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SI Note 1: Connectivity of the Network Model
Each neuron in the network model of the cortico-BG-thalamo-
cortical loop (Fig. S1) received synaptic currents (AMPA-mediated
glutamatergic or GABAa-mediated GABAergic) from multiple
neurons. Denoted with n the generic target neuron and with Ipopn
the net synaptic current received by neuron n from the neuronal
population pop (i.e., one among the populations of FSIs, MSNs,
PANs, PPIs, PYNs, RENs, and TCNs), we have
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where Npop
n is the number of neurons in the population pop that

project onto the neuron n, Vn is the membrane voltage (milli-
volts) of neuron n, gtypen is the maximal conductance in neuron n
for the specific type of synapses involved (AMPA or GABAa),
and Etype is the correspondent reversal potential. The gating
variable si, i= 1; 2; . . . ;Npop

n describes the presynaptic release
from the projecting neuron i in the population pop onto the
neuron n, and it evolves according to the first-order differential
equation (1)
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where Vi is the membrane voltage (millivolts) of the neuron
i, and α and τ are parameters to be assigned. For each neuron,
EAMPA = 0 mV and EGABAa =−80 mV, and parameters α and τ
were chosen for each type of neurons to match the synaptic dy-
namics reported in experimental studies (Table S1). In order to
increase the variability of the firing patterns at rest within each
population, the values gAMPA

n and gGABAa
n varied with the neuron

n and were extracted from a Gaussian distribution with fixed
mean (Table S1) and SD equal to 10% of the mean. The con-
nectivity among the neuron models (i.e., network topology) was
defined to reflect the neuronal anatomy of the cortico-BG-tha-
lamo-cortical loop in NHPs (2–13):

Cortico-Thalamic Subsystem. The topology of this subsystem was
modified from ref. 14 to reflect the dense axonal arborization
and reciprocal connections between the M1 cortex and the
ventrolateral thalamus (7, 11). Each PYN received AMPA-
mediated synapses from 10 PYNs (nearest neighbors) and 10 TCNs
(randomly chosen) and GABAergic synapses from all of the
FSIs. Each FSI had synapses from all of the remaining FSIs
(GABAa) and PYNs (AMPA), and three randomly chosen TCNs
(AMPA). Each TCN had AMPA-mediated synapses from 10
random PYNs and GABAergic synapses from eight RENs
(nearest neighbors). Each REN had synapses from all of the
TCNs and RENs (AMPA- and GABAa-mediated, respectively)
and five randomly chosen PYNs (AMPA). Each TCN also re-
ceived GABAergic input from five randomly chosen PANs from
the GPi to reflect the arborization of the GPi in the ventrolateral
thalamus (5, 10).

Striato-Pallidal Subsystem. This subsystem included the striatal
matrix compartment (15) and it explicitly modeled the conver-
gent inputs from the cortico-thalamic system onto the putamen
(4, 8, 9, 13) and the segregated projections from the putamen to
the GPi (2, 3, 6). Each MSN received AMPA-mediated synapses
from five PYNs and five TCNs (randomly chosen) and GABAa-

mediated synapses from 10 MSNs (nearest neighbors) and all of the
PPIs. Each PPI had AMPA-mediated synapses from three PYNs
and three TCNs (randomly chosen) and gap junctions from six
PPIs (nearest neighbors). Finally, each PAN in the GPi received
GABAa-mediated synapses from five random MSNs.
In both subsystems, the random connections were taken from

a uniform distribution. Because the connections from the PPIs to
the MSNs are more than three times larger than those among
MSNs (16), the maximal conductance in Eq. S1 for the synaptic
currents from the PPIs to the MSNs was set three times the value
for the synaptic currents from MSNs to MSNs, and the number
of PPIs projecting to each MSN was chosen as in ref. 17. Finally,
the gap junction between any two PPIs was modeled as a resistive
element between them (18, 19).
The combined effects of the GABAergic synapses from GPe

