
1 
	  

Supplementary Data for  
“GRASP: Guided Reference-based Assembly of Shorted Peptides” 

Cuncong Zhong, Youngik Yang, and Shibu Yooseph* 
Informatics Department, J. Craig Venter Institute, La Jolla, CA 92037, USA. 
*Corresponding author 

A. Parameters 
All experimental results were generated using the default set of parameters [for NCBI BLAST (BLASTP 
and PSI-BLAST) suite (1,2), FASTM (3), and GRASP], or otherwise detailed as follows. The 
performances of all programs were tested under different E-value cutoffs, ranging from 10-10 (high 
specificity) to 10 (high sensitivity), to generate the ROC curves shown in the main text and in this 
supplement. PSI-BLAST was run with 3 iterations. FASTM was run using the BLOSUM62 scoring 
matrix with gap open and extension penalties of -11 and -1, respectively (using the ‘-s BL62’ option), to 
match the settings used by the other programs.  

The GRASP default parameters were set as the follows. For seeding, the GBMR10 alphabet and a seed 
length of 6 amino acids were used. These seeding parameters were chosen based on their overall 
performance in terms of selectivity and sensitivity [see Figure 2 in reference (4)]. The actual alignment 
score of the seed pair was computed under the original amino acid alphabet. And such an alignment score 
was further used to filter low-similarity seed pairs (default alignment score cutoff a*6.0 , where a  is the 
average of the matching scores for the same type of amino acids, i.e. scores in the diagonals, in the given 
scoring matrix). For the assembly module, 10 amino acids ( 10=l ) were required as the minimum overlap 
to define the supporting reads r  of a given path p . Also, at least 3 supporting reads were required to 
extend a path. The score drop-off threshold used to terminate the extension is 25 (bit-score). For the 
alignment module, the BLOSUM62 matrix and a gap open and gap extension penalty of -11 and -1, 
respectively, were used for all experiments. The same set of Karlin-Altschul statistics (5) parameters in 
the BLAST suite was used in GRASP to compute E-values. The band size for the alignment is 40. 

B. GRASP pseudo-code 
The GRASP algorithm contains two major components. The first component (GRASP_MAIN) identifies 
the initial seeds and issues the extension calls in both left and right directions. The second component 
(EXTEND) extends the path with the best existing maximal extension sequence in the priority queue, and 
reinserts the newly identified maximal extension sequences, along with their corresponding assemblies, 
back to the priority queue based on their coverages (the number of supporting reads). The pseudo-codes 
for both components are detailed in this supplement. For notations please refer to the main text. 



2 
	  

GRASP_MAIN(Q , R ) 

←∑* user specified reduced alphabet 
build suffix array SA  on R ; build suffix array rSA  on )(Rrev  
build hash table H  using all n  where n  is a k -long substring of some Rr∈  
// the key of H  is *∑n  (a k -mer in alphabet *∑ ), and the value is the set N  of k -mers in alphabet ∑ , where for  
// each Nn∈  we have *)( ∑= nnreduced   
for each m  where m  is a k -long substring of Q  do: 

mq←  
for each )]([ mreducedHn∈  do: // )()( mreducednreduced =  indicates a seed match in *∑  

np←  
// extension to the C-terminus (right extension) 
align q  and p  // tradition Needleman-Wunsch algorithm 

←DPT  dynamic programming table of the alignment between q  and p  
←RA alignment structure constructed on (right,q , p , DPT , SA , rSA ) 

Ø←RPQ  // a priority queue that holds all possible extensions 
ENQUEUE( RR APQ , ) // insert RA  into priority queue RPQ  
while Ø!=RPQ  do: 

call EXTEND( RPQ ) 
endwhile 
// extension to the N-terminus (left extension) 
align )(qrev  and )(prev  // traditional Needleman-Wunsch algorithm 

←DPrT  dynamic programming table of the alignment between )(qrev  and )(prev  
←LA alignment structure constructed on (left, )(qrev , )(prev , DPrT , rSA , SA ) 

