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Supplemental Figure 1. PhyA co-localizes with SPA3 and SPA4 in Nicotiana benthamiana 
nuclear bodies. (A) Epi-fluorescence microscopy detection of phyA-CFP or phyA-NLS-CFP 
transiently co-expressed with YFP-SPA1, -SPA3, or -SPA4 in Nicotiana benthamiana leaf 
epidermal cells. Plants expressing phyA-CFP were exposed to FR light (18 μmolm-2s-1) for 
6 h prior to imaging, whereas those transformed with phyA-NLS-CFP were kept under 
constant darkness (D) prior to microscopy. The scale bars indicate 10 μm. (B) FRET-FLIM 
analysis of nuclear body localized phyA and SPA3/SPA4 CFP and YFP fusions transiently 
expressed in Nicotiana benthamiana. The fluorescence lifetime of the donor (CFP) is shown. 
n = number of measurements. Error bars show one standard deviation. P values indicate 
t-test analysis for statistically significant differences. Fusion proteins used in A and B were 
expressed under the control of the 35S promoter. 
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Supplemental Figure 2. Light-activated phyA interacts with SPA1 and SPA2 in yeast.
(A) Yeast two-hybrid protein-protein interaction assay. The phyA-GAL4-DNA binding domain 
(phyA-BD) fusion was co-expressed with GAL4-activation domain (AD-) fusions of FHY1 
and SPA1-4. Yeast were grown on selective media lacking histidine, supplemented with the 
histidine biosynthesis inhibitor 3-amino triazole (3-AT) and phycocyanobilin (PCB), under 
constant R (Pfr) or FR (Pr) light to assay activation of the HIS-reporter gene. (B) Yeast two-
hybrid protein-protein interaction of phyA-BD and AD-SPA1-4. Yeast were grown on 
chromophore-supplemented plates for 48 h under either constant R (bright-red, Pfr) or FR 
(dark-red, Pr) light. Interaction was detected by a liquid o-nitrophenyl-β-galactoside 
(ONPG) assay. Values are the average of nine assays; error bars display one standard 
deviation. (C) as for (B) using BD-SPA1 and phyB-AD. (D) Immunoblot detection of yeast 
expressed FHY1 and SPA1-4. Yeast were harvested from chromophore supplemented 
plates that had been incubated for 48 h under constant R light. FHY1 and SPA1-4 AD- 
fusions contain a HA tag, and an α-HA antibody was used to detect these AD fusions in 
yeast protein extracts. The lower pane shows the membrane stained with amido-black as a 
loading control.
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Supplemental Figure 3. Pro35S:HA-YFP-SPA1 rescues spa1-7. (A) Immunoblot detection of 
phyA-CFP and HA-YFP-SPA1 proteins expressed in stable transformed Arabidopsis. The lower 
pane shows the membrane stained with amido-black as a loading control. (B) Localization of 
HA-YFP-SPA1 in dark-grown spa1-7 Pro35S:HA-YFP-SPA1. (C) Hypocotyl measurements of 4-
day-old Arabidopsis spa1-7 Pro35S:HA-YFP-SPA1 seedlings grown in weak FR (1 μmolm-2s-1). 
(D) Localization of HA-YFP-SPA1 expressed from the native SPA1 promoter in spa1-7 
ProSPA1:HA-YFP-SPA1 seedlings grown in darkness, or darkness followed by 6 h FR (10 
μmolm-2s-1). (E) Hypocotyl measurements of 4-day-old Arabidopsis spa1-7 
ProSPA1:HA-YFP-SPA1 seedlings grown in weak FR (1 μmolm-2s-1). White scale bars indicate 
4 μm. Error bars display one standard deviation for measurements from 25 or more seedlings. 
Data for three independent transgenic lines are shown in (B-E).
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Supplemental Figure 4. Immuno-histochemistry of phyA and phyA-YFP nuclear bodies.
(A) Detection of endogenous phyA in hypocotyl cell nuclei. Seedlings were grown in 
darkness for 4 d, followed by either no light (D), 6 h FR light (18 μmolm-2s-1) (FR), 
or 6 h FR followed by 10 min R light (22 μmolm-2s-1) (FR + R) and subsequently fixed 
with formaldehyde. phyA was detected using α-phyA and a Cy3-coupled secondary 
antibody. (B) Detection of phyA-YFP. As for (A), except YFP was additionally detected with 
α-GFP and the YFP fluorescence visualized directly. DAPI staining of DNA used to show 
nuclei. (A) and (B) The scale bar indicates 4 μm. (C) Immuno-electron microscopy-localization of phyA 
in wild-type Arabidopsis Col-0 hypocotyl nuclei. Seedlings were grown in darkness for 4 d and treated 
with either 6 h FR light followed by 5 min R light, or constant darkness prior to fixation. Endogenous 
phyA was probed with α-phyA antibodies, and detected with protein A-labelled 6-nm gold particles 
(indicated by arrows). Nuclear bodies are indicated with *. Black scale bar indicates 200 nm.

