A moonlighting metabolic protein influences repair at DNA double-stranded breaks

Ana Lilia Torres-Machorro, John P. Aris and Lorraine Pillus

Table S1. Yeast strains

Strain	Genotype	Reference
LPY5	MATa W303 (ade2-1 can1-100 his3-11 leu2-3,112 trp1-1 ura3-1)	
LPY79	ΜΑΤα W303	
LPY3291	MATa S288c esa1Δ::HIS3 + pLP863	
LPY3486	MATa S288c (his3Δ200 leu2-3,112 trp1Δ1 ura3-52)	
LPY4774	MATa W303 esa1-414	
LPY4776	ΜΑΤα W303 esa1-414	
LPY6282	MAΤα W303 rDNA::ADE2-CAN1	
LPY6491	ΜΑΤα BY (his3Δ1 leu2Δ0 met15Δ0 ura3Δ0)	
LPY11412	MAΤα W303 rDNA::ADE2-CAN1 lys20Δ::KanMX lys21Δ::natR	
LPY12830	ΜΑΤα W303 htz1Δ::KanMX	
LPY12959	MAΤα W303 sds3Δ::KanMX	
LPY14264	MAΤα ade1 leu2-3,112 lys5 trp1::hisG ura3-52 hml::ADE1 hmr::ADE1 ade3::Gal-HO (JKM179)	J. Haber
LPY15845	JKM179 esa1-414-13MYC-KanMX	
LPY15904	JKM179 ESA1-13MYC::KanMX	
LPY16465	MATa ade1 leu2-3,112 lys5 trp1::his5 ura3-52 hml::ADE1 hmr::ADE1 ade3::Gal-HO (JKM139)	J. Haber
LPY16974	MATa W303 ade3::Gal10::HO esa1-414-13MYC-KanMX	
LPY17213	MATa W303 ade3::Gal10::HO (BAT009)	23
LPY17707	MATa W303 ade3::Gal10::HO lys20Δ::KanMx lys21Δ::natR	
LPY17709	MAΤα W303 ade3::Gal10::HO lys20Δ::KanMx lys21Δ::natR	
LPY18023	MATa W303 ade3::Gal10::HO esa1-414-13MYC-KanMX	
LPY18397	ΜΑΤα W303 ade3::Gal10::HO esa1-414	
LPY18401	ΜΑΤα W303 ade3::Gal10::HO esa1-414 lys20Δ::KanMX lys21Δ::natR	
LPY19108	ΜΑΤα W303 ade3::Gal10::HO	
LPY19357	MAΤα W303 rad6Δ::KanMX	
LPY19617	ΜΑΤα W303 rad52::LEU2	
LPY19629	MATα W303 hht1-hhf1Δ::KanMX hta1-htb1Δ::NAT hta2-htab2Δ::HPH + pLP2863	
LPY19631	MATα W303 hht1-hhf1Δ::KanMX hht2-hhf2Δ::KanMX hta2-htb2Δ::HPH + pLP1492	
LPY19782	MAΤα W303 tel1Δ::KanMX	
LPY19824	MATα W303 arp8Δ::KanMX	
LPY19828	ΜΑΤα W303 arp8Δ::KanMX esa1-414	
LPY20071	ΜΑΤα W303 rsc1Δ::KanMX	
LPY20072	ΜΑΤα W303 rsc1Δ::KanMX esa1-414	
LPY20075	MATα snf5Δ::kanMX	
LPY20076	ΜΑΤα W303 snf5Δ::KanMX esa1-414	
LPY20113	MATα JKM179 INO80-13MYC-TRP1 HTB1-FLAG-LEU2 (MAO104)	32
LPY20339	MAΤα W303 ade3::Gal10::HO esa1-414 INO80 13MYC::TRP1	
LPY20531	MAΤα W303 ade3::Gal10::HO INO80 13MYC::TRP1	
LPY20539	MAΤα W303 ade3::Gal10::HO esa1-414 lys20Δ::KanMX lys21Δ::natR INO80 13MYC::TRP1	
LPY21643	MATa W303 ade3::Gal10::HO hht1-hhf1Δ::KanMX hta1-htb1Δ::NAT hta2-htab2Δ::HPH + pLP3308	
LPY21644	MATa W303 ade3::Gal10::HO hht1-hhf1Δ::KanMX hta1-htb1Δ::NAT hta2-htab2Δ::HPH + pLP2863	