Ø←LPQ  // a priority queue that holds all possible extensions 
ENQUEUE( LL APQ , ) 
while Ø!=LPQ  do: 

call EXTEND( LPQ ) 
endwhile 
connect right and left extension paths if enough bridging reads are present 
output assembled paths and corresponding reads 

endfor 
endfor 
return 

 
 

	   	  



3 
	  

EXTEND( PQ ) 

←A DEQUEUE( PQ ) // take the alignment that has the highest priority in the queue 
// unpack the alignment information 

directionAdirection .← ; pAp .← ; qAq .←  
DPDP TAT .← ; SAASA .← ; rSAArSA .←   

←x  l -long suffix of p  // if lp <||  then take px =  
// search the reversed suffix array to determine valid supporting reads 

←]','[ hg  suffix array range returned by searching )(xrev  against rSA  
'' hmh←  // records the last successfully returned position 

1←lb ; lprb −← ||  // left and right bound for the binary search on the prefix length 
while rblb <  do: 

)
2

1( llbrbe +
+−

← -long suffix of p  

←],[ ba search )(erev  against ]','[ mhgrSA  
if ba ≤  do: // a valid range is returned means the suffix is in the database, search proceeds with longer suffix 

if bmh <'  do: 
bmh←'   

endif 

)
2

1( +−
−=

lbrbrbrb  

else: // an invalid range means the suffix is not in the database, search proceeds with shorter suffix 

)
2

1( +−
+=

lbrblblb  

endif 
endwhile 
←U  a set that contains all read IDs whose suffixes are recorded within the range ]','[ mhgrSA  

// select maximal extension sequence and extend the assembly 
←],[ hg  suffix array range returned by searching x  against SA  

while hg ≤  and UridgSA ∈].[  do: // ridgSA ].[  is the read ID 
++g  // jump to the first valid supporting read 

endwhile 
// initialization: begin  means the starting position of the suffix array partition, validlast _  means the end of it 
// ][_ iarrayinvalid  records number of invalid suffixes between position g  and i , inclusively 

gbegin← ; gvalidlast ←_ ; 0][_ ←garrayinvalid   
1+← gi  

(Continue on the next page) 
	  

  

	  



4 
	  

EXTEND( PQ ) continue 

(Continue from the previous page) 
while 1+≤ hi  do: 

if |]1[|][ −< iSAiLCP  do: // compute the number of supporting reads in the partition 
1__ +−← beginvalidlastsuffixesnum  

][_]_[__ prevarrayinvalidvalidlastarrayinvalidinvalidnum −←  
invalidnumsuffixesnumsrnum ___ −←  

if csrnum ≥_  do: // c  is the cutoff for minimum number of supporting reads 
•← pp' suffix of ]1[ −iSA  that follows its prefix x   

←'q substring of Q  that is extended from q  to reach a length of 
2

|'| dp +  // d  is the band size 

reinitialize alignment between 'q  and 'p  using DPT  
←'DPT dynamic programming table of the alignment between 'q  and 'p  

if score drop-off is above the pre-set threshold do: 
return 

else: 
←nextA alignment structure constructed on ( direction , 'q , 'p , 'DPT , SA , rSA ) 

ENQUEUE( nextAPQ, ) // priority computed based on srnum_  
endif 

endif 
while 1+≤ yi  and UridiSA ∉].[  do: // jumps to the next valid read 

1]1[_][_ +−← iarrayinvalidiarrayinvalid ; ++i  
endwhile 
// reset the indexes for a new partition 

ibegin← ; ivalidlast ←_ ; ]1[_][_ −← iarrayinvalidiarrayinvalid  
else: // in case of expansion of the current partition 

if UridiSA ∉].[  do: 
1]1[_][_ +−← iarrayinvalidiarrayinvalid  

else:  // expand the current partition by increasing the end index of the partition, i.e. validlast _  
ivalidlast ←_ ; ]1[_][_ −← iarrayinvalidiarrayinvalid  

endif 
endif 

++i  
endwhile 
return 

	  
	  



5 
	  

C. Evaluation of impact of different length cutoffs  
BLASTP results were interpreted as three different sets to evaluate the impact of using different length 
constraints for filtering the local alignment-based search results. The set “BLASTP (full)” was used to 
represents those reads whose full-length sequences were aligned by BLASTP, “BLASTP (partial 50%)” 
for those who had >50% of their full-length sequences aligned by BLASTP, and “BLASTP (partial)” for 
all reads that had any part of their sequences aligned by BLASTP. The performances of BLASTP for 
these three interpretations are shown in Supplementary Figure S1. It is observed that “BLASTP (full)” 
shows slightly improved specificity but significantly lower sensitivity compared to the other two, and 
“BLASTP (partial)” and “BLASTP (partial 50%)” show no significant difference from each other in 
terms of both specificity and sensitivity. 