D FR FR + R

α-phyA

DAPI

A B
Col-0 phyA-211

α-phyA

DAPI

YFP

phyA-211, ProPHYA:PHYA-YFP

FR + R

αGFP

DAPI

YFP

FR + R FR + R

6h FR D

*
*

C

Supplemental Data. Sheerin et al. (2015). Plant Cell 10.1105/tpc.114.134775

4



BD-
ph

yA
-B

D

ph
yA

(1-
61

7)-
BD

ph
yA

(1-
40

6)-
BD

ph
yA

(C
32

3A
)-B

D

ph
yA

(G
72

7E
)-B

D

ph
yA

(E
77

7K
)-B

D

130

kDa

70

100

130

170

α-HA

AD-
AD-S

PA1

AD-S
PA1(1

-69
8)

AD-S
PA1(2

03
-10

29
)

AD-S
PA1(1

-20
2, 

53
0-1

02
9) 

AD-S
PA1(1

-52
9, 

69
9-1

02
9) 

70

170

130

100

kDa

130

Supplemental Figure 5. Truncations and mutants of phyA and SPA1 are stable in yeast. 
(A, B) Yeast cells were harvested from chromophore-supplemented plates that had been 
incubated for 48 h under constant R light. All AD-SPA1 and phyA-BD fusions contain a HA 
tag, and an α-HA antibody was used to detect the SPA1 and phyA fusions in yeast protein 
extracts. The lower panels show the membrane stained with amido-black as a loading 
control. (A) Immunoblot detection of yeast-expressed phyA truncations and single amino 
acid substitution mutants. (B) Immunoblot detection of yeast-expressed SPA1-truncated 
proteins. (C) Yeast two-hybrid protein-protein interaction of phyA-BD and AD-SPA1 
truncations. Yeast were grown under either constant R (bright-red, Pfr) or FR (dark-red, Pr) 
light. Interaction was detected by a liquid o-nitrophenyl-β-galactoside (ONPG) assay. 
Values are the average of nine assays; error bars display one standard deviation.
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Supplemental Figure 7 - Reorganization of the COP1/SPA1 complex by 
phyA upon irradiation with light. (A) FRET-FLIM analysis of the disruption of 
the interaction between COP1 and SPA1. CFP-SPA1, YFP-COP1 and 
phyA-LUC were co-transformed into Nicotiana bethamiana and plants were 
grown in darkness (D) or darkness followed by 6 h FR and 5 min R pulse to 
activate phyA nuclear transport and NB formation. Prior to microscopy, leaves 
were fixed to prevent effects of irradiance with fluorescent light during FRET 
measurement on the COP1/SPA1 complex. The fluorescence lifetime of the 
donor (CFP) is shown. Error bars show one standard deviation. n = number of 
measurements. P values indicate t-test analysis for statistically significant 
differences. (B) Detection of phyA-LUC in co-transformed Nicotiana 
bethamiana. To confirm expression of phyA-LUC, leaves were sprayed with 
1 mM D-luciferin and detected by 5 min exposure using a CCD camera. Color 
scale indicates relative light emittance. Expression of constructs in A and B 
was driven by the 35S promoter.
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A

