Supporting Information for

"Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities"

Baojun Wang^{1*}, Mauricio Barahona² & Martin Buck³

 ¹Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, UK.
 ²Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
 ³Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.

*Corresponding author. Tel: 0044 -131-650-5527. Email: Baojun.Wang@ed.ac.uk

Table of Contents

Supplementary Methods – detailed Experimental Section Supplementary Figures S1-S3 Supplementary Tables S1-S2 Supplementary References (1-10)

Supplementary Methods

Mathematical modelling and data fitting

Computational biochemical models were developed for individual transcription factor receptor modules to abstract their ligand-dependent signaling response behaviours. We focused on the average behaviour of the *E. coli* population to demonstrate the performance of the inducible gene expression systems at a steady state. The ordinary differential equation (ODE)-based deterministic model was used for accurately modelling the gene regulation and expression across the full input or output range of the system. The following describes the derivation of the transfer function (TF) for the small molecule-responsive gene expression module and the experimental data fitting to these models.

Deriving transfer function of the ligand-responsive inducible promoters

Figure S1: Schematics showing architecture of the inducible negatively regulated promoter P₁.

Figure S1 shows the exemplar architecture of the inducible promoter used in this study (*tetR-P*_{tet2}, *arsR-P*_{arsR} and *araC-P*_{BAD} promoters). The promoter P₁ is negatively regulated by its constitutively expressed repressor R₁ and is responsive to exogenous inducer I to activate transcription of downstream reporter gene *G*. The expression of the reporter can be modelled by²⁻⁴:

$$\frac{d[G]}{dt} = \alpha \cdot k_1 + \frac{k_1 \cdot [I]^{n_1}}{[I]^{n_1} + K_M^{n_1}} - d \cdot [G]$$
(S1)

where $\alpha \cdot k_1$ is the basal constitutive activity of the promoter, $k_1 \cdot [I]^n / ([I]^n + K_M^n)$ is the activity due to cooperative transcription activation by assuming the concentration of the repressor is constant to allow modelling of the effect of varying the concentration of the inducer I, and $d \cdot [G]$ is the constitutive degradation activity of protein G. K_M and n are the Hill constant and coefficient relating to the promoter-regulator/inducer interaction, k_1 is the maximum expression rate due to induction and α is a constant relating to the promoter basal level due to leakage ($0 \le \alpha < 1$), and d is the degradation rate of G.

The steady state solution of equation S1 is given by

$$f([I]) = [G]_{ss} = k \cdot (\alpha + [I]^n / (K_M^{-n} + [I]^n))$$
(S2)

where $k = k_1/d$ represents the maximum expression level due to induction. Equation S2 gives the reporter protein level at steady state for the inducible promoter P₁ and is also the TF of P₁. We used this TF to fit the characterisation data of the aTc (Fig. 2B), 3OC₆HSL (Fig. 3A) and NaAsO₂ (Fig. 4A) inducible promoters using the nonlinear least square fitting function (cftool) in Matlab (MathWorks R2010a). The bestfit parameters and coefficients (with 95% confidence bounds) are listed in Table S2 and the parameterised TFs are plotted in Fig. 2B and Fig. 3A respectively against their experimental data.

Figure S2: The characterised dose response of the arabinose inducible P_{BAD} promoter. The data were collected in *E. coli* TOP10 in LB media 6 hrs after induction by varying arabinose concentrations (0, 1.3×10^{-3} , 5.2×10^{-3} , 2.1×10^{-2} , 8.3×10^{-2} , 0.33, 1.33, 5.32 and 21.2 mM). Error bars, s.d. (n = 3).

pSB3K3 carrying J117-30gfp-t

pSB3K3carrying J117-30tetR-t-P_{tet2}-30gfp-t

 ${\bf D}\,$ pBAD controlled ArsR expression cassette

pSB3K3 carrying araC-P_{BAD}-30tetR-t-P_{tet2}-30gfp-t

pSB3K3 carrying araC-P_{BAD}-30arsR-t-P_{arsR}-30gfp-t

Figure S3: Representative plasmid circuits used for sensor dose response characterisation. (A) Plasmid used for characterising constitutive promoter (e.g. J117, Fig. 2A). (**B-C**) Plasmids used for characterising aTc sensor response with the receptor TetR expressed from either a constitutive promoter (e.g. J117, Fig. 2B) or the arabinose inducible P_{BAD} promoter (Fig. 2C). (**D**) Plasmids used for characterising arsenic sensor response with the receptor ArsR expressed from the P_{BAD} promoter (Fig. 4C).

