

Supplemental Figure 1. Complementation test with *nkd1-Ds* allele. (A) Cross performed for the complementation test. Note that all the progeny are *nkd2-R/+* heterozygous from the cross of maternal nkd2–R/nkd2–R and paternal +/+. Four different progeny genotypes were identified by marker analysis. WT *Nkd1-B73* can be distinguished from *nkd1-R* and *Nkd1-W22* by susceptibility to *Hind*III digestion of the PCR product produced by primer pair 1/2. The *Ds* insertion allele was detected by PCR with *Ds*-specific primer 3 and gene specific primer 1. (B) Ears derived from the designated cross segregated 3:1 for WT:mut. 12WT kernels and 12 mutant kernels were genotyped. (C) Genotyping for 12 WT and 12 *nkd* kernels. All the mutant kernels inherited *nkd1-R*, as indicated by lack of *Hind*III digestion of the maternal allele, and *nkd1-Ds* as indicated by amplification with the *Ds*-specific primer 3. All the WT kernels inherited either the *Nkd1-B73* maternal allele, the *Nkd1-W22* paternal allele or both.

Supplemental Figure 2. Endosperm phenotype of a *nkd1-Ds* and *nkd2-Ds0297* double mutant. **(A)** Histological section of a nearly mature kernel showing a phenotype similar to the original *nkd1-R; nkd2-R* mutant. The multiple layers of peripheral cells are highly vacuolated rather than showing the dense cytoplasm characteristic of normal aleurone cells.

(B) Increased magnification of inset in (A). SE, starchy endosperm; P, pericarp; "al", abnormal aleurone cells. Size bars = 100 μ m.

Supplemental Figure 3. Laser capture microdissection (LCM) of aleurone (AL), and starchy endosperm (SE) cells.

B73 WT and *nkd* mutant kernels (in B73 background) were collected at 15DAP, fixed and paraffin embedded before sectioning and LCM. **A-D** depict sections of B73 WT kernels before (**A**, **C**) and after (**B**, **D**) capture of aleurone (**A**,**B**) and starchy endosperm cells (**C**,**D**). **E**, **F**, **G** and **H** show *nkd* mutant sections before (**E**, **G**) and after (**F**, **H**) capture. Captured cells are denoted by arrows. Scale bars represent 100μm.

Supplemental Figure 4. The IDD protein family in maize.

Gene sequences were identified by searching the reference maize genome B73 v.2 with BLASTP using the IDD region of ID1 as a query. Protein sequences were aligned with ClustalW and the phylogeny was produced with MEGA4 using default parameters of the UPGMA method.

Marker	Forward primer;	Position on	Mapping	Maker Type	No.
	Reverse primer	IBM7 (cM)	Population		Recombinant
IDP7746 ^a	CTCGTACCGAGCTATCACCC;	52.8	H99xnkd F2	dominant	15/120~30/120 ^b
	CAAGTTAGGAGCCGTCAAGC				
491 18-	CAGCTAAAAGTGGGAGCGCGC;	nd ^c	H99xnkd F2	dominant	11/218~22/218
7h99	TGCTAGTGCTAGTGCTACCTAT				
190B15-6,7	ACGTGCCTCTGACATGTGGGTCAC;	nd	H99xnkd F2	dominant	16/338~32/338
	CCGATCTCTTGCGATGCATCGAG				
190B15-3,2	CACTTGCACCTATCCAAAATTCTCT;	nd	H99xnkd F2	dominant	2/118~4/118
	TGTCTCCGGTGCTCTTAATGATG				
266H09-	CGTGAGCTGGACATTTTACAG;	nd	H99xnkd F2	codominant	5/328
9,10	GTGCATACGGGTCTTCATAGTAC				
nkd1					
position					
166l20-1,5	AGAACGAGAAGGGGACCTCATAA;	nd	H99xnkd F2	codominant	2/332
	TCCCTCCATTCCATTGATTAAGATG				
IDP1612	AATTGCACATAACAGAGGCG;	65.9	H99xnkd F2	codominant	2/120
	CTCTTCCAATCGGGTTTGC				
IDP668	GCTCCGAACTTTGAAAGAGG;	67.3	H99xnkd F2	codominant	2/124
	CGCCGTAATTTACAACCAGC				
IDP7439	ATGCTTCTCATCAGGTTGGG;	73.6	H99xnkd F2	codominant	3/122
	TGATCTCACTCGACACAGGC				
IDP2485	GAGCTGTGCATTCAAACACG;	75.4	H99xnkd F2	codominant	7/124
	GAGCAGCATCTCCGAGTACC				

Table S1. Marker data for *nkd1* positional cloning on chromosome 2.