Supplemental Figure 8. HFR1 accumulates in FR light. (A) Quantification of LUC-HFR1 
abundance in three independent transgenic Arabidopsis hfr1-4 Pro35S:LUC-HFR1 lines. 
Seedlings were grown in darkness after 6 h germination induction with white light, and 
transferred to FR light (10 μmolm-2s-1) at various time points prior to harvesting at 4 d 
(96 h) post germination induction. Error bars show one standard deviation of nine 
measurements from three biological replicates. (B) Hypocotyl lengths of 4-day-old Arabidopsis 
hfr1-4 Pro35S:LUC-HFR1 seedlings grown in continuous FR light (10 μmolm-2s-1) following 
16 h darkness, as a ratio to hypocotyl length in darkness. Error bars display one standard 
deviation of 30 or more seedlings.
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SUPPLEMENTAL METHODS 

Yeast interaction assays 
For histidine-reporter assays, yeast harvested from overnight cultures were washed 

and suspended in sterile ddH2O to an OD600 of 0.1. 3 μL spots were plated onto synthetic 

media lacking leucine, tryptophan and histidine, supplemented with 20 μM phycocyanobilin 

(PCB) and 20 mM 3-amino triazole, or control plates lacking leucine and tryptophan. 

Plates were incubated for four days at 26 °C in either constant R light (670 nm, 

1.7 μmolm-2s-1), or FR light (720 nm, 13 μmolm-2s-1). Control plates were incubated for 48 

h in normal light conditions. For o-nitrophenyl-�-galactoside (ONPG) assays yeast were 

cultured on plates lacking leucine and tryptophan, supplemented with 20 μM 

phycocyanobilin. Plates were incubated under constant R or FR light as above for 

48 h at 26 °C. ONPG assays were otherwise performed as described in the Clontech 

yeast two-hybrid manual. 

Immunoblotting 

Total protein was extracted from yeast as previously described (Printen and 

Sprague, 1994), except yeast were harvested from plates supplemented with 20 μM 

phycocyanobilin, grown for 48 h at 26 °C in either darkness or constant R light 

(670 nm, 1.7 μmolm-2s-1). Total protein was extracted from four day old Arabidopsis 

seedlings as previously described (Kircher et al., 2002). Protein transferred to membranes 

was detected by amido-black staining. Blocked membranes were incubated with primary 

antibodies for 16 h at 4 °C. Primary antibodies were diluted in 50 mM Tris:HCl pH 7.5, 150 

mM NaCl, 0.005 % (v/v) Tween-20, 5 % (w/v) milk powder, with the following exceptions:  

500 mM NaCl and 0.05 % Tween-20 were used for blots of Arabidopsis extracts, and 2 % 

(w/v) ECL advance blocking agent used in place of milk powder for detection of BD-LUC-

COP1. Antibody dilutions were as follows: �-HA (Covance or Roche) 1:1000, �-phyA 

(Agrisera, for yeast) 1:2000, �-LUC (Sigma) 1:2000, and �-phyA 

((Hiltbrunner et al., 2006), for plants) 1:3000. Secondary antibodies were used at either 

1:50000 (alkaline-phosphatase conjugate, Sigma), 1:50000 (Horseradish-peroxidase 

conjugate, GE Healthcare) for yeast, or 1:1500 (Horseradish-peroxidase conjugate, Santa 

Cruz Biotechnology) for detection of Arabidopsis proteins. Immunoblots were developed 

using either Nitrotetrazolium Blue and Bromo-chloro-indolyl phosphate, ECL advance 
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reagents (detection of BD-LUC-COP1, GE Healthcare), or ECL reagents (Pierce). 

Immuno-histochemistry 
Sections were prepared as for immunogold-labeling, except 400-nm sections were 

cut at - 80 °C and transferred to coverslips. Sections were probed with either rabbit �-phyA 

(1:300, Agrisera) or rabbit �-GFP (1:500, Abcam) and washed 6 times. Bound antibodies 

were detected with goat �-rabbit IgG-Cy3 conjugate (1:400, Dianova). Following washes 

with phosphate buffered saline, sections were stained with DAPI (1 μg/mL, 4',6-Diamidino- 

2-phenylindole dihydrochloride, Sigma) for 10 min to detect DNA, embedded in Mowiol 

(Sigma), and visualized with an epi-fluorescent microscope (Zeiss). The primary antibodies 

were omitted in control experiments, resulting in negligible background. 

