
Introduction
This is an excerpt from the homepage of ClonalFrameML, a software package that performs efficient inference of
recombination in bacterial genomes. ClonalFrameML was created by Xavier Didelot and Daniel Wilson.
ClonalFrameML can be applied to any type of aligned sequence data, but is especially aimed at analysis of whole
genome sequences. It is able to compare hundreds of whole genomes in a matter of hours on a standard Desktop computer.
There are three main outputs from a run of ClonalFrameML: a phylogeny with branch lengths corrected to account for
recombination, an estimation of the key parameters of the recombination process, and a genomic map of where
recombination took place for each branch of the phylogeny.

ClonalFrameML is a maximum likelihood implementation of the Bayesian software ClonalFrame which was previously
described by Didelot and Falush (2007). The recombination model underpinning ClonalFrameML is exactly the same as
for ClonalFrame, but this new implementation is a lot faster, is able to deal with much larger genomic dataset, and does
not suffer from MCMC convergence issues. A scientific paper describing ClonalFrameML in detail has been submitted.

Download
You can download the C++ source code for ClonalFrameML via SVN using the command:

svn checkout http://clonalframeml.googlecode.com/svn/trunk/ clonalframeml

Alternatively, you can access the files directly in your browser here and save them to a local directory on your computer.

Please note that the code for ClonalFrameML is distributed under the terms of the GNU GPL v3 license, for more details
see https://www.gnu.org/copyleft/gpl.html

Installation
After downloading the ClonalFrameML source code as described above, you can compile it using the following
command:

cd clonalframeml/src
./make.sh

User guide
The user guide for ClonalFrameML is available here.

Getting help
If you need assistance using ClonalFrameML, you can get in touch by emailing either Xavier Didelot or Daniel Wilson.

User Guide
Please note that this user guide and the software front-end is still under development.

Input
There are two input files needed to run ClonalFrameML. The first one is an alignment of the sequences which can be
either in fasta format or extended multi fasta (XMFA) format. The second one is a starting tree, which must be in Newick
format. There must be as many leaves in this tree as there are sequences in the alignment file, and the names of the leaves
must match the names in the headers of the alignment file.

This starting tree can be generated for example using RAxML or PhyML.

Running
The basic command for running ClonalFrameML is as follows:

ClonalFrameML newick_file seq_file kappa output_prefix [OPTIONS]

The newick_file and seq_file are the two input files described above. The parameter kappa specifies the
transition/transversion bias, and is an output of the phylogenetic reconstruction software. The output_prefix is the
prefix used for all output files generated by ClonalFrameML.

Output
Running ClonalFrameML produces several output files, each of which starts with the output_prefix specified in the
command line and ending with the following extensions:

ML_sequence.fasta
This file contains the sequence reconstructed by maximum likelihood for all internal nodes of the phylogeny, as well as for
all missing data in the input sequences.

position_cross_reference.txt
A vector of comma-separated values indicating the location in the input sequence file of the sites reconstructed in the output
ML_sequence.fasta file.

em.txt
This file contains the point estimates for R/theta, nu, delta and the branch lengths.

emsim.txt
This file contains the bootstrapped values for the three parameters R/theta, nu and delta.

importation_status.txt

This file contains the list of reconstructed recombination events. There is one line for each event, the first column indicates
the branch on which the event was found, and the second and third columns indicate the first and last genomic positions
affected by the recombination event.

labelled_tree.newick
This file contains the starting tree with all nodes labelled so that they can be referred to in other files.

Graphical output
To produce a graphical representation of the ClonalFrameML output, use the following command:

Rscript cfml_results.R output_prefix

The result is a PDF file named output_prefix.pdf

Example: standard model
Start by downloading the example files from here. Unzip on Mac/Linux as follows:

tar -xzvf cfml.tgz

The file contains the S. aureus FASTA file (Saureus.fasta), maximum likelihood tree (Saureus.phyML.newick), lists of core
and non-core sites (Saureus.core-sites.txt and Saureus.non-core-sites.txt) and some R code (cfml_results_2.R).

Run the standard ClonalFrameML analysis as follows. Note! This is a real-world example, and requires around 12 hours
of run time.

./ClonalFrameML Saureus.phyML.newick Saureus.fasta 4.967695 example.output -em true
-emsim 100 -guess_initial_m true -ignore_user_sites Saureus.non-core-sites.txt
-use_incompatible_sites true -driving_prior_mean
"0.3793988249 0.0037939882 0.3793988249 0.0001199764" -driving_prior_precision
"3.33101e+00 3.33101e+04 3.33101e+00 3.33101e+07" > example.log.txt

Note that the transition:transversion ratio of 4.967695 was estimated by PhyML. The option -em true specifies the standard
analysis in which recombination parameters are shared by all branches, and the -emsim 100 option requests 100 pseudo-
bootstrap replicates. The -guess_initial_m true aims to start the estimation of branch lengths at a reasonable set of values.
The positions listed in the file specified by the -ignore_user_sites option lists any site that was not callable or present in all
the genomes. These sites are treated as missing data, which is important since uncalled sites can cause artefactual clustering
of substitutions. The -use_incompatible_sites option specifies the analysis of homoplasious as well as non-homoplasious
sites.

