lacZ fusion in pGD926	This study
pYC486	hmsC 5' UTR (RcsABX)::lacZ fusion in pGD926	This study
pYC487	hmsC::lacZ fusion in pGD926	This study
pYC513	hmsCDE in pVTRA	This study
PYC575	<i>rcsB</i> (D56Q) in pUC19	This study
PYC576	<i>rcsB</i> (D56E) in pUC19	This study
PYC593	hmsT 5' UTR::lacZ fusion in pGD926	This study
PYC597	<i>lcrQ</i> 5' UTR:: <i>lacZ</i> fusion in pGD926	This study

^aRcsAXX: RcsAAB mutation showed as Figure 3: TAAGATT**TCTGTTTCGCTTTT** (the mutated base pairs are bold, the same below).

^bRcsABX: RcsAAB mutation showed as Figure 3: TAAGATAAATCTCA**CGCTTTT**

^cRcsXAB: RcsAAB mutation showed as Figure 3: **CTTTCTG**TAAGATAAATCTCA

^dRcsXXX: RcsAAB mutation showed as Figure 3: **CTTTCTGTCTGTTTCGCTTTT**

^e-10 box*: -10 box mutation of *hmsC* promoter.

Supplementary Table S2: Oligonucleotides used in this study

Construction of *rcsB* in pUC19 (pYC332)

cgggatccatttaagcagcgcggttat ggaattctactacagtgaccaagtacggcg

Construction of *lacZ* deletion

atgacgtcacaggaaaaggtaccactccaggtgcaactgagtcttgtgtaggctggagctgcttcg ttacaccttgtattgccaacagatttggtactgataggtttcacgcatatgaatatcctccttag

Construction of *hmsC* 5' UTR::*lacZ* fusion in pGD926 (pYC287)

cccaagettgtccageccagetceg egggateegegcaagtageggtagte

Construction of *hmsC::lacZ* fusion in pGD926 (pYC487)

cccaagcttatgactaccgctacttgcg cgggatcctgattttttttcggcttcat

Construction of *hmsT* 5' UTR::*lacZ* fusion in pGD926 (pYC593)

caagetteaeggetgageaaeeegg egeggateeatatteaatttaetetgea

Construction of *lcrQ* 5' UTR::*lacZ* fusion in pGD926 (pYC597)

ccaagcttgcgtttggatcaaggggg cgcggatcctgaagagtattgattttcatcg

Determination of *hmsC* transcription start site

attctggcagcagcatcgctacgttcacgc gcattgatattactggcggccaataatggggttggtac agccaccaataatgaaagtaa cgacgttattataagatttatatga

PCR amplification of hmsC promoter for EMSA

tacctgacaaaaaacccggaaa tgatgtaataatagtcatatcatcgt

PCR amplification of *hmsT* promoter for EMSA

tcatgatgacaggctgaaaca tccgacatcacgacaaataaa

PCR amplification of *lcrQ* promoter for EMSA

cccaaaaataattttttattgtgattt tataattgtctctacgatattctaagttatttatt

RcsB (D56Q) mutagenesis

aattactcaactctctatgccaggggataagtatggtgatggcatcac agagttgagtaattagcacgttggcatcaagtttggacaaattgttaataagc

RcsB (D56E) mutagenesis

aattactgaactctctatgccaggggataagtatggtgatggcatcac agagttcagtaattagcacgttggcatcaagtttggacaaattgttaataagc

RcsAXX box mutagenesis

tctgtttcgcttttaatttacgatgatatgactattattacatcatataaatcttataataacg aaaagcgaaacagaaatcttatttatgttattgaaatagaaatataaaaaaacccga

RcsXXX box mutagenesis

ctttctgtctgtttcgcttttaatttacgatgatatgactattattacatcatataaatcttataataacg aaaagcgaaacagacagaaagtttatgttattgaaatagaaatataaaaaacccgactgtt

RcsXAB box mutagenesis

ctttctgtaagataaatctcaaatttacgatgatatgactattattacatcatataaatcttataataacg tgagatttatcttacagaaagtttatgttattgaaatagaaatataaaaaaacccgactgtt

RcsABX box mutagenesis

 $aatctcacgcttttaatttacgatgatatgactattattacatcatataaatcttataataacg\\ aaaagcgtgagattaatcttatttatgttattgaaatagaaatataaaaaacccga$

-10 box mutagenesis

 $ttaggtacgacgttagatctagatttatatgatgtaataatagtcatatcatcgtaaattaagatctttctgtc\\agatctaacgtcgtacctaacgccgattcaaccaccacattta$

hmsD qRT-PCR

acctgcatttgatcgcccgcg36-TAMSp gccttacgggtttatgttgatcac ggcctcggtggtataactgatg

crr qRT-PCR

ctcctgttgacggcaccatcggt36-TAMSp gccctctggcaataaaatgg agcatggttggtctcgaaaatt

All sequences are in 5 -3 'orientation.