Strain	Details	Reference
pLP796	ESA1 in URA3 2μ	
pLP863	esa1-414 in TRP1 CEN	
pLP1402	pRS202 (URA3, 2μ)	
pLP1412	LYS20 in PRS202	
pLP1455	pFA6a-ESA1-13MYC-KanMX6-ESA1-3'	
pLP1492	H3 + H4-Ntail∆ in TRP1, CEN	*
pLP2365	lys20-E155A in pRS202	
pLP2558	lys20-K422N in pRS202	
pLP2564	pFA6a-esa1-414-13MYC-KanMX6-ESA1-3'	
pLP2580	lys20-H309A in pRS202	
pLP2581	lys20-V399-I418∆ in pRS202	
pLP2582	lys20-H212A, H214A in pRS202	
pLP2605	lys20-E244A, R245A in pRS202	
pLP2606	lys20-G241A, G234A in pRS202	
pLP2607	lys20-I313A, L314A in pRS202	
pLP2608	lys20-Y320A in pRS202	
pLP2731	lys20-S410A in pRS202	
pLP2732	lys20-S401A in pRS202	
pLP2733	lys20-K403-N408∆ in pRS202	
pLP2734	lys20-E414A in pRS202	
pLP2863	H2A-S129A + H2B in TRP1, CEN	**
pLP3308	H2A + FLAG-H2B in TRP1, CEN	* * *

* Zhang, W. *et al.*, (1998) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. *EMBO J.* **17**:3155-67. ** Nakanishi, S., et al., (2008) A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. *Nat. Struct. Mol. Biol.* **15**:881-8. *** Basnet H., et al., (2014) Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. *Nature* **516**:268-271.

Table S3. Oligonucleotides

Number	Name	Sequence	Reference
oLP1275	SCR1-F	CGCGGCTAGACACGGATT	*
oLP1276	SCR1-R	GCACGGTGCGGAATAGAGAA	*
oLP1487	MUTL20-K422N-F	CATCCCCGCCGCAATCGGACTAAGCCATCC	
oLP1488	MUTL20-K422N-R	GGATGGCTTAGTCCGATTGGCGGCGGGGATG	
oLP1493	ESA1-1240D-F	GATATTTTAGATAGGTACATCGACTTAAAGCC	
oLP1494	ESA1-1240D-R	GGCTTTAAGTCGATGTACCTATCTAAAATATC	
oLP1500	ESA1-LIN-F	GCCAAAAAGAGAAGGACAAGGGATCCCCGGGTTAATTAAC	
oLP1501	ESA1-LIN-R	GTTAATTAACCCGGGGATCCCTTGTCCTTCTCTTTTGGC	
oLP1508	MAT-HO-F	GGAGGTTGTTTATCTTTCGAGTACTGA	B. Braunstein
oLP1509	MAT-HO-R	TTGATTGTTTGCTTGAGTCTGAGTAAT	
oLP1510	LYS20-H212A-F	CATGTGACATCGAATGCGCTTTCGCCAACGATACTGGTTG	
oLP1511	LYS20-H212A-R	CAACCAGTATCGTTGGCGAAAGCGCATTCGATGTCACATG	

oLP1512	LYS20-H309A-F	CATAAAGCAGGTATCGCTGCCAAGGCCATTTTG	
oLP1513	LYS20-H309A-F	CAAAATGGCCTTGGCAGCGATACCTGCTTTATG	
oLP1514	LYS20-V399-I418Δ-F	CAGAGGTCAGCACTCCTCAACCCGCCGCCAAGCGGACTAAG	
oLP1515	LYS20-V399-I418∆-R	CTTAGTCCGCTTGGCGGCGGGTTGAGGAGTGCTGACCTCTG	
oLP1568	LYS20-E244AR245A-F	GTACTGGGTATTGGTGCAGCAAACGGTATCACTCC	
oLP1569	LYS20-E244AR245A-R	GGAGTGATACCGTTTGCTGCACCAATACCCAGTAC	
oLP1570	LYS20-G241AG243A-F	CGTCAGTGTACTGGCTATTGCTGAAAGAAACGGTATC	
oLP1571	LYS20-G241AG243A-R	GATACCGTTTCTTTCAGCAATAGCCAGTACACTGACG	
oLP1572	LYS20-I313AL314A-F	CCATGCCAAGGCCGCTGCGGCTAACCCATCTAC	
oLP1573	LYS20-I313AL314A-R	GTAGATGGGTTAGCCGCAGCGGCCTTGGCATGG	
oLP1574	LYS20-Y320A-F	GCTAACCCATCTACCGCCGAAATCTTGGACCC	
oLP1575	LYS20-Y320A-R	GGGTCCAAGATTTCGGCGGTAGATGGGTTAGC	
oLP1695	LYS20-K403N408∆-F	CTCAAGTACTATCTGCAGACAGCGATGTACCG	
oLP1696	LYS20-K403N408∆-R	CGGTACATCGCTGTCTGCAGATAGTACTTGAG	
oLP1697	LYS20-S401A-F	CACTCCTCAAGTACTAGCTGCAAAAAAGAACAAG	
oLP1698	LYS20-S401A-R	CTTGTTCTTTTTGCAGCTAGTACTTGAGGAGTG	
oLP1699	LYS20-S410A-F	GAACAAGAAGAATGACGCCGATGTACCGGAAC	
oLP1700	LYS20-S410A-R	GTTCCGGTACATCGGCGTCATTCTTCTTGTTC	
oLP1701	LYS20-E414A-F	CAGCGATGTACCGGCACTGGCCACCATCCC	
oLP1702	LYS20-E414A-R	GGGATGGTGGCCAGTGCCGGTACATCGCTG	
oLP2035	INO80-ORF-F	CACAGGACTATTCCCTGAACC	
oLP2036	INO80-KO-R	CCGCGGAGGAAGCCAGTC	
Probe	SMC2	[6-FAM]ACGCCATTTGCTTCGTGCTCGGTA[TAMRA-6-FAM]	23
Probe	0.6KB HO	[5-HEX]ACTGCCCATGCGGTTCACATGACTT[TAMRA-5HEX]	23
Probe	2КВ НО	[5-HEX]TCATCGAGCCCGTGAAGCATTCG[TAMRA-5HEX]	23
	P-SMC2-F	GGTCCGGTAAGTCGAACATTTT	23
	P-SMC2-R	CTCGCACAGTGCTCATTGATG	23
	P-0.6HO-F	TTGGATCTTAACAAACCGTAAAGGT	23
	P-0.6HO-R	GGTAACTAGCAAACAAAGGAAAGTCA	23
	P-2HO-F	CCATCGTGTTCATGGATCCTT	23
	P-2HO-R	AGAACATCCAGATTTGAACCGAA	23