Plasmid	Description	Reference
pSB3K3	BioBrick vector, p15A ori, Kan ^r	iGEM Registry ⁵
pBW110pBAD	pSB3K3 carrying <i>araC</i> -P _{BAD}	This study
pBW111pBAD-gfp	pSB3K3 carrying araC-P _{BAD} -30gfp-t	This study
pBW201J117-gfp	pSB3K3 carrying J117-30gfp-t	This study
pBW202J114-gfp	pSB3K3 carrying J114-30gfp-t	This study
pBW204J115-gfp	pSB3K3 carrying J115-30gfp-t	This study
pBW205J105-gfp	pSB3K3 carrying J105-30gfp-t	This study
pBW206J106-gfp	pSB3K3 carrying J106-30gfp-t	This study
pBW206J101-gfp	pSB3K3 carrying J101-30gfp-t	This study
pBW211J117-tetR	pSB3K3 carrying J117-30tetR-t-P _{tet2} -30gfp-t	This study
pBW212J114-tetR	pSB3K3 carrying J114-30tetR-t-P _{tet2} -30gfp-t	This study
pBW213J115-tetR	pSB3K3 carrying J115-30tetR-t-P _{tet2} -30gfp-t	This study
pBW214J105-tetR	pSB3K3 carrying J105-30tetR-t-P _{tet2} -30gfp-t	This study
pBW215J106-tetR	pSB3K3 carrying J106-30tetR-t-P _{tet2} -30gfp-t	This study
pBW216J101-tetR	pSB3K3 carrying J101-30tetR-t-P _{tet2} -30gfp-t	This study
pBW200pBAD-tetR	pSB3K3 carrying araC-P _{BAD} -30tetR-t-P _{tet2} -30gfp-t	This study
pBW311J117-luxR	pSB3K3 carrying J117-30luxR-t-P _{lux2} -30gfp-t	This study
pBW312J114-luxR	pSB3K3 carrying J114-30luxR-t-P _{lux2} -30gfp-t	This study
pBW313J115-luxR	pSB3K3 carrying J115-30luxR-t-P _{lux2} -30gfp-t	This study
pBW314J105-luxR	pSB3K3 carrying J105-30luxR-t-P _{lux2} -30gfp-t	This study
pBW315J106-luxR	pSB3K3 carrying J106-30luxR-t-P _{lux2} -30gfp-t	This study
pBW316J101-luxR	pSB3K3 carrying J101-30luxR-t-P _{lux2} -30gfp-t	This study
pBW300pBAD-luxR	pSB3K3 carrying araC-P _{BAD} -30luxR-t-P _{lux2} -30gfp-t	This study
pBW413Pnull-arsR	pSB3K3 carrying P _{null} -30arsR-t-P _{arsR} -gfp-t	This study
pBW411J117-arsR	pSB3K3 carrying J117-30arsR-t-ParsR-gfp-t	This study
pBW412J114-arsR	pSB3K3 carrying J114-30arsR-t-ParsR-gfp-t	This study
pBW414J105-arsR	pSB3K3 carrying J105-30arsR-t-ParsR-gfp-t	This study
pBW400pBAD-arsR	pSB3K3 carrying araC-P _{BAD} -30arsR-t-P _{arsR} -30gfp-t	This study

Table S1: List of plasmid circuit constructs used in this study

Table S2. List of genetic parts and sequences used in this study (promoters are in red, RBSs are in italic and bold, protein coding sequences are in brown and terminators are in bold)