and the glutammatergic synpases from STN onto the GPi were
simulated by endowing each PAN with a stochastic sequence of
depolarizing current pulses (SI Note 2). Furthermore, each
neuron in the network received a constant current (Ibias) to
simulate the background excitation and a Gaussian noise with
zero mean and SD σ to simulate subthreshold membrane volt-
age fluctuations (±5 mV). Values of Ibias and σ for each pop-
ulation are reported in Table S1. Note that, for the PYNs, the
value of Ibias was varied across the population (Gaussian distri-
bution with mean value reported in Table S1 and SD equal to
20% of the mean) to increase the neuron-to-neuron variability of
the average discharge rate, as reported in refs. 20–22.

SI Note 2: Simulation of Normal and Parkinsonian Conditions
In normal NHPs, STN and GPe neurons have weakly correlated,
nonoscillatory discharge patterns (23, 24) and the striatal MSNs
receive stronger inhibition from PPIs than from other MSNs
(25). We captured the latter by choosing the ratio of PPIs to
MSNs (20:200) and the all-to-all connection scheme between
PPIs and MSNs (SI Note 1) consistent with histological reports
(15). We simulated the effects of the STN and GPe onto the
GPi, instead, by applying to each PAN a sequence of depola-
rizing current pulses IS. Each PAN received a different sequence
and, within each sequence, pulses were extracted from a Poisson
distribution (mean and minimum interpulse interval: 20 and
10 ms, respectively), with pulse amplitudes and durations ranging
in the intervals [−9.0e-3, −5.0e-4] mA/cm2 and [5, 10] ms, re-
spectively (uniform distribution).
The transition from normal to parkinsonian (PD) conditions

was captured by simulating the effects of the loss of dopamine in
the putamen and the subthalamo-pallidal subsystem. First, we
lowered the baseline current Ibias to the MSNs (Table S1) to
simulate the effect of reduced activation of the D1 receptors,
which are primarily expressed on the MSNs along the direct
pathway (26). Second, we decreased by 95% the input from the
PPIs to the MSNs to simulate the effects of a reduced activation
of the D5 receptors (27). Third, we simulated the effect of the
increased level of acetylcholine on the M1 receptors of the MSNs
(15) by varying the maximal conductance of the M-type potas-
sium currents, that is, for each MSN we replaced the nominal
value under normal conditions [i.e., 1.3 mS/cm2 (1)] with a ran-
dom value extracted from a Gaussian distribution with mean 1.3
mS/cm2 and SD 0.35 mS/cm2.
Note that the reduced activation of the D1 receptors and the

acetylcholine-mediated increased activation of the M1 receptors
have opposite effects on the excitability of the MSNs (28). In
our simulations, the combination of a lower current Ibias and
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a randomized value of the M-type maximal conductance aimed
to reproduce the net effect of these mechanisms combined and it
guaranteed that 10–30% of the MSNs in each instance of the
network model reduced the average firing rate at the transition
from normal to PD conditions.
Furthermore, we accounted for the exaggerated oscillatory

input that is projected from the STN and GPe onto the GPi
neurons under PD conditions (23, 29, 30) by replacing the
sequences IS applied to the PANs. Specifically, we defined two
classes of pulsatile sequences (class-1 and class-2) with slightly
different statistical proprieties and, for each PAN, we applied
either a class-1 (60% of PANs) or a class-2 (40% of PANs) se-
quence of current pulses IS. Class-1 sequences were Poisson
processes (mean and minimum interpulse interval: 110 and 50 ms,
respectively) with pulse amplitudes and durations varying in the
range [−1.3e-2, −5.0e-4] mA/cm2 and [20, 120] ms, respectively
(uniform distribution). Class-2 sequences were Poisson processes
(mean and minimum interpulse interval: 40 and 20 ms, respec-
tively), with pulse amplitudes and durations uniformly varying in
[−8.0e-3, −5.0e-4] mA/cm2 and [20, 50] ms, respectively. Class-1
and class-2 sequences reproduced a prominent 4- to 8-Hz (i.e.,
tremor band) and 10- to 15-Hz (i.e., beta band) oscillatory input
to the GPi neurons, respectively (23), and the ratio between
class-1 and class-2 recipient PANs was chosen in agreement with
the proportion reported in NHPs (23). Finally, in order to in-
crease the pairwise correlation between pallidal neurons in PD
conditions (23), we applied the same stochastic sequence IS up
to 10 PANs simultaneously.