The pseudocounts prior is specified by -driving_prior_mean and -driving_prior_precision corresponding to the parameters
of a gamma distribution. They specify the parameters in the following order: R/theta (relative rate of recombination to
mutation), 1/delta (inverse mean DNA import length), nu (mean divergence of imported DNA) and mean branch length.
The suggested values specify distributions that, on the log scale, are approximately centred on R/theta = 0.1, delta = 1000,
nu = 0.1 and the mean branch length in the PhyML tree, with standard deviations of one order of magnitude.

Once the analysis has finished, a figure can be produced with an R script. The R script takes a list of the core sites (the
complement of the non-core sites fed into ClonalFrameML):

Rscript cfml_results_2.R example.output core-sites.txt

This will generate a pdf similar to the figures in the paper.

Example: per-branch model
Run the ClonalFrameML analysis in which recombination parameters are estimated per branch as follows . Note! This is
a real-world example, and requires around 12 hours of run time.

./ClonalFrameML Saureus.phyML.newick Saureus.fasta 4.967695 example2.output
-embranch true -emsim 100 -embranch_dispersion 0.1 -ignore_user_sites
Saureus.non-core-sites.txt -use_incompatible_sites true -driving_prior_mean
"0.3793988249 0.0037939882 0.3793988249 0.0001199764" -driving_prior_precision
"3.33101e+00 3.33101e+04 3.33101e+00 3.33101e+07" -initial_values
"0.141679 350.104 0.0147762" > example2.log.txt

This time -embranch is specified instead of -em. The -embranch_dispersion option specifies the constraint on the variability
of recombination parameters among branches of the tree. It is on a scale of 0-1, with 0 being the most constrained (least
dispersed). The -initial_values of R/theta, delta and nu can be set. It is advisable to run the simpler model first, and use the
results to initialize the per-branch model. Again the R code can be used to generate a figure.

Full list of options
The options of ClonalFrameML are listed in full below:

-fasta_file_list true or false (default) Take fasta_file to be a white-space separated file list.
-correct_branch_lengths true (default) or false Correct branch lengths using ClonalFrame model.
-excess_divergence_model true or false (default) Use the 'excess divergence' model. Mandatory for two sequences.
-ignore_incomplete_sites true or false (default) Ignore sites with any ambiguous bases.
-ignore_user_sites sites_file Ignore sites listed in whitespace-separated sites_file.
-reconstruct_invariant_sites true or false (default) Reconstruct the ancestral states at invariant sites.
-use_incompatible_sites true or false (default) Use homoplasious and multiallelic sites to correct branch lengths.
-brent_tolerance tolerance (default .001) Set the tolerance of the Brent routine.
-powell_tolerance tolerance (default .001) Set the tolerance of the Powell routine.
-joint_branch_param true or false (default) Jointly optimize branch lengths and recombination parameters.
-rho_per_branch true or false (default) Estimate recombination parameters separately for each branch.
-rho_per_branch_no_lrt true or false (default) As above but suppress likelihood ratio test for recombination.
-single_rho_viterbi true or false (default) Jointly optimize recombination parameters using Viterbi algorithm.
-single_rho_forward true or false (default) Jointly optimize recombination parameters using forward algorithm.
-rescale_no_recombination true or false (default) Rescale branch lengths for given sites with no recombination model.
-multithread true or false (default) Enable OpenMP parallel code. Overhead may cancel out gains.
-show_progress true or false (default) Output the progress of the maximum likelihood routines.
-compress_reconstructed_sites true (default) or false Reduce the number of columns in the output FASTA file.
-initial_rho_over_theta value > 0 (default 0.1) Initial value of rho/theta used in the search.
-initial_import_divergence value > 0 (default 0.1) Initial value of import divergence used in the search.
-initial_mean_import_length value > 1 (default 500) Initial value of mean import length used in the search.
-min_branch_length value > 0 (default 1e-7) Minimum branch length.
-mcmc_per_branch true or false (default) Estimate by MCMC recombination parameters for each branch.
-laplace_approx true or false (default) rho_per_branch model with approximation of the joint posterior.
-use_nelder_mead true or false (default) Use Nelder-Mead and not Powell method in Laplace approximation.
-viterbi_training true or false (default) Estimate parameters by a Viterbi-based hill climbing algorithm.
-driving_prior_mean 4 values (df "0 0 0 0") Mean of the prior used by Laplace/Viterbi algorithms.
-driving_prior_precision 4 values (df "1 1 1 1") Precision of the prior used by Laplace/Viterbi algorithms.
-initial_values 3 values/empty (def "") Initial values used by the Laplace/Viterbi algorithms.
-guess_initial_m true or false (default) Initialize M and nu jointly in the Laplace/Viterbi algorithms.
-grid_approx value 0/2+ (default 0) Number of points for a grid approximation (0 = off).
-mcmc true or false (default) Estimate by MCMC recombination parameters for all branches.
-mcmc_infer_branch_lengths true or false (default) Estimate by MCMC branch lengths for all branches.
-partial_viterbi true or false (default) Estimate parameters by Powell/Nelder-Mead and Viterbi algorithms.
-em true or false (default) Estimate parameters by a Baum-Welch expectation maximization algorithm.
-emsim value >= 0 (default 0) Number of simulations to estimate uncertainty in the EM algorithm.
-embranch true or false (default) Estimate parameters for each branch using the EM algorithm.
-embranch_dispersion value > 0 (default .01) Dispersion in parameters among branches in the -embranch model.

