Supplemental Fig. S1. Mass Spectrometry data workflow and protein acceptance criteria.

Supplemental Fig. S2. GO annotation and proteins over- and under-represented in DT40 lysate.

A) Pie chart showing the GO cellular components classification of DT40

B) Proteins under-represented in DT40 compared to the *Gallus gallus* SwissProt proteome

Description	Count [%]	Ref. Count [%]	Count	Ref. Count	Raw p-value	FDR p-value
cellular_component	73.38	89.85	306	2143	7.29E-28	3.99E-24
intrinsic to membrane	6.95	22.39	29	534	4.20E-20	3.28E-17
integral to membrane	6.95	21.3	29	508	4.17E-18	1.14E-15
extracellular region	2.16	12.87	9	307	5.62E-17	1.28E-14
membrane	17.75	33.88	74	808	9.93E-16	2.05E-13
membrane part	12.47	25.83	52	616	2.70E-13	4.62E-11
plasma membrane	5.04	14.68	21	350	1.18E-11	1.90E-09
cell periphery	6.24	15.51	26	370	2.92E-10	4.31E-08
nucleus	21.1	33	88	787	3.29E-09	4.61E-07
intracellular membrane-bounded organelle	34.53	46.96	144	1120	1.14E-08	1.52E-06
membrane-bounded organelle	34.53	46.96	144	1120	1.14E-08	1.52E-06
extracellular matrix	0	3.35	0	80	1.58E-07	1.96E-05
proteinaceous extracellular matrix	0	3.1	0	74	5.21E-07	5.82E-05
extracellular region part	1.68	6.16	7	147	1.98E-06	2.04E-04
chromosomal part	0.96	4.07	4	97	5.37E-05	3.65E-03
chromosome	1.44	4.86	6	116	5.40E-05	3.65E-03
cell junction	0.72	3.4	3	81	1.41E-04	8.45E-03
cell	66.19	73.5	276	1753	1.60E-04	9.14E-03
cell part	66.19	73.5	276	1753	1.60E-04	9.14E-03
extracellular matrix part	0	1.59	0	38	6.32E-04	2.91E-02
chromatin	0.24	2.1	1	50	7.13E-04	3.20E-02
synapse	0.24	2.1	1	50	7.13E-04	3.20E-02
plasma membrane part	2.16	5.12	9	122	8.39E-04	3.70E-02

C) Proteins over-represented in DT40 compared to the *Gallus gallus* SwissProt proteome