* Yang, B. and Kirchmaier, A.L. (2006) Bypassing the catalytic activity of *SIR2* for SIR protein spreading in *Saccharomyces cerevisiae*. *Mol. Biol. Cell* **17**: 5287-97.

SUPPLEMENTARY METHODS

Immunostaining

As in (26) with the following modifications: the anti-Lys20 dilution was 1:500 and the dilution for the secondary antibody, Texas red-conjugated AffiniPure goat anti-mouse IgG, was 1:100 (Jackson ImmunoResearch Laboratories). The secondary antibody was incubated for 1h at room temperature and the cells were DAPI-stained for 2 minutes. An Axiovert 200M (Carl Zeiss MicroImaging) with a 100 \times 1.3 NA objective was used for visualization of the cells. Images were captured with a monochrome Axiocam digital camera (Carl Zeiss MicroImaging) and analyzed using Axiovision software (Carl Zeiss MicroImaging).

Figure S1. Mutant lys20 proteins had similar levels of expression and remained predominantly nuclear.

(A) The lys20 mutants had similar levels of expression. The mutants were expressed in a *LYS20 LYS21* null strain and grown to log phase. Protein lysates were probed for Lys20 and tubulin as a loading control. Note that the *lys20-V399-I418 (lys20-moon)* mutant had slightly increased mobility due to loss of 20 amino acids. (B) Lys20 mutants were nuclear. The cellular localization of Lys20 mutants in (A) was evaluated by immunofluorescence. The mutants remained nuclear with the exception of the *lys20-K422N* control with a mutant NLS. (C) Further dissection of the moonlighting domain of Lys20. The mutants indicated were tested for their ability to synthesize lysine or suppress *esa1* in the same assays as those tested in Figure 1D-E.

Figure S2. Control ChIP experiments.

(A) Esa1 and esa1-414 had similar kinetics of recruitment to the DSB. Myc-tagged Esa1 and Esa1-414 cells were used to perform the anti-Myc ChIP before and during HO induction. (B) Lys20 recruitment was similar in the presence of wild-type *ESA1* or *esa1-414*. The anti-Lys20 ChIP was performed in the strains tested in (A). (C) Lys20 was not recruited 2kb downstream of the break. The ChIPs in Figure 3F were tested here with probes and primers located 2kb downstream of the break.

Figure S3. Lys20 recruitment to the DSB was not dependent on H2A-S129 phosphorylation.

Strains LPY21643 and 21644 were transformed with *lys20-cat*. Lys20 recruitment to the DSB was tested as in Figure 3.

Figure S4. Lys20 protein levels were affected by environmental conditions.

(A) Lys20 levels were unaffected by DNA damage. Lysates of wild-type cells treated with 0.1M Hydroxyurea for 90 minutes were compared to untreated cells. (B) Lys20 expression in wild-type cells was affected by available lysine. The lys+ lane corresponds to cells grown in YPAD, the lys- (DO) lane indicates that the cells were grown in defined medium without lysine. Lys- (AB) means medium containing only the amino acids and nucleotides required by the auxotrophies of the strain tested: adenine, histidine, leucine, uracil and tryptophan. (C) Lys20 expression was increased in *sod1* Δ strains. *SOD1* null strains have increased levels of oxidative stress due to inability to detoxify superoxide (73). (D) Wild-type cells grown to high densities had reduced levels of Lys20. The measured A₆₀₀ value of the lysates tested is indicated on the top. Lane 1 (0.7) indicates logarithmic phase growth. The blots labeled Lys20 were probed with the mAb 40C4, whereas the blots labeled Lys20, Lys21 were probed with mAb 36C3, which recognizes both proteins. All blots were reprobed for tubulin as a loading control.