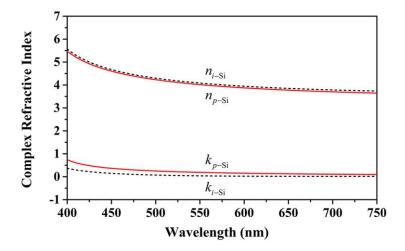

Supplementary Information Measuring the Refractive Index of Highly Crystalline Monolayer MoS₂ with High Confidence

Hui Zhang, ^{1, 2} Yaoguang Ma, ¹ Yi Wan, ¹ Xin Rong, ¹ Ziang Xie, ¹ Wei Wang, ¹ and Lun Dai, ^{1, 2, a)}


1 State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China

2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

a) To whom correspondence should be addressed. E-mail: lundai@pku.edu.cn

Supplementary Figure S1: The optical contrast spectra of 26 monolayer MoS_2 samples on various SiO₂/Si substrates with SiO₂ thickness changing from ~ 130 nm to ~ 370 nm. We add 0.15 to each curve in sequence to stagger them.

Supplementary Figure S2: The refractive index of the *p*-Si (resistivity: 8-12 Ω ·cm) substrate (red solid lines) measured by the ellipsometer (Horiba Jobin Yvon Uvisel). The refractive index of intrinsic silicon¹ (black dashed lines) is also plotted in this figure for comparison.

Confidence Interval and Confidence Level:

Confidence level reflects the probability that the true value locates in the confidence interval². 95% is a typical high confidence level in statistics. In our case, it means that the true value of the refractive index locates in the confidence interval with 95% probability.

The confidence interval is extracted from the estimate value of parameter, the standard error, and the t-value. The t-value is a statistic factor of Student's t-distribution^{3, 4}, which is determined by the confidence level and the number of samples.

Supplementary Reference:

- 1. Palik, E. D. Handbook of optical constants of solids. Academic Press (1985).
- 2. Cox, D. R., Hinkley, D.V. Theoretical Statistics. Chapman and Hall (1974)
- 3. Gosset, W. S. The probable error of a mean. *Biometrika* 6, 1-25 (1908)
- 4. Hogg, R. V., Craig, A. T. Introduction to Mathematical Statistics. Macmillan (1978)