Description	Count [%]	Ref. Coun	Count	Ref. Coun Raw p-value	e FDR p-valu
ribosome	7.91	1.34	33	32 <4.90E-324	<4.90E-324
virion	3.12	0.13	13	3 <4.90E-324	<4.90E-324
virion part	3.12	0.13	13	3 <4.90E-324	<4.90E-324
viral capsid	2.88	0.04	12	1 <4.90E-324	<4.90E-324
cytosolic large ribosomal subunit	1.68	0.25	7	6 <4.90E-324	<4.90E-324
proteasome core complex	1.68	0.13	7	3 <4.90E-324	<4.90E-324
clathrin coat	1.2	0.13	5	3 <4.90E-324	<4.90E-324
proteasome core complex, alpha-subunit complex	0.96	0.08	4	2 <4.90E-324	<4.90E-324
proton-transporting ATP synthase complex, catalytic core F(1)	0.96	0.04	4	1 <4.90E-324	<4.90E-324
chaperonin-containing T-complex	0.72	0	3	0 <4.90E-324	<4.90E-324
clathrin coat of coated pit	0.48	0.04	2	1 < 4.90F-324	<4.90E-324
clathrin coat of trans-Golgi network vesicle	0.48	0	2	0 <4.90E-324	<4.90E-324
clathrin vesicle coat	0.48	0	2	0 <4 90F-324	<4 90F-324
sentin complex	0.40	0.04	2	1 90E-324</td <td><4.50E 324</td>	<4.50E 324
trans-Golgi natwork transport vesicle	0.40	0.04	2	0 <4 90E-324	<4.00E-324
trans-Golgi network transport vesicle	0.40		2	0 <4.90E-324	<4.30E-324
fatty acid bata avidation multionatume complex	0.40	0	1	0 <4.90E-324	<4.00E 224
natty actu beta-oxidation muttienzyme complex	0.24	0	1	0 <4.90E-324	<4.90E-324
mitochondrial ratty acto beta-oxidation multienzyme complex	0.24	0	1	0 <4.90E-324	<4.90E-324
mitochondrial proton-transporting ATP synthase complex, catalytic core F(1)	0.24	0	1	0 <4.90E-324	<4.90E-324
perikaryon	0.24	0	1	0 <4.90E-324	<4.90E-324
ribonucieoside-diphosphate reductase complex	0.24	0	1	0 <4.90E-324	<4.90E-324
ribosomal subunit	0.24	. 0	1	0 <4.90E-324	<4.90E-324
signal recognition particle receptor complex	0.24	0	1	0 <4.90E-324	<4.90E-324
ribonucleoprotein complex	10.07	2.98	42	71 1.27E-1	5 8.47E-15
ribosomal subunit	3.84	0.67	16	16 5.99E-1	3 3.87E-12
cytosolic part	4.32	1.05	18	25 2.44E-C	9 1.52E-08
cytosol	10.55	4.82	44	115 4.54E-0	8 2.76E-07
large ribosomal subunit	2.16	0.38	9	9 1.42E-0	7 8.34E-07
proteasome complex	2.16	0.38	9	9 1.42E-0	7 8.34E-07
cytosolic ribosome	2.64	0.55	11	13 2.32E-0	7 1.34E-06
macromolecular complex	29.5	20.46	123	488 7.79E-0	7 4.40E-06
cytoplasmic part	35.01	25.49	146	608 1.14E-0	6 6.41E-06
cytoplasm	52.28	42.22	218	1007 3.41E-0	6 1.89E-05
small ribosomal subunit	1.68	0.29	7	7 4.79E-0	6 2.61E-05
coated membrane	1.68	0.34	7	8 3.25E-C	5 1.71E-04
membrane coat	1.68	0.34	7	8 3.25E-0	5 1.71E-04
Golgi-associated vesicle	1.2	0.21	5	5 1.60E-0	4 8.00E-04
Golgi-associated vesicle membrane	1.2	0.21	5	5 1.60E-0	4 8.00E-04
proton-transporting ATP synthase complex	0.96	0.17	4	4 9.23E-0	4 3.99E-03
vesicle coat	0.96	0.17	4	4 9.23E-0	4 3.99E-03
intracellular non-membrane-bounded organelle	21.58	16.44	90	392 1.47E-0	3 6.21E-03
non-membrane-bounded organelle	21.58	16.44	90	392 1.47E-0	3 6.21E-03
proton-transporting two-sector ATPase complex	1.68	0.5	7	12 1.68E-0	3 7.07E-03
coated vesicle membrane	1.44	0.42	6	10 3.08E-0	3 1.28E-02
coated vesicle	1.68	0.55	7	13 3.10E-0	3 1.29F-02
proton-transporting two-sector ATPase complex, catalytic domain	0.96	0.21	4	5 3.98E-0	3 1.61F-02
AP-type membrane coat adaptor complex	0.72	0.13	3	3 5.31E-0	3 2.06E-02
clathrin adaptor complex	0 72	0.13	3	3 5.31F-0	3 2.06E-02
COPI coated vesicle membrane	0.72	0.13	3	3 5 31F-0	3 2.06F-02
COPI-coated vesicle	0.72	0.13	2	3 5 31F-0	3 2 06F-02
nhosphonyrijvate hydratase complex	0.72	0.13	2	3 5 315-0	3 2 06F-02
ovtoskeletal nart	9.72	6 27	20	152 5 70F-0	3 2 18F-02
of concreter part	5.55	0.57	55	132 3.70L C	

Supplemental Fig. S3. Non-specific binding proteins associated with ≥ 2 of 4 affinity resins: FLAG, Talon, Calmodulin and IgG sepharose. *A*) Pie chart showing GO_Cellular component annotation. *B*) GO_Molecular function annotation and *C*) Kegg pathway analysis. 'Other' represents proteins other categories with single protein entries. Data analysed using ProteinCenter. *D*) Overlap of proteins identified as top 150 abundant and the top 150 beadome.

Supplemental Fig. S4. PI5P4K2 α and β alignment. PI5P4K2 α has unique swissprot (spQ5F356) and trembl (trF1NKL5) accessions, both included in UniprotKB *Gallus gallus* database 2012. Highlighted in purple and blue are unique peptides to PI5P4K2 α and β respectively, and in yellow are conserved peptides identified in replicate SILAC-iPAC screenings. Green are positively charged residues where K and L indicate ends of peptides that can be quantified.