SI Note 3: Simulation of the DBS Input
STN DBS depolarizes subthalamofugal axons projecting toward
the GPi (31–33). We modeled the effects of these projections
on the GPi by applying depolarizing current pulses to the PANs.
For each DBS pulse every PAN received a current input
IDBS = A wDðt−ΔwÞ (triangular window) with duration D= 3 ms,
delay Δw = 2 ms since the pulse (Fig. S2), and amplitude A ex-
tracted from a Gaussian distribution with mean μDBS and SD equal
to the mean (Table S1). Amplitude A varied with each DBS pulse
and neuron and could be either supra- or subthreshold. D and Δw
accounted for the temporal dynamics of the dendritic summation of
the subthalamo-pallidal inputs in the GPi somas and the synaptic
propagation latency altogether, and were chosen based on ex-
perimental data (34, 35) to reproduce the poststimulus lag ob-
served in NHPs (36).
STN DBS is also able to depolarize cortical and thalamic

neurons, presumably via antidromic mechanisms (37–39), and
striatal neurons, either via orthodromic activation of the sub-
thalamo-striatal projections (4, 40) or via antidromic activation
of the striatonigral projections (6, 41). We simulated the effects
of STN DBS on the thalamus, cortex, and putamen by applying
depolarizing current pulses to the TCNs, PYNs, and MSNs, re-
spectively. Current pulses were modeled as for the pallidal
neurons but with shorter duration (2 ms) and delay (1 ms) to
match experimental data in refs. 39, 41, 42, and 43. In particular,
the delay was chosen based on experimental data (44, 45) and
the duration was chosen to account for potential slow-down and
gating effects occurring in the soma (44, 46). Finally, the pulse
amplitude varied across the pulses and neurons and it was ex-
tracted from a Gaussian distribution with mean μDBS (Table S1)
and SD equal to the mean.
Regular (i.e., constant interpulse intervals) STNDBS at 20, 50,

80, 100, 130, 160, and 180 Hz was simulated in PD conditions.
Two additional scenarios were simulated in case of 130-Hz STN
DBS: (i) ineffective regular stimulation (i.e., the mean μDBS of
the distributions used to generate the amplitudes A was set to
2% of the value in Table S1 for every neural population) and (ii)
stochastic stimulation, that is, the onsets of the DBS pulses were

randomly distributed according to a Gamma function with av-
erage rate 130 Hz and 60% variability, as proposed in ref. 47.

SI Note 4: Data Analysis
Rate and Burst Analysis. For each neuron under a given combi-
nation of disease condition (i.e., normal or PD) and DBS settings
we computed the mean firing rate both before and during DBS as
the average discharge frequency over nonoverlapping 1,000-ms-
long windows. For each population the average was then com-
puted across the available neurons (see refs. 43 and 48).
For each neuron under a given combination of disease con-

dition and DBS settings we defined a “burst” as a group of three
or more consecutive spikes, and we detected the bursts by using
the modified surprise method (49). First, we identified the pu-
tative bursts as sequences of consecutive spikes whose ISIs were
less than two times the mean ISI of the series. Then we refined
the putative bursts by calculating the surprise index (SI) (50) for
every combination of contiguous spikes and taking the combi-
nations with the highest SI. Finally, we rejected those refined
bursts that did not include at least three consecutive spikes or
that had SI <3. The mean burst rate was computed as the av-
erage number of nonrejected bursts per second over non-
overlapping 3,000-ms-long windows.

