Supplementary data

Figure S1: Average hypocotyl length of Col-0 with and without IAA. Bars represent means \pm s.e. (n=5x25)

Figure S2: Auxin response as visualized by eDR5::*LUC* bioluminescence in representative seven day old seedlings grown under +DIF (top) or –DIF (bottom) at midday (t=6 h)

Figure S3: Expression analysis of *YUC* auxin biosynthesis genes at midday (6 hours, lights on = 0h) and midnight (18 hours, lights off = 12h) (n=3x400). Data represent means \pm s.e. Bars with different letters differ significantly (P<0.05).

Figure S4: The effect of 10 μ M ACC and 1 μ M NAA application on hypocotyl elongation in $acs^{2,4,5,6,7,8,9,11}$ (acs2-1acs4-1acs5-2acs6-1acs7-1acs9-1amiRacs8acs11) seedlings grown for seven days under +DIF and wild-type seedlings grown in the presence of AVG (n=5x25). Bars represent means ± s.e. Bars with different letters differ significantly (P<0.05)

Figure S5: $ACS^{(2,4,5,6,7,8,9,11)}$::GUS promoter activity in the apex of seven day old seedlings under +DIF, -DIF and -DIF + 1 µM NAA.

-DIF + AVG + ACC -DIF + AVG + NAA Figure S6: *PIF3::GUS* promoter activity under -DIF. **A**, -DIF, **B**, -DIF + 1 μM IAA, **C**, 2.5 μM AVG + 10 μM ACC, **D**, 2.5 μM AVG + 1 μM NAA

Figure S7: Germination rate of Col-0 (circles) and *ein2-1* (triangles) seeds treated with 1 μ M NAA (white) compared to mock (black). Radicle emergence over 1 mm is referred to as germination. Germination rates were counted as germinated seeds/total germinated seeds at day 10. The results shown are the means ± SD of three independent experiments (n=3x50).

Table S1: Primer sequences used for gene expression analysis

CYP79B2	F	CAACCGAAACATCGTCCTTT	Franklin et al., 2011
CYP79B2	R	TTGGGATCCGTCATCAATTT	Franklin et al., 2011
IAA29	F	CTTCCAAGGGAAAGAGGGTGAC	Sun et al., 2013
IAA29	R	TTCCGCAAAGATCTTCCATGTAAC	Sun et al., 2013
SAUR19	F	CTTCAAGAGCTTCATAATAATTCAAACTT	Franklin et al., 2011
SAUR19	R	GAAGGAAAAAATGTTGGATCATCTT	Franklin et al., 2011
SAUR21	F	TAAGCTTCAAAAACCTTTTCGTACA	Franklin et al., 2011
SAUR21	R	CCAAATGTCGGATCATCATGATCA	Franklin et al., 2011
SAUR22	F	GACAAATAGAGAATTATAAATGGCTCTG	Franklin et al., 2011
SAUR22	R	ATGAATTAAGTCTATATCTAACTCGGAAA	Franklin et al., 2011
SAUR23	F	ATTCAAACTTTCAGACAAAAGAAATGG	Franklin et al., 2011
SAUR23	R	ACAAGGAAACAACTCTATCTCTAACT	Franklin et al., 2011
SAUR24	F	GAGATATTTGGTGCCTGTCTCATATTTAAACC	Franklin et al., 2011
SAUR24	R	CAAGAAGAAAGAGGAAAAAGGGCTCATC	Franklin et al., 2011
TAA1	F	CAAGAAGCATGTCCGAGTCA	Franklin et al., 2011
TAA1	R	AGCTTCATGTTGGCGAGTCT	Franklin et al., 2011
YUC8	F	CCTTGAGCGTTTCGTGGGTTGTTT	Sun et al., 2012
YUC8	R	CCTGCAATCAAACAGTTCTCGCGT	Sun et al., 2012
YUC1	F	TGGAGAGTAAAGACTCATGAT	Sun et al., 2012
YUC1	R	GTACTCACTCGCGTGAACGAT	Sun et al., 2012
YUC2	F	GGTGACACGGATCGGTTAGGGT	Sun et al., 2012
YUC2	R	TGCCGAATAATGCATTACCCGT	Sun et al., 2012
YUC5	F	TTCAACGAGTGTGTCCAGTCTGCT	Sun et al., 2012
YUC5	R	TCTCTGGAACAACTTTCTCCGCGT	Sun et al., 2012
YUC9	F	CCTGCAATCAAACAGTTCTCGCGT	Sun et al., 2012
YUC9	R	TGAAGCCAAGAAGGGACGTTGCTA	Sun et al., 2012
YUC10	F	TTCTGAAGTATGCTCCAGTGGCGA	Sun et al., 2012
YUC10	R	GTTTGGTGGCGAAAGGACCTTGTT	Sun et al., 2012
UBQ5	F	AAGGTTCAGCGTTTGAGGAAGG	Zhong et al., 2012
UBQ5	R	TCTTTCTGGTAAACGTAGGTGAGTC	Zhong et al., 2012

- Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochromeinteracting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America 108: 20231-20235
- Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4–Mediated Activation of YUCCA8 Expression Integrates Temperature into the Auxin Pathway in Regulating Arabidopsis Hypocotyl Growth. PLoS Genetics 8: 1002594
- Sun J, Qi L, Li Y, Zhai Q, Li C (2013) PIF4 and PIF5 Transcription Factors Link Blue Light and Auxin to Regulate the Phototropic Response in Arabidopsis. The Plant Cell Online 25: 2102-2114
- Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail Peter H, Deng Xing W, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Current biology : CB 22: 1530-1535