D. Auxiliary read mapping step at the end of GRASP 
The path extension module of GRASP does not consider mismatches or gaps in the sequence. Even 
though it is possible to take mismatches into account during extension by issuing multiple suffix array 
searches (4), the current GRASP setting is conceptually straightforward and computationally efficient, 
and is capable of reducing the redundancy of the output contigs. GRASP only outputs those reads that 
perfectly match some substring of the assembled contigs. Here we show that the performance of GRASP 
can be further improved by incorporating an auxiliary read mapping step at the end, using the simulated 
marine data set (DS3) as an example.  

The auxiliary read mapping step aims at recruiting the reads that are not detected by the main GRASP 
algorithm due to mismatches. The read mapping step works as follows. For each query protein sequence, 
we mapped remaining reads in the database against the output contigs. We mapped a read if >60% of its 
full-length sequence can be aligned to one of the contigs with at most 3 mismatches (only substitution is 
considered). Note that we allowed up to 3 mismatches because DS3 was generated with 1% error rate, 
which is higher than the empirical error rate for the Illumina technology (>85% of the reads have error 
rate less than 0.1%, see http://res.illumina.com/documents/products/technotes/technote_q-scores.pdf). 
Supplementary Figure S2A shows the performances of GRASP+mapping and the other three programs in 
searching 16 glycolysis pathway-related genes in Dehalococcoides sp. CBDB1 against DS3. As compared 
to the performances shown in Figure 3C of the main text, incorporating the read mapping step further 
improves GRASP’s sensitivity by >10% with a slight decrease in specificity (GRASP+mapping achieves 
62.62% sensitivity and 86.57% specificity with an E-value cutoff of 10, and GRASP without mapping 
achieves 50.76% sensitivity and 87.15% specificity with the same E-value cutoff). Supplementary Figure 
S2B shows the performances of GRASP+mapping and the other three programs in searching the 198 
Amphroa2 (6) marker genes in Dehalococcoides sp. CBDB1. As compared to the results shown in Figure 
3D in the main text, GRASP+mapping achieves ~20% higher sensitivity but ~1% lower specificity 
(GRASP+mapping achieves 67.82% sensitivity and 87.86% specificity with an E-value cutoff of 10, and 
GRASP without mapping achieves 48.02% sensitivity and 88.99% specificity with the same E-value 
cutoff). Both results show that incorporating the auxiliary read mapping step will significantly improve 
GRASP’s sensitivity at the same specificity level. The running time for the auxiliary read mapping step is 
minimal compared to the main program, as we can assume near-perfect matches between the contigs and 
the reads. 



6 
	  

E. Performance benchmark on searching DS4 with other queries 
Supplementary Figure S3 shows the performances of the four programs (GRASP, FASTM, PSI-BLAST, 
and BLASTP) in searching Prevotella (organism code: PIT, estimated abundance 12.03%), 
Fusobacterium (organism code: FUS, estimated abundance 6.39%), and Aggregatibacter (organism code: 
AAP, estimated abundance 1.42%) against the real HMP (Human Microbiome Project) saliva data set (i.e. 
DS4). For definitions of specificity and true homologous reads please refer to the main text. The results 
shown in Supplementary Figure S3 further confirm the observation that GRASP is capable of recruiting 
more true homologous reads than the other search programs with a high specificity. 