Classification of Discharge Patterns. The discharge patterns of the
TCNs and PYNs under normal conditions, PD conditions with no
DBS applied, and PD conditions with 130-Hz DBS were classified
as “regular,” “random” (i.e., irregular), or “bursty” by using the
criteria in ref. 21. Briefly, for every combination of disease
condition and DBS settings the spike train of each neuron was
divided into consecutive, nonoverlapping intervals of length Δt
(Δt is the mean ISI for the train) and the number of spikes fired
in each interval (i.e., spike count) was counted. Then, we com-
puted the fraction of intervals with spike count = 0, 1, 2, 3, etc.,
and we constructed the correspondent histogram. Finally, we
alternatively fit the histogram with a Gaussian distribution
(mean = 1, SD = 0.5) and two Poisson distributions [one having
mean = 1, the other one having either mean = 0.9 (cortex) or
mean = 0.8 (thalamus)]. The spike train was classified as regular,
random, or bursty if the best fit (in the least square sense) was given
by the Gaussian distribution, Poisson distribution with mean = 1,
or the other Poisson distribution, respectively.

Poststimulus Time Histograms. For each neural population and
DBS settings, we computed the PSTH by counting the neuronal
discharges into consecutive nonoverlapping bins (bin size = 0.1 ms)
in the interstimulus intervals following each DBS pulse and nor-
malizing to the prestimulation baseline activity (z-score). A sig-
nificant (P< 0:01) poststimulus increase (decrease) in neuronal
discharge was indicated by the PSTH at any lag from the DBS
pulse when the correspondent z-score was >2.58 (<−2:58). See
ref. 48 for further details.
For each DBS setting we computed the bi-PSTH for the MSNs.

First, for each simulated MSN we computed the sample his-
togram (bin size: 0.1 ms) of the pairs (x; y), with x and y being
the latencies (in milliseconds) of the first poststimulus spike
within the interpulse interval for two consecutive DBS pulses.
Then, we summed the histograms across the available neurons
and we normalized to the prestimulation baseline activity (z-score).
A significant (P< 0:01) poststimulus increase (decrease) in neu-
ronal discharge activity over two consecutive DBS pulses was
indicated by the bi-PSTH at any pair of lags (x; y) when the
correspondent z-score was >2.58 (<−2:58).

Cross-Correlation Analysis. For each combination of neural pop-
ulation, disease condition, and DBS settings we computed the
average pairwise cross-correlation. Briefly, we computed the
cross-correlation (maximum lag: 1,000 ms) between any pair of
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neurons in the neural population and we used the maximal value
of the cross-correlation sequence as estimation of the cross-
correlation coefficient. Then, we estimated the sample distribu-
tion of these coefficients across the available pairs of neurons in
the neural population and we computed the mean and SD.

Spectral Analysis. Power spectra of individual spike trains were
computed as in ref. 51. For each combination of neuron, disease
condition, and DBS settings the simulated spike trains were
sampled at 1,000 Hz, filtered (PYNs, TCNs, and MSNs: ninth
order low-pass Butterworth filter with 1-dB cutoff at 1 Hz;
PANs: ninth order band-pass Butterworth filter with 1-dB cutoffs
at 5 and 20 Hz), and tampered (Hanning window). Then, the
power spectrum was computed via Welch’s method as the average
periodogram across consecutive windows (2,000 ms per window,
500-ms overlap), thus resulting in 0.5-Hz resolution. For each
population, the average spectrum across the neurons was com-
puted and normalized to the mean power in the band [5, 40] Hz.
For the TCNs, theMSEbetween the population-averaged power

spectrum under normal conditions ðPref ð · ÞÞ and under PD condi-
tions with DBS [PDBSxð · Þ, where x is the DBS frequency, that
is, x= 0, 20, 50, 80, 100, 130, 160, or 180 Hz], was computed as:

MSEx =
X

3≤f≤100

�
PDBSxðf Þ−Pref ðf Þ

�2
N

; [S3]

where N is the number of frequency values f in the band [3,
100] Hz at which the power spectra were estimated (N = 195
because of 0.5-Hz resolution). Note that the MSE was used to
measure the overall distance between the power spectra of the
TCNs under different conditions, whereas the interval [3, 100]
Hz was chosen because the oscillatory activity of the TCNs in sev-
eral bands within this interval (e.g., tremor, beta, and gamma band)
is either associated with the execution of voluntary movements or
affected by movement disorders (e.g., see refs. 39 and 52–57).

