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SUPPLEMENTARY METHODS 

 

In silico screening 

For the initial round of virtual screening, the crystal structure of the ternary complex between Pygo1 

PHD, BCL9 HD1 and H3K4me2 (2VPE; (1) was prepared for docking studies using the Schrodinger 

molecular modelling suite of software (http://www.schrodinger.com). This involved solvent removal, 

valence and charge assignment, addition of hydrogen atoms, orientation of ambiguous groups (e.g. 

amide groups of asparagine and glutamine) and restrained minimization to relieve residual 

crystallographic strain. To investigate targeting of individual histone-binding pockets, two docking 

grids were generated, one against the K4me pocket and one against the A1 pocket. The K4me2 pocket 

grid has a 12 Å inner box centred on T3 and K4me2, with a hydrogen bond constraint set against D352 

carboxyl, and a hydrophobic constraint set for the aromatic cage between W366 and Y341. The A1 

pocket grid has a 12 Å inner box centred on A1 and with hydrogen bonding constraints to L382, E385 

and A388 peptide carbonyl groups, T383 hydroxyl group and E360 carboxyl group. A library 

containing 225K compounds derived from property and substructure filtering of commercial supplier 

catalogues had been compiled previously and prepared for docking at MRCT. These were docked 

flexibly using Glide (2) in a hierarchical virtual screening workflow, involving three successive rounds 

of docking with increasing levels of sophistication (HTVS, followed by SP, followed by XP modes) 

such that only the best compounds from each round were fed into the next. When docking to the K4me 

pocket, both constraints were required for compounds to be retained. When docking to the A1 pocket, 

>1/5 constraints was required. This resulted in 130 compounds shortlisted against the K4me pocket and 

280 against the A1 pocket, from which 313 were eventually purchased. A single series of three A1 

pocket compounds was subsequently confirmed as binders by NMR (see main Fig. 2A, B), 

corresponding to a hit rate of 0.96%. 
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For the second round of virtual screening, aimed at identifying larger compounds occupying the full 

site (i.e. bridging A1 and K4me pockets), the docking grid was centred on the first 7 residues of the 

H3K4me2 15-mer peptide in the ternary crystal structure (1), and the inner box was expanded to 14 Å. 

Hydrogen bonding constraints were set for L382, E385, A388 and Q354 peptide carbonyl groups, 

D352 and E360 carboxyl groups, T383 and Y379 hydroxyl groups, and L358 peptide backbone 

nitrogen. A hydrophobic constraint was set in the vicinity of I357, as occupied by the methyl group of 

histone H3T3. From a larger 850K updated version of the commercial library at MRCT, 154K 

compounds with molecular weight 450–550 were docked into this grid using Glide in a hierarchical 

virtual screening workflow as outlined above, with requirement to fulfil >3/10 constraints. 47 of the top 

scoring 100 were purchased, resulting in 6 new compounds with detectable though not improved 

binding (IS16–18 and IS28; Fig. S1), corresponding to a hit rate of 12.8%.   

 

For the third round of screening, the structure of the paralog PHD-HD1 complex (2XB1; (3) was used, 

and the strategies for docking and shortlisting were varied. The structure was prepared for docking as 

outlined above, and alignment to the structure of the ternary complex (1) allowed superimposition of 

the histone peptide onto the 2XB1 structure, to achieve comparable definition of the docking grid, with 

a 12 Å inner box and centroid based on the ARTKme2 peptide. To limit solubility issues encountered 

during the previous round of screening, the commercial library of 850K compounds was filtered to 

600K based on a minimum solubility of 10 µM, as calculated using Pipeline Pilot 8.0 (Accelrys, San 

Diego, USA; http://accelrys.com). These were docked into the Pygo2 grid without constraints, using 

Glide in HTVS mode to select the top 10K scoring species, which were then re-docked and re-scored 

using the more refined Glide SP method. The results were post-processed to identify those molecules 

capable of forming similar interactions to those observed in the ternary complex (1). 238 molecules 

were found to occupy both A1 and K4me pockets, forming at least one hydrogen bond in each and also 

forming a hydrogen bond to the peptide carbonyl of A343. Further manual shortlisting was based on 
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various criteria, including Glide ligand efficiency, structural diversity, similarity to compounds already 

screened and commercial availability. 99 compounds were purchased, 13 of which were confirmed to 

bind (IS5, IS8, IS12, IS14–15, IS19, IS21–23, IS25 and IS27), corresponding to a hit rate of 13.1%. 