Supplementary Figures

Supplementary Figure S1: β -galactosidase activities of *hmsT*::*lacZ* and *lcrQ*::*lacZ* reporter. β -galactosidase activities of *hmsT*::*lacZ* (a) and *lcrQ*::*lacZ* (b) reporter in *Y. pestis*. *Y. pestis* KIM6+ (WT) transformed with empty vector (vector) and functional RcsA (p-*rcsA*), RcsB deletion mutant transformed with empty vector (vector), wild-type RcsA (p-*rcsA*) and wild-type RcsB (p-*rcsB*). The mean and standard deviation of three independent experiments with three replicates are indicated. **P*<0.01.

Supplementary Figure S2: β -galactosidase activities of *hmsC*::*lacZ* and *hmsD*::*lacZ* reporters. β -galactosidase activities of *hmsC*::*lacZ* and *hmsD*::*lacZ* reporters in *Y. pestis*. KIM6+ (WT) transformed with *hmsC*::*lacZ*, *hmsC*::*lacZ* with mutated putative -10 box, *hmsD*::*lacZ* and pGD926 plasmids. The mean and standard deviation of three independent experiments with three replicates are indicated. **P*<0.05, ***P*<0.01.

Supplementary Figure S3: EMSA results of RcsB with *hmsT* and *lcrQ* promoter.

Electrophoretic mobility shift assays (EMSA) of *hmsT* (a) and *lcrQ* (b) promoter DNA incubated with increasing concentrations of RcsB. Probes were tested with identical protein combinations. Lane 1, probe alone; lanes 2-10, 100 ng probe with 400, 800, 1200, 1600, 2000, 2400, 4000, 6000 or 8000 ng of RcsB in the 16 μ L reaction.

Supplementary Figure S4: Role of the RcsAAB box on regulation of expression of HmsD by Rcs in *Y. pseudotuberculosis*. Western blots of total protein-matched lysates prepared from cells with (a) RcsAAB box and (b) RcsAXX box were analyzed by anti-Myc antibody. Strain designations (Supplementary Table S1) are: (a) Control, IP32953; WT, *hmsD*-Myc₂; $\Delta rcsB$,

10

 $\Delta rcsB \ hmsD-Myc_2; \ rcsA-$, nonfunctional $rcsA \ hmsD-Myc_2; \ \Delta rcsB \ rcsA-$, nonfunctional rcsA $\Delta rcsB \ hmsD-Myc_2; \ \Delta rcsB \ Vector, \ \Delta rcsB \ hmsD-Myc_2/ \ pUC19; \ \Delta rcsB \ p-rcsB, \ \Delta rcsB$ $hmsD-Myc_2/ \ pYC332.$

(b) 1, IP32953; 2, *hmsD*-Myc₂; 3, RcsAXX mutation, *hmsD*-Myc₂; 4, nonfunctional *rcsA*,
RcsAXX mutation, *hmsD*-Myc₂; 5, Δ*rcsB*, RcsAXX mutation, *hmsD*-Myc₂; 6, Δ*rcsB*,
RcsAXX mutation, *hmsD*-Myc₂/ pUC19; 7, Δ*rcsB*, RcsAXX mutation, *hmsD*-Myc₂/ pYC332.
pYC332: p-*rcsB*.

Supplementary Figure S5: Full-length blots for Figure 1c.

Supplementary Figure S6: Full-length blots for Figure 5a.

Supplementary Figure S7: Full-length blots for Figure 5b.

Supplementary Figure S8: Full-length blots for Figure 5c.

Supplementary Figure S9: Full-length blots for Figure 5d.

Supplementary References

- 1 Fetherston, J. D., Schuetze, P. & Perry, R. D. Loss of the pigmentation phenotype in *Yersinia pestis* is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. *Mol. Microbiol.* **6**, 2693-2704 (1992).
- 2 Sun, Y. C., Hinnebusch, B. J. & Darby, C. Experimental evidence for negative selection in the evolution of a *Yersinia pestis* pseudogene. *Proc. Natl. Acad. Sci. U S A.* **105**, 8097-8101 (2008).
- 3 Chain, P. S. *et al.* Insights into the evolution of *Yersinia pestis* through whole-genome comparison with *Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. U S A.* **101**, 13826-13831 (2004).
- 4 Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* **33**, 103-119 (1985).
- 5 Ditta, G. *et al.* Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. *Plasmid* **13**, 149-153 (1985).
- 6 Perez-Martin, J. & Lorenzo, V. D. VTR expression cassettes for engineering conditional phenotypes in *Pseudomonas*: activity of the Pu promoter of the TOL plasmid under limiting concentrations of the XylR activator protein. *Gene* **172**, 81-86 (1996).
- 7 Sun, Y. C., Guo, X. P., Hinnebusch, B. J. & Darby, C. The *Yersinia pestis* Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene *hmsT. J. Bacteriol.* **194**, 2020-2026 (2012).