Relay Performance Analysis. The fidelity of the TCNs in relaying
cortical inputs was defined as in refs. 58 and 59. First, we noted
that each TCN receives input from 10 different PYNs simulta-
neously (SI Note 1). Second, we noted that each TCN needs the
concurrent depolarization of at least 3 out of 10 presynaptic
PYNs to receive a suprathreshold depolarizing synaptic current.
Hence, for each TCN in a given combination of disease condi-
tion and DBS settings we computed the total number of spikes
fired in consecutive, nonoverlapping time bins (1 ms per bin) by
the PYNs projecting onto that TCN, and we determined the time
bins wherein three or more spikes were fired concurrently. Then,
we used the concurrent presence of at least three presynaptic
spikes as the minimal piece of cortical information to be relayed
and we assessed whether the TCN relayed it. To the purpose, we
determined whether the TCN produced a “correct response”
(CR) to each piece of information, with the CR occurring if the
TCN spiked at least once within Δr= 30 ms since the delivery of
the piece. Finally, we measured the relay fidelity of the TCN by
computing the fidelity index (FI) (59):

FI =
#CR
Nbins

; [S4]

where Nbins is the number of time bins with three or more con-
current cortico-thalamic inputs to that TCN. For each TCN, dis-
ease condition, and DBS settings, we computed the average
FI value over consecutive, nonoverlapping W = 3,000-ms-long
windows. Variation of ±10% in the size of Δr and W did not
significantly affect the results of our analysis.
We used the average FI (mean and SD) across all of the TCNs

under normal conditions (no DBS applied) as a reference (FIref )

and we compared the values of FI under PD conditions (either
with or without DBS) to this reference. In particular, for any
DBS settings under PD conditions, we computed the loss in fi-
delity as

loss = 100×
����FI − μref

σref

����; [S5]

with μref and σref being the mean and SD of the reference
error FIref .

SI Note 5: Population-Average Discharge Patterns and Cross-
Correlation
Fig. S3 reports the population-average firing rates for the PYNs,
TCNs, MSNs, and PANs in the model under different disease
conditions and DBS settings (regular stimulation applied).
Fig. S4 reports the percentage of PYNs, TCNs, MSNs, and

PANs under PD conditions that had significant poststimulus
modulation of the discharge activity under regular DBS. In
particular, we first computed the PSTH normalized to the
prestimulation activity (z-score) for each neuron under 20-, 50-,
and 130-Hz DBS. Then, for each DBS frequency, we analyzed the
PSTHs and, for each bin (bin size: 0.1 ms), we counted how many
PYNs, TCNs, MSNs, and PANs had a z-score higher than 1.96 in
that bin. Finally, we plotted the percentage of neurons in each
neural population having a z-score higher than 1.96 in each bin.
Note that a z-score higher than 1.96 means that the likelihood of
having a spike in that bin is significantly higher during stimulation
than before stimulation, with a P value P < 0:05.
Fig. S5 assesses the direct effects of STN DBS on the post-

stimulus activity of PYNs and TCNs. In particular, we computed
the PSTH for PYNs and TCNs under 130-Hz STN DBS for the
following simulated scenarios:

i) The network model was simulated under PD conditions and
the direct effects of 130-Hz DBS were applied to the PANs,
PYNs, TCNs, and MSNs.

ii) The network model was simulated under PD conditions and
the direct effects of 130-Hz DBS were applied to the PANs,
TCNs, and MSNs, but not to the PYNs.

iii) The network model was simulated under PD conditions and
the direct effects of 130-Hz DBS were applied to the PANs,
PYNs, and MSNs, but not to the TCNs.