IS19 appeared to be the strongest binder of the whole IS set, based on the magnitude of its CSPs (Fig. 

S2).  

 

Finally, a fourth round of compound purchase was undertaken, to build up the SAR of existing hits. 

This involved using a combination of substructure and similarity searching (Pipeline Pilot ECFP_4 

fingerprints) in the 850K commercial library, using each of the 13 binders from the third round of 

virtual screening as a query. Following manual inspection of the resultant hit lists, 30 were purchased, 

yielding 10 confirmed binders (IS4, IS6–7, IS9–11, IS13, IS20, IS24 and IS26). 

 

Processing of X-ray crystallographic data 

X-ray diffraction data were processed with Mosflm (4) and scaled with Aimless (5) (see Tables S2 & 

S3), and the structures were solved by molecular replacement with Phaser (6) based on 2XB1 (3), and 

refined with Refmac (7). The models were updated with Coot (8), and their stereochemistry was 

verified with MolProbity (9), and analyzed with the CCP4i programs (10).  

 

SUPPLEMENTARY FIGURE LEGENDS 

 

Fig. S1 

 

In silico hits interacting with PHD-HD1. (A) Structures of 25 IS compounds from the second to 

fourth rounds of refined in silico screens (yielding 29 hits), defining three chemical scaffolds (red, 
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green, and orange) in addition to that defined by IS1–3 identified in the first virtual screen (see main 

Fig. 2B).   

 

Fig. S2 

 

Heat-maps of IS hits. CSPs elicited by the IS hits shown in Fig. S1 were projected onto the PHD-HD1 

structure (2XB1), revealing different modes of binding to the histone-binding surface (see also main 

Fig. 2C–F). 

 

Fig. S3 

 

Heat-maps of selected benzimidazole hits. CSPs elicited by selected CF hits from group III (see main 

Fig. 4A) were projected onto the PHD-HD1 structure (2XB1), revealing two distinct binding sites 

within PHD-HD1 (the distal K4me pocket in its front face, and the benzothiazole cleft in its rear). Note 

that CF15 and CF18 (with extended N-alkyl side-groups) retain their interaction with the benzothiazole 

cleft, whereas those with short N-alkyl groups (CF14, CF16 and CF17) only weakly interact with this 

cleft (below the threshold used to generate these heat-maps), emphasizing that the K4me pocket is the 

primary binding site for the latter three benzimidazoles. V327 was note included in these heat-maps 

(due to its overlap with L383 in the assigned HSQC spectrum of this structure; Fig. 7A). 

 

Fig. S4 

 

NOESY spectra. (A) Double half-filtered 2D 1H-1H NOESY spectrum (250 ms NOE evolution time) 

from 13C-15N-labelled hPHD-GSG-HD1 (500 µM) probed with 5 mM CF16, annotated with 
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assignments to specific H-H contacts. Note that the multiplicity of the observed NOE correlation peaks 

was independent of whether 15N-decoupling pulses were applied in t1, indicating that all NOE transfer 

originates from 1H(12C), and not 1H(15N). (B) Double half-filtered 2D 1H-1H NOESY spectra for CF16 

(same spectrum as in A), compared to control spectra derived from protein-only (500 µM PHD-HD1 in 

deuterated aqueous phosphate buffer; middle panel) or CF16 only (5 mM, in deuterated aqueous 

phosphate buffer; right panel); boxed regions reveal intermolecular NOEs from the CF16-PHD-HD1 

complex that are absent in the two control spectra. Cross peak intensities were dependent on NOE 

mixing time (not shown), as expected for peaks deriving from NOE transfer.   