1 1 1	AAWVWVLG <mark>H</mark> NINELSNVPVPVML INELS <mark>H</mark> VQIPVML MAAPGTVASVMASKTKTKKKHFVVQKVKLFRASDPLLSVLMWGVNHSINELSHVQIPVML *****.* :****	23 13 60	F1NLK4 β F1NKL5 α Q5F356 α	subunit subunit subunit
24 14 61	MPDDFKAYSKIKVDNHLFNKENLPSRFKFKEYCPLVFRNLRERFGIDDQDYQNSVTRSAP MPDDFKAYSKIKVDNHLFNKENMPSHFKFKEYCPMVFRNLRERFGIDDQDFQNSLTRSAP MPDDFKAYSKIKVDNHLFNKENMPSHFKFKEYCPMVFRNLRERFGIDDQDFQNSLTRSAP	83 73 120	F1NLK4 F1NKL5 Q5F356	
84 74 121	VNSDSQGRCGARFLTTYDRRFVIKAVSSEDVAEMHNILKKYHQFIVECHGNTLLPQFLGM LANDSQARSGARFHTSYDKRYIIKTITSEDVAEMHNILKKYHQFIVECHGNTLLPQFLGM LANDSQARSGARFHTSYDKRYIIKTITSEDVAEMHNILKKYHQFIVECHGNTLLPQFLGM : .***.*.***** *:**:*::****************	143 133 180	F1NLK4 F1NKL5 Q5F356	
144 134 181	Y <mark>RLTVDGVETYMVVTRNVFSHRLTVHRKYDLKGSTVSREASDKEKAK</mark> DLPTF <mark>KDNDFLNE</mark> YRLTVDGVEIYMIVTRNVFSHRLSVYRKYDLKGSTVAREASDKEKAKELPTFKDNDFIND Y <mark>RLTVDGVEIYMIVTRNVFSHR</mark> LSVYRKYDLKGSTVAREASDKEKAKELPTFKDNDFIND ********* **:*********	203 193 240	F1NLK4 F1NKL5 Q5F356	
204 194 241	GQKLHVGEESKKNFLEKLKRDVEFLAQLKIMDYSLLVGIHDVDRAEQEEMEVEDRAEDEE GQKIHIDENNKRMFLEKLKKDVEFLAQLKLMDYSLLVGIHDVERAEQEEVECEENDGEDE GQKIHIDENNKRMFLEKLKKDVEFLAQLKLMDYSLLVGIHDVERAEQEEVECEENDGEDE ***:*: *:.*: ******	263 253 300	F1NLK4 F1NKL5 Q5F356	
264 254 301	CENDGLGGNPISSYGTPPDSPGNLLNYP <mark>RFFGPGEFDPSVDVYAMK</mark> SHDSAP <mark>KKEVYFMA</mark> GESDGTHPIGTPPDSPGNTLNSSLPLAPGEFDPAIDVYGIKSHESAPRKEVYFMA GESDGTHPIGTPPDSPGNTLNSSLPLAPGEFDPAIDVYGIKSHESAPRKEVYFMA *.** ********* ** :.****::***	323 308 355	F1NLK4 F1NKL5 Q5F356	
324 309 356	IIDILTPYDAKK XAAHAAK TVKHGAGAEISTVNPEQYSKR FNEFMSNILT 373 F1NI IIDILTHYDAKK XAAHAAK TVKHGAGAEISTVNPEQYSKR FLDFIANILT 358 F1NK IIDILTHYDAKK XAAHAAK TVKHGAGAEISTVNPEQYSKR FLDFIANILT 358 F1NK IIDILTHYDAKK XAAHAAK TVKHGAGAEISTVNPEQYSKR FLDFIANILT 405 Q5F3 ****** ******* ******* :*::**** :*::****	LK4 (L5 356	F1NLK4 β F1NKL5 α PI42A α	subunit subunit subunit

Supplemental Fig. S5. *A*. Fanconi anemia complementation group C *Gallus gallus* UniprotKB accessions alignment with peptides identified in both Calmodulin and IgG pulldowns replicate SILAC-iPAC screenings highlighted in green and IgG only in orange.