Cloning of constructs 
The plant expression vectors pCHF40-PHYA (encoding Pro35S:PHYA-CFP-

TerRbcS) and pPHYA40-PHYA (encoding ProPHYA:PHYA-CFP-TerRbcS) were 

previously described (Genoud et al., 2008). 

 pCHF40-PHYA-NLS (encoding Pro35:PHYA-NLS-CFP-TerRbcS) was created by 

amplifying the C-terminal region of PHYA-NLS present in pPHYA-PHYA-NLS-GFP5 

(Genoud et al., 2008) by PCR using 5'-TTA CAC CAT CCG GAG GTC AG-3' and 5'-GGA 

CTA GTT GCG GCC GCT CCT CCA ACC T-3', cut with XbaI/SpeI, and used to replace the 

XbaI/SpeI fragment of PHYA in the intermediary vector pBS II KS-PHYA (Hiltbrunner et al., 

2005). PHYA-NLS was subsequently cut with BamHI/SpeI and cloned into BamHI/XbaI cut 

pCHF40 (Hiltbrunner et al., 2005). 

 To generate an eYFP tagged form of PHYA-NLS, the fragment coding for PHYA-

NLS was cut from pBS II KS-PHYA-NLS using BamHI/SpeI and cloned into the 

BamHI/XbaI sites of pPPO30 (Rausenberger et al., 2011). 

The plant expression vector pPPO70v1HA (encoding Pro35S:HA-YFP-BamHI-AvrII-

XbaI-TerRbcS) was generated by first cutting pCHF5 (Hiltbrunner et al., 2005) with 

PmeI/NcoI, and ligating in a StuI/NcoI fragment from pYES2 (Invitrogen) to generate 

pCHF5v1. pWCO35 (Rausenberger et al., 2011) was then cut with PvuII/PstI and this 

fragment ligated into PmlI/SbfI cut pCHF5v1 to generate pPPO5v1. Finally, eYFP was 

amplified by PCR from pPPO30 using 5'-GAA GAT CTA AAA ATG GCC TAC CCA TAC 

GAC GTA CCA GAT TAC GCT GCT AGC ATG GTG AGC AAG GGC GAG-3'/5'-GGA CTA 
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GTT ATC TAG AGC CCT AGG ATC CGC CTT GTA CAG CTC GTC CAT G-3', cut with 

BglII/SpeI and cloned into BamHI/XbaI cut pPPO5v1 to generate pPPO70v1HA. 

SPA1 was amplified by PCR with 5'-GCT CTA GAA AAA TGC CTG TTA TGG AAA 

GAG-3' and 5'-GCT CTA GAA ACA AGT TTT AGT AGC TTC-3' from cDNA clone 

pda17902 (Riken), cloned into pBS II KS (pBS II KS-SPA1), cut with XbaI and cloned into 

the AvrII/XbaI sites of pPPO70v1HA to generate pPPO70v1HA-SPA1 (Pro35S:HA-YFP-

SPA1-TerRbcS), or into the SpeI site of pCHF40 to generate pCHF40-SPA1 (Pro35S:CFP-

SPA1-TerRbcS). 

SPA2/3/4 were each amplified by PCR with 5'-ACG CGG ATC CAA AAA TGA TGG 

ATG AGG GAT CAG T-3'/5'-ACG CAC TAG TGA CCA ACT GTA GAA CTT TGA TT-3' 

(SPA2), 5'-ACG CGG ATC CAA AAA TGG AAG GTT CTT CAA ATT CTA ACT-3'/5'-ACG 

CAC TAG TAG TCA TCA TCT CCA GAA TTT TTA TG-3' (SPA3), and 5'-ACG CGG ATC 

CAA AAA TGA AGG GTT CTT CAG AAT CTA-3'/5'-ACG CAC TAG TTA CCA TCT CCA 

AAA TCT TGA TAT TG-3' (SPA4) from cDNA clones obtained from Ute Hoecker (University 

of Cologne, Germany), cut with BamHI/SpeI and cloned into the BamHI/XbaI sites of 

pPPO70v1HA. 

