
Extended Experimental Procedure: Model

Initial assumptions

The model is based on a set of simple assumptions and their immediate logical derivations are as

follows (all the elements in the model are shown in a schematic manner in Figure S1):

1) Fitness, as measured by cell growth in defined time in the experimental study, is governed

by N (N > 1) independent pathways (e.g. those governing different processes such as energy

production, DNA replication, mitosis, etc.).

2) Given the fact that aneuploidy affects the expression of hundreds of genes across the genome

thus likely alters many components of each individual pathway, the activity of each pathway is

affected by aneuploidy, encompassing diverse karyotypes, as a random process.

3) Because any karyotype change could encompass gene expression changes that either increase

or decrease a pathway activity, the ensemble effect of aneuploidy on a pathway is a random

variable. Based on central limit theorem applied to these random variables, the distribution of

activity of pathway i across karyotypes assumes a 1D normal distribution having mean mi and

width (standard deviation) σi.

4) Assuming that i-th pathway activity of the euploid genome has been selected for optimal

fitness under the present stress-free condition, the mean of the 1D normal distribution (mi) corre-

sponds to the mean activity of the euploid distribution.

5) The total pathway activity that defines growth fitness is a product of the activity distribu-

tions of all N pathways, represented by the multivariate normal distribution with the maximum

at the point m = {m1,m2, . . . ,mN} in the N -dimensional space, corresponding to the maximal

fitness of the euploid in the absence of stress (Figure S1A). Fitness of aneuploid genomes, by

contrast, due to sub-optimal activity of the affected pathways, corresponds to points away from

m, in line with observations that under optimal growth conditions, aneuploids are in general less

fit than euploid (22,33,44) (Figure S1A)

6) The effect of a random stress condition, defined by type k and magnitude l, is represented

by a random shift of maximum from point m to mk,l, the distance between which reflects the

modulation necessary in the affected pathway activities in order to regain maximal fitness (Figure

S1B).

7) Normalized cell growth, our measure of fitness, is defined as G = 1 − (∆d)2, where ∆d

denotes the Euclidean distance in the N -dimensional space from the activity position of a given
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aneuploidy karyotype to point m (without stress) or mk,l (under stress). Thus, for euploid without

stress, ∆d = 0 and Gmax = 1. Aneuploidy and stress independently impair fitness as ∆d > 0, and

thus G < 1.

Mathematical Background

The critical assumption of our approach is to consider stress and aneuploidy as random statistical

processes forcing the cell population to drift from their optimal fitness positions (m under the

stress-free condition; mk,l under stress conditions), either by stress or by aneuploidy or both.

To model the effect of random stress, values Ii,S (positive or negative) which represents the

activitiy of the i-th pathway needs to be modulated to reach the optimal fitness are introduced.

The vector IS = {I1,S , I2,S , . . . , IN,S} with length l and direction k determines the shift of the

optimal fitness position from m to mk,l, so that IS = mk,l − m. We define stress adaptation

margin as a norm of this vector, l = ∆dS = ‖IS‖, so that

(∆dS)2 =
N∑
i=1

I2i,S . (1)

Reuse the above reasoning for aneuploidy effect, and replace the shift required for adaptation

to stress by the shift caused by gene dosage alterations, we can similarly define the fitness deficit

caused by aneuploidy. Then the joint effect of stress and aneuploidy can be expressed as:

(∆dS,A)2 =
∑
i

I2i,S,A, Ii,S,A = Ii,A + Ii,S . (2)

where Ii,A are distributed normally across the pathways/dimensions.

Now we can introduce a relation between the growth fitness G and the joint effect of stress

and aneuploidy ∆dS,A. We expect and verify that many functions G(∆d) with an appropriate

behavior (a smooth and monotonically decreasing function with G = 1 at ∆d = 0) will yield the

observed trend in our experimental data. Here, G = 1− (∆d)2 is used, with the assumption that

for ∆d > 1 the cells do not survive and are removed from the calculation. Thus, for aneuploids

under the stress we find the growth fitness

GS,A = 1− (∆dS,A)2, (3)

and calculate r as log2 of the ratio of growth fitness between an aneuploid and the euploid (both

under the same stress):

r = log2
1− (∆dS,A)2

1− (∆dS)2
, (4)

where ∆dS,A,∆dS < 1.
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Simulations

To verify the predictions of the model and compare them to the experimental observations we

performed a set of simulations.

The aneuploids were generated as points in the N -dimensional space by pulling a random

vector from multivariate normal distribution with zero mean and the covariance matrix equal to

the N × N unit matrix IN times standard deviation a and divided by the dimension number

(a/N)IN . The division by N is required to compensate for the fact that the mean of norm of

random vectors pulled from the abovementioned distribution is proportional to N . The average

size of these random vectors is set to the value a corresponding to the mean aneuploidy effect

under the stress-free condition. The stresses were generated as vectors in the N -dimensional space

with the magnitude l within the range {0, lmax} and randomly distributed direction (type) k.

The simulated data sets for each value of l were used to compute the absolute value of mean

|µ| and the standard deviation σ of r, and then the linear regression was performed on these

values. The results shown in Figure 1G were generated for the parameters lmax = 0.9, a = 0.3,

and N = 8, 16, 24, 48, 96, and compared to the experimental data on the yeast strains.

In the analysis of the cancer cell lines data we could not use the normalization procedure as

the data sets do not contain the normal (euploid) cell lines. In this case instead of log2 ratio r we

used the logarithm of the absolute growth rate GS,A defined in (3) and computed |µ| and σ. The

corresponding linear regression results are shown in Figure 2D for the same parameter values as

in Figure 1G.

Additional simulations were performed to demonstrate the evolution trap method validity. To

this end we selected N = 24, and generated 1000 aneuploids with a = 0.3. For a single randomly

directed stress X with the magnitude |X| = 0.9, we selected top 5% of the survived anuploids

with highest relative growth rates (Figure 3A,B). Then we put these selected strains under no

stress conditions and found that all of them predictably grew worse than the euploid (Figure 3B).

It appeared that under action of the opposite stress Y = −X, all these strains died, while for a

stress of the same magnitude but with a random direction we obtained the whole spectrum of the

growth rates compared to the euploid strain (Figure 3B).
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