^a Information on IDP makers comes from Fu et al. 2006. ^b Because of the dominant nature of the marker, heterzygotes could not be distinguished from homozygotes. Therefore a range of possible recombinant frequencies is presented. ^c nd: not determined

Maker	Forward primer;	Position on	Mapping	Maker Type	No.
	Reverse primer	IBM7 (cM)	Population		Recombinant
IDP3853 ^a	AATCTGCGCAATCCATAACC;	65.5	H99xnkd F2	codominant	38/92
	CTCTCGCTTGTTTCTGTAGCC				
IDP8518	CTTGGTGAAGGTCTCGAAGC;	65.5	Mo17xnkd F2	codominant	8/72
	ACCTGTACCTGACCGTGGG				
IDP1978	ACGACCGAATGTTGCTAAGG;	71.4	H99xnkd F2	codominant	40/122
	TGGCAGAGTGATCTTTGTCG		(Mo17xnkd F2) ^b		(8/78)
IDP8526	GAAGGCCTACGACATGAACC;	74.4	H99xnkd F2	codominant	11/330
	TGGTAGTCCTGGAAGTTGGC				
nkd2					
position					
IDP8334	CTCAACCAAGAGAGCGTGC;	76.4	H99xnkd F2	codominant	6/328
	GAGATGATTCTCCAGGCTGC		(Mo17xnkd F2)		(6/76)
IDP250	TGGGAACAATTCTCCAAACC;	92.1	H99xnkd F2	codominant	9/90
	AAGAGGCACTCCAACATTCC				
IDP7345	CGGTGACTGCCTACATTGG;	99.8	Mo17xnkd F2	codominant	20/70
	AGCTCTTCACAGGCAGAAGC				

 Table S2. Marker data for *nkd1* positional cloning on chromosome 10.

^a Information on IDP makers come from Fu et al. 2006 ^b In several cases, multiple populations were used. The secondary population and corresponding recombination data are shown parenthetically.

Primer	Sequence	Use
491118-7h99f	CAGCTAAAAGTGGGAGCGCGC	Mapping
491118-7h99r	TGCTAGTGCTAGTGCTACCTAT	Mapping
190B15-6	ACGTGCCTCTGACATGTGGGTCAC	Mapping
190B15-7	CCGATCTCTTGCGATGCATCGAG	Mapping
266H09-9	CGTGAGCTGGACATTTTACAG	Mapping
266H09-10	GTGCATACGGGTCTTCATAGTAC	Mapping
166120-1	AGAACGAGAAGGGGACCTCATAA	Mapping
166120-5	TCCCTCCATTCCATTGATTAAGATG	Mapping
2ZNF-Xba1*	acgt <i>tctagA</i> TGGCATCGAATTCATCGGCG	GFP fusion
2ZNF-BamH1*	tgac <i>ggatcc</i> TGGCATCCTGCCTCCGTTGAAG	GFP fusion
10ZNF-Xba1*	acgt <i>tctagA</i> TGGCGTCGAATTCACCGGCG	GFP fusion
10ZNF-BamH1*	tgac <i>ggatcc</i> TGGCATCCTGCCTCCATTGAAG	GFP fusion
10ZNF3EF-Avr2*	agg <i>cctagg</i> GAGGGACAGCTTCATCACG	RNAi
10ZNF3ER-Asc1*	tcaggcgcgccTCATGGCATCCTGCCTCCA	RNAi
10ZNF3EF-Xma1*	tca <i>cccggg</i> GAGGGACAGCTTCATCACG	RNAi
10ZNF3ER-Spe1*	aggactagtTCATGGCATCCTGCCTCCA	RNAi
291F22-5	CATATATGAGTCTGCGGGTG	RT PCR
291F22-7	TGCTGCCGCAGATGTCGGCGACA	RT PCR
291F22-8	TCGGTCATGGCATCCTGCCTCCG	RT PCR,
		genotyping
2ZNF-5	GATTCCGGTCGTGCATGCACACTGC	RT PCR
2ZNF-8	CTGTGTGACATGGAGCACGAGGT	RT PCR
10ZNF-12	TACCGCTGCGACTGCGGCACGC	RT PCR
10ZNF-13	AGGCTTGTTGGCCTGCAGCTGAA	RT PCR
10ZNF-17	CGACATGGCGGAGCGCGAGGG	RT PCR
10ZNF-2	TCTGTCATGGCATCCTGCCTCCA	RT PCR
Nkd2F209	CTCTGACTAATGGAGCAGTAAGCTG	RT PCR
Nkd2R317	CAACAAGAACGAGACCAGCAGAAT	RT PCR

Table S3. PCR primers used in this study

VP1-RT3	CTTCAGATAAGCGGCAGGG	RT PCR
VP1-RT4	CCAAAACCTGTACCGCATG	RT PCR
Waxy GK-1	CCAGTTCAAATTCTTTTAGGCTCACC	RT PCR
2ZNF-4	TATCTTATCCGTCGATGCGTTG	Genotyping
JS-R01	GTTCGAAATCGATCGGGATA	Genotyping

* Additional sequences were written in lower case and restriction enzyme sites are *italic*.

SUPPLEMENTAL METHODS

Kernel Genotyping

For the genotyping shown in Supplemental Figure 1, 12 WT kernels and 12 mutant kernels from a cross between *nkd1-R/+; nkd2-R/nkd2-R* in B73 background and *nkd1-Ds/+; +/+* in W22 background were genotyped. Four different progeny genotypes of *Nkd1* locus were identified by two different PCR reactions and following *HindIII* digestion for one of them. WT *Nkd1-B73* was distinguished from *nkd1-R* and *Nkd1-W22* by susceptibility to *Hin*dIII digestion of the PCR product of a primer pair 2ZNF-4 and 291F22-8. The nkd1-*Ds* allele was detected by PCR with *Ds* specific primer JS-R01 (Ahern et al., 2009) and gene specific primer 2ZNF-4.