The FRET positive control pCHF30-CFP (Pro35S:CFP-YFP-TerRbcS), was 

generated by ligation of BamHI/SpeI cut CFP from pCHF40 (Hiltbrunner et al., 2005) into 

BamHI/XbaI cut pCHF30 (Hiltbrunner et al., 2006). 

pSPA1-HA-YFP-SPA1 is a T-DNA vector containing a ProSPA1:HA-YFP-SPA1-

TerRbcS cassette and was obtained as follows. A 1672-bp SPA1 promoter fragment 

including the first 12 bp of the SPA1 coding sequence was PCR amplified from genomic 

Col-0 DNA using the primers 5'-CAT GCC ATG GGA TAC AAT TAT TGG GAG CTA TTA 

GTC-3' and 5'-CGG GAT CCT CCA TAA CAG GCA TCA ACA CTC-3'. This fragment was 

cut with NcoI/BamHI and ligated into the NcoI/BamHI site of pCHF5 (Hiltbrunner et al., 

2005) resulting in pSPA1-1672. In parallel, HA-YFP was amplified by PCR from 

pPPO70v1HA-SPA1 using primers including BglII (5'-CAT GCC ATG GCA TGG AAG ATC 

TTA TGG CCT ACC CAT ACG ACG-3') and BamHI/AvrII/SpeI (5'-GAC TAG TTA CCT AGG 

TGC CGG ATC CGC CTT GTA CAG CTC GTC CAT GC-3') sites, respectively. The PCR 

fragment was then cut with BglII/SpeI and ligated into the BamHI/XbaI site of pSPA1-1672 

to obtain pSPA1-1672-HA-YFP. Next, SPA1 was cut from pBS II KS-SPA1 using XbaI and 

ligated in sense orientation into the AvrII site of pSPA1-1672-YFP, resulting in pSPA1- 

1672-HA-YFP-SPA1. Finally, a 2260 bp SPA1 promoter fragment was PCR amplified from 

Supplemental Data. Sheerin et al. (2015). Plant Cell 10.1105/tpc.114.134775

11



genomic Col-0 DNA using 5'-CAT GCC ATG GTT TAA ACC TAG GGA GCA GAG AAA ATA 

ATA CAA CAT GTT GCT G-3' and 5'-CGG GAT CCT CCA TAA CAG GCA TCA ACA 

CTC-3'. This fragment was cut with PmeI/AatII and ligated into the PmeI/AatII site of 

pSPA1-1672-HA-YFP-SPA1 to obtain pSPA1-HA-YFP-SPA1. 

pPPO70v1HA-COP1 is a T-DNA vector containing a Pro35S:HA-YFP-COP1-

TerRbcS cassette. COP1 was PCR amplified from total Col-0 cDNA with the primers 

5'-GAA GAT CTA AAA ATG GAA GAG ATT TCG ACG-3' and 5'-GGA CTA GTC GCA GCG 

AGT ACC AGA ACT TTG-3'. The PCR fragment was then cut with BglII/SpeI and ligated 

into the BamHI/XbaI site of pPPO70v1HA. 

pCHF91-HFR1 is a T-DNA vector containing a Pro35S:LUC+-HFR1-TerRbcS 

cassette. Firefly luciferase (LUC+) was PCR amplified from ProPIF3:LUC+ (Viczian et al., 

2005) using the primers 5'-AAG ATC TAA AAA TGG AAG ACG CCA AAA ACA-3' and 

5'-GGA CTA GTT ATC TAG AGC TTA CCT AGG ATC CGC CAC GGC GAT CTT TCC GCC 

C-3'. The PCR fragment was cut with BglII/SpeI and ligated into the BamHI/XbaI site of 

pCHF5 (Hiltbrunner et al., 2005), resulting in pCHF91 (Pro35S:LUC+-BamHI-AvrII-XbaI-

TerRbcS). The primers 5'-CGC GGA TCC AAA AAT GTC GAA TAA TCA AGC TTT-3' and 

5'-GGA CTA GTT AGT CTT CTC ATC GCA TGG G-3' where then used to amplify the 

HFR1 coding sequence from total Arabidopsis cDNA. The PCR fragment was cut with 

BamH/SpeI and ligated into the BamHI/SpeI site of pBluescript II KS (Stratagene), from 

which it was cut with BamHI/SpeI and ligated into the BamHI/XbaI site of pCHF91. 

pCHF90-PHYA is a T-DNA vector containing a Pro35S:PHYA-LUC+-TerRbcS 

cassette. LUC+ was amplified by PCR from ProPIF3:LUC+ using the primers 5'-CGC GGA 