Part name	Type and source	DNA sequence (5′ – 3′)
P _{J117} -rbs30- tetR-B0015- P _{tet2}	Inducible promoter with tetR receptor (de novo synthesized)	TTGACAGCTAGCTCAGTCCTAGGGATTGTGCTAGCTACTAGAGATTAAAGAG GAGAAATACCATATGTCCAGATTAGATAAAAGTAAAGT
P _{J117} -rbs30- luxR- B0015-P _{lux2}	Inducible promoter with luxR receptor (de novo synthesized)	TTGACAGCTAGCTCAGTCCTAGGGATTGTGCTAGCTACTAGAG ATTAAAGAG GAGAAATACTAGATGAAAAACATAAATGCCGACGACACATACAGAATAATTA ATAAAATTAAAGCTTGTAGAAGCAATAATGATATTAATCAATGCTTATCTGA TATGACTAAAATGGTACATTGTGAATATTAATTAATCAATGCTTATCCTC CATTCTATGGTTAAATCTGATATTTCCAATCCTAGATAATTACCCTAAAAAAT GGAGGCAATATTATGATGACGCTAATTTAATT
P _{J117} -rbs30- arsR- B0015-P _{arsR}	Inducible promoter with ArsR receptor ⁶ (de novo synthesized)	TTGACAGCTAGCTCAGTCCTAGGGATTGTGCTAGCTACTAGAG ATTAAAGAG GAGAAATACTAGATGTCATTTCTGTTACCCATCCAATTGTTCAAAATTCTTG CTGATGAAACCCGTCTGGGCATCGTTTTACTGCTCAGCGAACTGGGAGAGTT ATGCGTCTGCGATCTCTGCACTGCTCTCGACCAGTCGCAGCCCAAGATCTCC CGCCACCTGGCATTGCTGCGTGAAAGCGGGCTATTGCTGGACCGCAAGCAA

araC-P _{BAD}	Inducible promoter ⁷	TTATGACAACTTGACGGCTACATCATTCACTTTTTCTTCACAACCGGCACGG AACTCGCTCGGGCTGGCCCCGGTGCATTTTTTAAATACCCGCGCAAATAGA GTTGATCGTCAAAACCAACATTGCGACCGACGGTGGCGATAGGCATCCGGGT GGTGCTCAAAAGCAGCTTCGCCTGGCTGATACGTTGGTCCTCGCCCAGCTT AAGACGCTAATCCCTAACTGCTGGCGGAAAAGATGTGACAGACGCGACGGCG ACAAGCAACATGCTGTGGCGACGCTGGCGATATCAAAATTGCTGTCTGCCAG GTGATCGCTGATGTACTGACAAGCCTCGCGTACCCGATTATCCATCGGTGGA GAGCGACTCGTTAATCGCTTCCATGCGCCGCAGTAACAATTGCTCAAGCA GATTTATCGCCAGCAGCTCCGAATAGCGCCCTTCCCCTTGCCCGGCGTTAAT GATTGCCCAAACAGGTCGCTGAAATGCGGCCGGTGGCGCTTCATCCGGGCGA AAGAACCCCGTATTGGCAAATATGACGGCCAGTTAAGCCATTCATGCCAGT AGGCGCGCGGACGAAAGTAAACCCACTGGTGATACCATTCGCGCGCG
rbs30	RBS ³	TCTAGAG ATTAAAGAGGAGAAA TACTAG ATG
<i>J117</i>	Promoter ⁸	<u>TTGACA</u> GCTAGCTCAGTCCTAGG <u>GATTGT</u> GCTAGC
<i>J114</i>	Promoter ⁸	TTTATGGCTAGCTCAGTCCTAGG <u>TACAAT</u> GCTAGC
J115	Promoter ⁸	<u>TTTATA</u> GCTAGCTCAGCCCTTGG <u>TACAAT</u> GCTAGC
J105	Promoter ⁸	TTTACGGCTAGCTCAGTCCTAGGTACTATGCTAGC
J106	Promoter ⁸	TTTACGGCTAGCTCAGTCCTAGGTATAGTGCTAGC
J101	Promoter ⁸	<u>TTTACA</u> GCTAGCTCAGTCCTAGG <u>TATTAT</u> GCTAGC
B0015 (B15)	Terminator ⁹	CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTT TATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCT TCGGGTGGGCCTTTCTGCGTTTATA
gfp	Gene ^{3,10}	ATGCGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAAT TAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGG TGATGCAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAA CTACCTGTTCCATGGCCAACACTTGTCACTACTTTCGGTTATGGTGTTCAAT GCTTTGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGC CATGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGG AACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATA GAATCGAGTTAAAAGGTATTGATTTAAAGAAGATGGAAACATTCTTGGACA CAAATTGGAATACAACTATAACTCACACAATGTATACATCATGGCAGACAAA CAAAAGAATGGAATCAAAGTTAACTTCAAAATTAGACAACAATTGGAGAGG GAAGCGTTCAACTAGCAGACCATTATCTACACCAACATTGGACAGG CCCTGTCCTTTTACCAGACAACATTACCTCGACAACATTGGCGATGG CCCTGTCCTTTTACCAGACAACATTACCTGTCCACACAATCTGCCGATGG CTGCTGGGATTACACATGGCATGG