 

Fig. S5 

 

Compilation of restraints from NOESY spectra and CSPs. Top, unambiguous restraints with regard 

to CF16, derived from H-H intermolecular NOEs (including H5/H6 of CF16 to L381 Hδ and A332 

Hβ; an NOE from H5/H6 was unassigned, due to overlap of N338 Hα in the K4me pocket and A332 

Hα in the CF cleft); a, b, *, pairs of proton resonances that are unresolved in NOE spectra; #, pairs of 

prochiral or symmetry-related resonances that are not stereospecifically assigned; for each designated 

pair, no restraint violation energy was applied when either proton was within distance bounds. Bottom, 

list of ambiguous restraints, derived from CSPs more than one standard deviation (0.04 ppm) from the 

mean CSP for all residues (0.02 ppm) and >50% solvent exposed (see also main Fig. 7B). The 

orientation of CF16 within the K4me pocket, as shown in the NOE-based model (Fig. 6A), is favored 

by the docking simulations, given that it is consistently seen in 199/200 models. Note that this model 

implies proximity of the ethyl group of CF16 to W353 and the aromatic hydrogens of CF16 to D339 

Hα, however, the NOEs corresponding to an alternative orientation (with aromatic hydrogens of CF16 

in proximity to aromatic hydrogens on the protein, and the CF16 ethyl group in proximity of aliphatic 
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hydrogens on the protein) would not be resolvable in our NOESY spectra and, consequently, there are 

no modelling restraints to these centres. To test whether this lack of resolution of potentially decisive 

NOEs imposed a bias on the docking, these restraints were entered manually into the HADDOCK 

calculations, which however did not result in consistent clusters of docking poses and orientations. This 

argues against the presence of these H-H contacts.  

 

Fig. S6 

 

Interactions of histone H3 tail peptides with PHD-HD1. (A) Overlay of HSQC spectra of 40 µM 

15N-PHD-HD1 alone (black), and with 0.5 mM ARTKme2Q (red) and (B) corresponding heat-map, 

after projection of CSPs onto the PHD-HD1 structure, with front and rear views as shown in main Fig. 

4B. Note that the incubation of 40 µM 15N-PHD-HD1 with 0.5 mM histone H3 trimers (ART, 

TKme2Q) produced no detectable CSPs whatsoever, demonstrating complete lack of binding of these 

trimers, and defining the ARTKme2Q pentamer as the minimal PHD-interacting histone H3 tail 

peptide. (C) Overlay of HSQC spectra of 43.3 µM 15N-PHD-HD1 alone (black), and 21.6 µM 

15-mer H3K4me2 peptide (1) (red), i.e. at 2:1 stoichiometry, and (D) corresponding heat-map, as in 

(B). Note that although (A) and (C) are both recorded at conditions of 50% bound protein, the extended 

15-mer peptide produces mostly peak broadening (but very little CSPs) while the pentamer produces 

predominantly CSPs. Nevertheless, the comparison between the two heat-maps indicates that the two 

histone peptides, despite highly dissimilar binding affinities for PHD-HD1 (see main text), interact 

essentially with the same set of PHD residues in their cognate surface. Given the potential for an 

intramolecular interaction between T3 and T6 of the histone H3 tail, as seen in the crystal structure (1) 

(see main text), we tested whether this interaction also forms in solution. However, the Cα and Cβ 

chemical shifts from the 15-mer peptide are all within 0.2 ppm of random coil values (11), with the 
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exception of the single N- and C-terminal amino acids, which argues against residual structure in the 

free solvated peptide that might potentially affect binding entropy, relative to that of shorter constructs.  

 

Fig. S7 

 

Titrations of histone peptide and CF16 binding. (A) Assigned HSQC spectrum for the complex 

between PHD from hPygo2 (residues 327–387) and HD1 from hB9L (residues 235–263), as previously 

shown (3). (B, C) Titrations of 50 µM 15N-labelled PHD-HD1 alone (blue), and with increasing 

concentrations of (B) ARTKme2Q (red, no peptide; orange, 30 µM; green, 60 µM; blue, 120 µM; 

purple, 250 µM) or (C) CF16 (red, no peptide; orange, 600 µM; green, 900 µM; blue, 2200 µM; 

purple, 3200 µM); plotting of CSPs against ligand concentration (see main Fig. 3C) led to an estimated 

Kd of 528 ± 32 µM for the pentamer peptide, and of 7.3 mM ± 2.0 for CF16 (see Table S1). 