TCC CGG CTC TAG AAT GGA AGA CGC CAA AAA CA-3' and 5'-GGA CTA GTT ACA 

CGG CGA TCT TTC CGC CC-3'. The PCR fragment was cut with BamHI/SpeI and ligated 

into the BamHI/XbaI site of pCHF5, resulting in pCHF90 (Pro35S:BamHI-XbaI-LUC+-

TerRbcS). PHYA was then cut from pBS II KS-PHYA (Hiltbrunner et al., 2005) using 

BamHI/SpeI and ligated into the BamHI/XbaI site of pCHF90, resulting in pCHF90-PHYA. 

pCHF40-PHYB is a T-DNA vector containing a Pro35S:PHYB-eCFP-TerRbcS 

cassette. The PHYB coding sequence was amplified from Pro35S:PHYB-GFP (Hiltbrunner 

et al., 2005) using the primers 5'-CCC AAG CTT CTA GAA AAA TGG TTT CCG GAG TCG 

GG-3' and 5'-GGG GTA CCT TAT CTA GAA TAT GGC ATC ATC AGC ATC A-3'. The PCR 

fragment was then digested with XbaI and ligated in sense orientation into the XbaI site of 

pCHF40 (Hiltbrunner et al., 2005). 
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pPPO30A-PHYA is a T-DNA vector containing a ProPHYA:PHYA-eYFP-TerRbcS 

cassette and has been described previously (Rausenberger et al., 2011). 

All pCHF T-DNA vectors confer resistance to Basta; pPPO T-DNA vectors contain a 

mutated version of PPO as selection marker that results in resistance to 

Butafenacil/Inspire. Selection of transgenic plants using Basta and Inspire has been 

described (Rausenberger et al., 2011). 

The yeast three-hybrid vector, pBridge (Clontech), was modified to replace multiple 

cloning sites and to remove the N-terminal fusion from the second cloning site. Synthetic 

oligonucleotides 5'-AAT TGG ATC CAG AAT TCA CTA GTT AAT GCA-3' and 5'-TTA ACT 

AGT GAA TTC TGG ATC C-3' were annealed and ligated into EcoRI/PstI cut pBridge. 

Subsequently pBridge was cut with XbaI/BglII and the fragment replaced with a fragment 

generated by PCR using 5'-ACG TCT CTA GAG CAC ATT CTG CG-3', 5'-ACG TCG GAT 

CCT TAC CTA GGC TGC AGA GAT CTT GTA TGG ATG GGG GTA ATA G-3', and pBridge 

as a template, that was cut with XbaI and BamHI. COP1 was amplified by PCR from 

Arabidopsis total cDNA with 5'-CGC GGA TCC AAA AAT GGA AGA GAT TTC GAC GGA 

CCC GGT TG-3' and 5'-GGA CTA GTC GCA GCG AGT ACC AGA ACT TTG-3', creating a 

silent mutation in the internal BamHI site, cut with BamHI/SpeI, and cloned into the 

BamHI/SpeI sites of modified pBridge. PHYA-NLS as described above, was cut from pBS 

II KS using BamHI/SpeI, and cloned into the BglII/AvrII sites of modified pBridge. For 

generation of vectors for PHYB-NLS, the second multiple cloning site of pBridge was 

alternately modified by cutting XbaI/BglII, and ligating in a new XbaI/BamHI cut fragment 

generated from pBridge by PCR using 5'-ACG TCT CTA GAG CAC ATT CTG CG-3' and 

5'-ACG TCG GAT CCT TAC CTA GGC TGC AGA GAT CTT GTA TGG ATG GGG GTA ATA 

G-3'. Subsequently full length PHYB, cut with XbaI from pCHF40-PHYB was cloned into 

the NheI site. 

pCGADT7ah-PHYB is a yeast two hybrid vector coding for PHYB-GAL4 AD. To 

obtain it, PHYB coding sequence was amplified from Pro35S:PHYB-GFP (Hiltbrunner et 

al., 2005) using oligos 5'-CCC AAG CTT CTA GAA AAA TGG TTT CCG GAG TCG 

GG-3'/5'-GGG GTA CCT TAT CTA GAA TAT GGC ATC ATC AGC ATC A-3', cut with XbaI 

and cloned into the XbaI site of pCGADT7ah (Rausenberger et al., 2011). 