1 1 1	MAQDTTVPKLNFKFWLDKAIEWGQDTT MAQDTTVPKLNFKFWLDKAIEWGQATT MAQDTTVPKLNFKFWLDKAIEWGQATT	LESQKDVCLH LESQKDVCLH LESQKDVCLH	LPQLQEFLHQTYETLKHMNSI LPQLQEFLHQTYETLKHMNSI LPQLQEFLHQTYETLKHMNSI *****	AA 60 AA 60 AA 60	Q5F3H0 <mark>Q60GM0</mark> F1NYH1
61 61 61	IQQFPLIGQLLGRLCWNPFVVGYDESQ IQQFPLIGQLLGRLCWNPFVVGYDESQ IQQFPLIGQLLGRLCWNPFVVGYDESQ	KTLMWCLCCL KTLMWCLCCL KTLMWCLCCL	YSSEPQNPVELKANSWIRSLL(YSSEPQNPVELKANSWIRSLL(YSSEPQNPVELKANSWIRSLL(CH 120 CH 120 CH 120 CH 120	Q5F3H0 Q60GM0 F1NYH1
121 121 121	LLSSSKWERIEAETSTFISALGYTSAD LLSSSKWERIEAETSTFISALGYTSAD LLSSSKWERIEAETSTFISALGYTSAD	YYCHLVENIV YYCHLVENIV YYCHLVENIV	SSLVTELRENQFNELNIQERIS SSLVTELRENQFNELNIQERIS SSLVTELRENQFNELNIQERIS	SV 180 SV 180 SV 180	Q5F3H0 Q60GM0 F1NYH1
181 181 181	SRVNAVSLFCLPLITLPDLTPLLETLL SRVNAVSLFCLPLITLPDLTPLLETLL SRVNAVSLFCLPLITLPDLTPLLETLL ********************************	LYHGGASKEI LYHGGASKEI LYHGGASKEI	LSSEFLEAVNDAVLKKKISLSH LSSEFLEAVNDAVLKKKISLSH LSSEFLEAVNDAVLKKKISLSH	240 25 240 25 240	Q5F3H0 Q60GM0 F1NYH1
241 241 241	AIFSLWHRHLPSLESATLSLLDQLTSL AIFSLWHRHLPSLESATLSLLDQLTSL AIFSLWHRHLPSLESATLSLLDQLTSL	QINSLEKVAC QINSLEKVAC QINSLEKVAC	VIKDSLLPQAASHPAIFR <mark>IVNI</mark> VIKDSLLPQAASHPAIFR <mark>IVNI</mark> VIKDSLLPQAASHPAIFR <mark>IVNI</mark>	21 300 21 300 21 300	Q5F3H0 <mark>Q60GM0</mark> F1NYH1
301 301 301	FKNALLETDGAPEVMTIIQVFIQLFIQ FKNALLETDGAPEVMTIIQVFIQLFIQ FKNALLETDGAPEVMTIIQVFIQLFIQ	VQQNENKQHK VQQNENKQHK VQQNENKQHK	FPLKAYFPHHHQPLVIALLRRI FPLKAYFPHHHQPLVIALLRRI FPLKAYFPHHHQPLVIALLRRI	PF 360 PF 360 PF 360	Q5F3H0 <mark>Q60GM0</mark> F1NYH1
361 361 361	ELPSTHWLQHLKHISDTLKSIVEDTNV ELPSTHWLQHLKHISDTLKSIVEDTNV ELPSTHWLQHLKHISDTLKSIVEDTNV ********	SSFADLYEIW SSFADLYEIW SSFADLYEIW	FLVACFGEWLDIAAEQLMKAAV FLVACFGEWLGYCTKQLMKAAV FLVACFGEWLDIAAEQLMKAAV	VA 420 VA 420 VA 420 VA 420	Q5F3H0 <mark>Q60GM0</mark> F1NYH1
421 421 421	PDALLWLLAFYYCPQNENQQR <mark>TQTMVE</mark> PDALLWLLAFYYCPQNENQQR <mark>TQTMVE</mark> PDALLWLLAFYYCPQNENQQR <mark>TQTMVE</mark>	SQAVYSRLMM SQAVYSRLMM SQAVYSRLMM *******	LYNRTVLSFGDLQASVNNAAD LYNRTVLSFGDLQASVNNAAD LYNRTVLSFGDLQASVNNAAD	TE 480 TE 480 TE 480	Q5F3H0 Q60GM0 F1NYH1
481 481 481	QCHTQCLITHLLTNFLLFSSGGHMIAQ QCHTQCLITHLLTNFLLFSSGGHMIAQ QCHTQCLITHLLTNFLLFSSGGHMIAQ	EFISHITETT EFISHITETT EFISHITETT	DMSKEVCSLLIRTAYRIKHNG(DMSKEVCSLLIRTAYRIKHNG(DMSKEVCSLLIRTAYRIKHNG(E 540 E 540 E 540	Q5F3H0 Q60GM0 F1NYH1
541 541 541	NQRTVKLLNELLQKLAVEV 559 Q NQRTVKLLNELLQKLAVEV 559 Q NQRTVKLLNELLQKLAVEV 559 F	5F3H0 60GM0 1NYH1	Q5F3H0_CHICK Q60GM0_CHICK F1NYH1_CHICK		

Supplemental Fig. S6. Expanded PIP4Kin2 STRING network (+10) to identify potential missing interactors in our lists

Key

Supplemental Fig. S8. All FLAG interactors based on experimental evidence only.