Each scenario was simulated three times (hence the number of
PYNs and TCNs in Fig. S5 is N = 600). Fig. S5 indicates that the
poststimulus activation of the neurons is primarily due to the
direct effects of DBS.
For each combination of disease condition andDBS settings we

estimated the cross-correlation coefficient for every pair of PANs,
PYNs, TCNs, or MSNs. It resulted that, for the PYNs, the cross-
correlation decreased when transitioning from normal to PD
conditions and then it increased when DBS was applied (normal:
1.56e-4 ± 0.94e-4; PD with no DBS: 1.41e-4 ± 0.86e-4; PD with
130-Hz STN DBS: 3.03e-4 ± 1.26e-4; mean ± SD). The pairwise
cross-correlation of the TCNs increased under PD conditions
and was restored to the value for the normal state when high-
frequency DBS was applied (normal: 4.15e-4 ± 3.53e-4; PD
with no DBS: 5.03e-4 ± 4.19e-4; PD with 130-Hz STN DBS:
4.19e-4 ± 4.30e-4; mean ± SD). The trend for PANs and MSNs
was as follows (mean ± SD):

• PANs: 4.64e-3 ± 0.19e-3 (normal); 7.26e-3 ± 0.93e-3 (PD
with no DBS); 1.37e-2 ± 0.08e-2 (PD with 130-Hz STN DBS).

• MSNs: 6.0e-5 ± 2.8e-5 (normal); 1.52e-4 ± 0.95e-4 (PD with
no DBS); 2.46e-4 ± 1.41e-4 (PD with 130-Hz STN DBS).

We simulated themodel under PD conditions and regular 130-Hz
STN DBS while blocking the synaptic currents from the MSNs to
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the PANs and replacing these currents with a surrogate input (open-
loop simulation; see main text for details). Then, for every PAN,
we computed the firing rates in nonoverlapping 1,000-ms-long
windows and we compared with the correspondent values
obtained without the synaptic block from the MSNs to the
PANs. Results are reported in Fig. S6.

SI Note 6: Snapshots of the Simulated Model Network
Fig. S7 reports the raster plots over a 500-ms window of the cortical
neurons (PYNs and FSIs), thalamic neurons (TCNs and RENs),
striatal neurons (MSNs andPPIs), andpallidal neurons (PANs) in our
model network under normal conditions and PD conditions (noDBS
applied), and under PD conditions with 130-Hz STN DBS (60, 61).
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Fig. S1. Schematic of the cortico-BG-thalamo-cortical loop with the direct effects of STN DBS on cortex, striatum, GPi, and thalamus (yellow arrows). Red,
black, and green arrows are glutamatergic, GABAergic, and dopaminergic projections, respectively. The structures explicitly modeled are depicted with black
boxes, and the remaining structures are in gray boxes. Legend: GPe (GPi), external (internal) globus pallidus; SNpc, substantia nigra pars compacta; STN,
subthalamic nucleus.
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Fig. S2. Schematic of the simulation of the effects of a STN DBS pulse onto a GPi neuron. When the DBS pulse is delivered (Top), a delayed poststimulus
current (IDBS) is applied to the neuron, where the delay ΔW and the duration D of the current mimic the propagation of the pulse from the STN to the
presynaptic area of the neuron and the postsynaptic inflow, respectively. If IDBS is suprathreshold, the membrane potential Vn of the neuron results in an
action potential.
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Fig. S3. Population-average firing rate (mean + SD) of PYNs (A), TCNs (B), MSNs (C), and PANs (D) in normal conditions at rest (N) and in PD conditions with
regular DBS applied at several frequencies. Each population includes N = 600 neurons. 0-Hz DBS means no stimulation applied.
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Fig. S4. Percentages of PYNs (A), TCNs (B), MSNs (C), and PANs (D) simulated under PD conditions whose PSTH has a z-score higher than 1.96 when DBS at
20 Hz (red lines), 50 Hz (blue lines), and 130 Hz (black lines) is applied. Each population includes N=600 neurons.
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Fig. S5. PSTH (bin width: 0.2 ms) of TCNs (A) and PYNs (B) estimated under PD conditions with 130-Hz STN DBS. Black lines are computed for scenario i in SI
Note 5. Red lines are computed for scenarios iii and ii in SI Note 5, respectively. Black dotted lines denote the 95% confidence bounds.