F. GRASP run-time 
GRASP runs slower than the NCBI BLAST suite and FASTM in most of the experiments. This is 
expected since GRASP also performs de novo assembly along with the alignment. Supplementary Figure 
S4 shows the run-time for GRASP on different queries and targets (databases). The run-time variation in 
Supplementary Figure S4A (i.e. different queries against same database) is more significant than that in 
Supplementary Figure S4B (same query against different databases), because the actual amount of 
assemblies/alignments to be performed is query-specific (e.g. the number of seeds that can be identified 
from the query to initiate the assemblies/alignments). Both results show linear correlations between the 
run-time and query/database size. It implies a linear run-time growth with respect to the number of 
proteins being searched (in most real applications, the database size is fixed for a given metagenomic 
dataset). Running GRASP in multi-threaded mode is capable of improving the actual run-time (i.e. 2.12 
fold speedup was observed with 4 threads, see Supplementary Figure S4). Potential overhead was 
observed due to the inter-thread communications that are required to avoid redundant extension of reads 
that have been consumed by other extensions. 

	  



7 
	  

	  

Supplementary Figure S1: The ROC curves for the performances of GRASP and BLASTP (with 
different length constraints) on different simulated datasets. (A) Pfam simulated data set containing three 
unrelated families, i.e. DS1. (B) Pfam simulated data set containing three families from the same clan, i.e. 
DS2. (C) Simulated marine data set, i.e. DS3, using glycolysis related genes as queries. (D) Simulated 
marine data set, i.e. DS3, using selected marker genes from Amphora2 as queries. Note that only 
performances with specificity 90% and higher are shown for (A) and (B). Each individual data point 
indicates performance at a specific E-value cutoff, ranging from 10-10 to 10. Dashed lines indicate 
performances that are extrapolated by projecting to coordinates (0, 0) and (1, 1). 



8 
	  

	  

Supplementary Figure S2: Performances of GRASP+mapping, FASTM, PSI-BLAST, and BLASTP in 
searching the simulated marine data set (DS3). (A) Performances with 16 glycolysis pathway-related 
genes as queries. (B) Performances with 198 Amphroa2 marker genes as queries. All genes were selected 
from Dehalococcoides sp. CBDB1. 

	  



9 
	  

	  

Supplementary Figure S3: Performances of GRASP, FASTM, PSI-BLAST, and BLASTP in searching 
the glycolysis related genes in (A) Prevotella, (B) Fusobacterium, and (C) Aggregatibacter against the 
real HMP saliva metagenomic data set (i.e. DS4). The left panel shows the specificities and the right 
panel shows the raw number of recruited true homologous reads. All programs show high specificities in 
the experiment (>99%). GRASP recruits the highest number of true homologous reads. 



10 
	  

	  

Supplementary Figure S4: The run-time of GRASP. (A) GRASP run-time for searching 33 query genes 
(glycolysis-related genes in Streptococcus SGO) with different lengths against DS4 (12,036,685 short 
peptide reads, translated from Illumina nucleotide reads with length of 100 bp). (B) GRASP run-time for 
searching a single gene (SGO_0049, length 344 aa) against databases with different sizes (databases 
constructed by random sampling reads from DS4). The average speedup ratio of using 4-threads, 
computed based on linear regression, is 2.12 fold.  

  



11 
	  

References 
1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment 

search tool. Journal of molecular biology, 215, 403-410. 

2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 

(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 

Nucleic acids research, 25, 3389-3402. 

3. Mackey, A.J., Haystead, T.A. and Pearson, W.R. (2002) Getting more from less: algorithms for 

rapid protein identification with multiple short peptide sequences. Molecular & cellular 

proteomics : MCP, 1, 139-147. 

4. Ye, Y., Choi, J.H. and Tang, H. (2011) RAPSearch: a fast protein similarity search tool for short 

reads. BMC bioinformatics, 12, 159. 

5. Karlin, S. and Altschul, S.F. (1990) Methods for assessing the statistical significance of molecular 

sequence features by using general scoring schemes. Proceedings of the National Academy of 

Sciences of the United States of America, 87, 2264-2268. 

6. Wu, M. and Scott, A.J. (2012) Phylogenomic analysis of bacterial and archaeal sequences with 

AMPHORA2. Bioinformatics, 28, 1033-1034. 

	  

 