The PHYA-, PHYA 1-406-, PHYA 1-617-, and PHYA C323A-binding domain vectors 

(pD153AH) have been previously described (Hiltbrunner et al., 2006; Rausenberger et al., 

2011). 
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PHYA G727E and PHYA E777K were created by overlap extension PCR using 

primer pairs 5'-AGA CAC TCT TGT GCG ATA TG-3'/5'-ACA AAA CAC ACC TCA ACC ACG 

TTT T-3' + 5'-AAA ACG TGG TTG AGG TGT GTT TTG T-3'/5'-GGC AAG TTG CAG GAA 

ACA GA-3' (G727E), or 5'-AGA CAC TCT TGT GCG ATA TG-3'/ 5'-TGG ATT CCA CTT 
TGT GCA CCA TC-3' + 5'-GAT GGT GCA CAA AGT GGA ATC CA-3'/5'-GGC AAG TTG 

CAG GAA ACA GA-3' (E777K), cut with AvrII/SpeI and cloned into AvrII/SpeI cut pD153AH-

PHYA.

The yeast two-hybrid activation domain vector, pGADT7 (Clontech), was modified 

using annealed oligonucleotides 5'-TAT GGA TCC CGG GAC TAG TTA AA-3' and 5'-GAT 

CTT TAA CTA GTC CCG GGA TCC A-3' ligated into NdeI/BamHI cut plasmid to replace 

the multiple cloning site. FHY1 was amplified by PCR with 5'-CGC GGA TCC AAA AAT 

GCC TGA AGT GGA AGT G-3' and 5'-ACG TCA CTA GTT TAC AGC ATT AGC GTT GAG 

AAG T-3', cut with BamHI/SpeI, and cloned into the BamHI/SpeI sites of modified pGADT7. 

SPA1 was cut from pBS II KS-SPA1 using XbaI and ligated into the SpeI site of modified 

pGADT7. SPA2/3/4 PCR products were each cut using BamHI/SpeI and cloned into the 

BamHI/SpeI sites of modified pGADT7. 

Deletion constructs of SPA1 were generated by PCR using 5'-ACG TCG CTA GCG 

GCA TGT TAC TTA AAA GAG CTA TGA AAG G-3' and 5'-ACG TCG CTA GCA ACA AGT 

TTT AGT AGC TTC ATG TT-3' for SPA1 203-1029, 5'-ACG TCG CTA GCG GCA TGC CTG 

TTA TGG AAA GAG TAG-3' and 5'-ACG TCG CTA GCA TAC CGA GCA AAT TTG CAC 

AAC-3' for SPA1 1-698, both cut with NheI and cloned into the SpeI site of modified 

pGADT7. SPA1 203-529 was generated by PCR using 5'-ACG TCG GAT CCA GGA ATG 

GTT ACT TAA AAG AGC TAT GAA AG-3'/5'-ACG TCA CTA GTT ATC AAC TCT GAC TTT 

AGT ATA TC-3' and cloned into the BamHI/SpeI sites of modified pGADT7. SPA1 1-202, 

530-1029 and SPA1 1-529, 699-1029 were generated by overlap extension PCR using 

primer pairs 5'-ACG TCG CTA GCG GCA TGC CTG TTA TGG AAA GAG TAG-3'/5'-CAT 

CCT CGC ACA ACT GAG AAA AAT TCG AAG-3' + 5'-TTC TCA GTT GTG CGA GGA TGA 

TTC AGT T-3'/5'-ACG TCG CTA GCA ACA AGT TTT AGT AGC TTC ATG TT-3' and 5'-ACG 

TCG CTA GCG GCA TGC CTG TTA TGG AAA GAG TAG-3'/5'-GAA CTT GCT TAT CAA 

CTC TGA CTT TAG T-3' + 5'-AGA GTT GAT AAG CAA GTT CGA AAC CTG TG-3'/5'-ACG 

TCG CTA GCA ACA AGT TTT AGT AGC TTC ATG TT-3'. Flanking primers as above were 

used for the second round. Products were cut with NheI and cloned into the SpeI site of 

modified pGADT7. 
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The yeast two-hybrid DNA binding domain vector pGBKT7 (Clontech) was 

modified as above for pGADT7, to replace the multiple cloning site. Full-length SPA1, cut 

with XbaI as above was cloned into the SpeI site of modified pGBKT7 to obtain pGBKT7-

SPA1. 
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