 

Table S1 

Affinities of CF compounds for PHD-HD1. Kd values for selected CF hits were derived from HSQC 

CSPs (either Δδ1H or Δδ15N/5, according to which perturbed the greatest) and are recorded as the 

median value obtained for 5–7 different resonances (see Fig. 3A); SE, spread of values measured. 

 

Table S2 

Data collection and refinement statistics for 4UP5 (PHD-HD1-CF4) 

 

Table S3 

Data collection and refinement statistics for 4UP0 (PHD-HD1-H3K4me2K9ac) 
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Table S1 Miller et al. 

CF1 CF3 CF4 CF6 CF7 CF16 CF18

Kd (mM) 3.1 4.6 2.5 4.3 2.9 7.3 14.7

SE (mM) 1.3 1.6 0.5 2.1 0.6 2.0 5.3



Table S2 Miller et al. 

PHD-HD1-CF4  (4UP5)    
Beamline Diamond, I04  
Strategy (Low Resolution) 90°, !" 0.5o   
Strategy (High Resolution) 90°, !" 0.5o   
Space Group P41212   
     a, b, c (Å) 54.27, 54.27, 57.65  
     !, ", # (°) 90, 90, 90   
Resolution (Å) 31.95 - 1.65 A (1.68-1.65)a  
Rmerge (%)b 9.5 (141.1)   
I/$(I) 16.7 (2.1)   
Mn(I) half-set correlation CC(1/2) 0.999 (0.722)  
Completeness (%) 100 (100)  
Multiplicity 13 (13.7)   
Complexes in A.U.  1   
Refinement    
Resolution (Å) 39.52 - 1.65 (1.693-1.650) 
Number of reflections 10,327   
Test set size (%) 4.8   
Rwork(%) 18.190 (26.8)  
Rfree(%) 21.117 (32.1)  
Number of atoms (non-H) 692   
Residues (PHD/HD1) 327-387/235-263  
<B> (Å2) 28.805   
Rmsd    
     Bond Length (Å) 0.022   
     Bond Angle (°) 2.110   
Ramachandran plot    
     In favoured regions (%) 98.8   
     In allowed regions (%) 0   
     Outliers (%) 1.2  (S349c)  
aHighest resolution shell (in Å) shown in parentheses 
bRmerge = %hkl |Ihkl - <Ihkl>|/%hkl Ihkl   
cS349 is present in an unusual conformation (the electron density is clear) due to the 
adjacent cysteines (333/350) that form part of the second Zn2+-binding site 
 

 



PHD-HD1-H3K4me2K9ac  (4UP0)    
Beamline ESRF, ID29 – remote data collection  
Strategy 180°, !" 0.25o   
Wavelength (Å) 0.97621   
Space Group P41212   
     a, b, c (Å) 53.91, 53.91, 57.94  
     !, ", # (°) 90, 90, 90   
Resolution (Å) 39.47 - 1.28 A (1.3-1.28)a  
Rmerge (%)b 8.9 (154.5)    
I/$(I) 13 (2.4)   
Mn(I) half-set correlation CC(1/2) 0.998 (0.753)  
Completeness (%) 99.9 (99.6)  
Multiplicity 11.6 (12.3)   
Complexes in A.U.  1   
Refinement    
Resolution (Å) 39.47 - 1.28 A (1.312-1.279) 
Number of reflections 21,476   
Test set size (%) 5.1   
Rwork(%) 13.797 (25.5)  
Rfree(%) 16.611 (29.9)  
Number of atoms (non-H) 789   
Residues (PHD/HD1/Histone H3) 327-387/235-263/1-15   
<B> (Å2) 21.159   
Rmsd    
     Bond Length (Å) 0.021   
     Bond Angle (°) 1.974   
Ramachandran plot    
     In favoured regions (%) 98.8   
     In allowed regions (%) 1.2 (S349c)   
     Outliers (%) 0  
aHighest resolution shell (in Å) shown in parentheses 
bRmerge = %hkl |Ihkl - <Ihkl>|/%hkl Ihkl   
cS349 and R344 are present in an unusual conformation (the electron density is clear) 
due to the adjacent cysteines (333/350) that form part of Zn2+-binding sites 

 
 Table S3 Miller et al. 