		ͲϪϹͲϪϹϾϹϹϹϹϹϾͲϹϹϪϹͲϹϹϹϹϹϪϪϪϪϪϪϪϾϹϹϹϹϪϪϹϹͲϹͲϹϪϹϹϪϹϹϘͲϹϹϹ
		TTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGA
		ͲͲϪͲϹϪϪͲϪϹϹϪͲϪͲͲͲͲͲͲϾϪϪϪϪϪϾϹϹϾͲͲͲϹͲϾͲϪϪͲϾϪϪϾϾϪϾϪϪϪϪϹͲϹϪϹϹϾϪ
		GGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAAC
		CCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTC
		CTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACC
		GTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGA
		CAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAA
		TATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGAT
		CGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGA
		AGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGG
		CAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAA
		TCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATAT
		AAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAA
		TATGGCTCATAACACCCCTTGTATTACTGTTATGTAAGCAGACAGTTTTATTGTTCA
		TGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGG
		CTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATCTTCCCG
		ACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTA
	D1 11	CAACAAAGCTCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGG
nSB3K3	Plasmid	CAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGCGCTAGCGGA
psdsks	backbone ^{1,5}	GTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAGTGCTTCATGTG
		GCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTC
		CGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATG
		GCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAACAGGGAAG
		TGAGAGGGCCGCGGCAAAGCCGTTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCAC
		GAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCCGACAGGACTATAAAGATACCAGG
		GTGTAGATAACTACGATACGGGGGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAC
		CGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAG
		GGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA
		TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCG
		TATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTC
		TGGAATTCGCGGCCGCTTCTAGAG

Supplementary References

- 1 Shetty, R., Endy, D. & Knight, T. Engineering BioBrick vectors from BioBrick parts. *J. Biol. Eng.* **2**, 5 (2008).
- 2 Alon, U. An Introduction To Systems Biology: Design Principles Of Biological Circuits. (Chapman & Hall/CRC, 2007).
- 3 Zoltan, S., Jörg, S. & Vipul, P. System Modeling In Cell Biology: From Concepts To Nuts And Bolts. (The MIT Press, 2006).
- 4 Wang, B., Kitney, R. I., Joly, N. & Buck, M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. *Nat. Commun.* **2**, 508 (2011).
- 5 *pSB3K3 plasmid backbone*, <http://parts.igem.org/Part:pSB3K3> (2013).
- 6 Diorio, C., Cai, J., Marmor, J., Shinder, R. & DuBow, M. S. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. *J. Bacteriol.* **177**, 2050-2056 (1995).
- 7 Guzman, L., Belin, D., Carson, M. & Beckwith, J. Tight regulation, modulation, and highlevel expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* 177, 4121-4130 (1995).
- 8 *Constitutive promoter family catalog*, http://parts.igem.org/Promoters/Catalog/Anderson (2013).
- 9 *B0015 double terminator*, <http://parts.igem.org/Part:BBa_B0015> (2013).
- 10 Greem fluorescent protein derived from jellyfish Aequeora victoria http://parts.igem.org/Part:BBa_E0040 (2013).