50 100 150 20050

100

150

200

)s/sekips(
F

O-L (spikes/s)

Fig. S6. Each dot reports the discharge rate of a PAN (N= 600 neurons) in a nonoverlapping 1,000-ms-long window for two DBS settings, i.e., F (y axis) and O-L
(x axis). Settings: F, PD conditions and regular 130-Hz STN DBS applied (antidromic and orthodromic effects included); O-L, as settings F but the synaptic
currents from the MSNs to the PANs are blocked and replaced by a surrogate input (open-loop simulation).
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Fig. S7. Raster plot of the simulated model neurons under normal conditions (left column), PD conditions with no stimulation (center column), and PD
conditions with 130-Hz STN DBS (PD+HFS, left column). From top to bottom: PYNs (black dots) and FSIs (blue dots) in the cortex; TCNs (black dots) and RENs
(blue dots) in the thalamus; MSNs (black dots) and PPIs (blue dots) in the putamen; PANs in the GPi.
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Table S1. Parameters in the model

Neuron type
Ibias,

mA/cm2
μDBS,

mA/cm2
σ Gaussian noise,

mA/cm2 hgtypei, S/cm2 Synaptic gate s Refs.

PYN −1.88e-3 −3.5e-3 −1.0e-3 2.7e-4 (AMPA) To PYNs, FSIs, TCNs RENs: α = 0.55; τ = 5.26 ms 14
3.6e-4 (GABAa) To MSNs: α = 0.2; τ = 16.7 ms 18

To PPIs: α = 0.23; τ = 2.38 ms 16, 19

FSI −2.0e-3 NA −1.0e-3 2.9e-4 (AMPA) To PYNs, FSIs: α = 2.5; τ = 5.56 ms 14
1.0e-4 (GABAa)

TCN −3.0e-3 −4.0e-3 −7.0e-4 3.7e-4 (AMPA) To PYNs, FSIs, RENs: α = 0.55; τ = 5.26 ms 14
1.6e-4 (GABAa) To MSNs: α = 0.2; τ = 11.1 ms 18

To PPIs: α = 0.23; τ = 2.38 ms 16, 19

REN −1.0e-3 NA −7.0e-4 1.0e-4 (AMPA) To RENs, TCNs: α = 10; τ = 6.17 ms 60
8.0e-4 (GABAa)

MSN −5.0e-4* −1.7e-3 −7.0e-4 1.3e-4 (AMPA) To MSNs, PANs: α = 2.0; τ = 13.0 ms 1
−3.5e-4** 3.5e-4 (GABAa)

†

1.0e-3 (GABAa)
§

PPI −3.0e-3 NA −1.0e-3 1.0e-4 (AMPA) To MSNs: α = 2.0; τ = 13.0 ms 61
2.0e-4 (GABAa)

PAN NA −4.3e-3 −1.0e-3 3.4e-4 (GABAa) To TCNs: α = 10; τ = 6.17 ms 60

hgtypei, mean value of the maximal conductance (“type” is either AMPA or GABAa) in the neurons of the type specified in the first column; s, gating variable
in Eq. S2 from the neurons of the type specified in the first column. For each type of target neuron, α and τ are reported along with the correspondent
reference (last column). †Synapses from MSNs; §synapses from PPIs; *normal state; **PD state; NA, not applied. Note that Ibias is the average value in case
of PYNs.
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