Online SERS Detection and Characterization of Eight Biologically-Active Peptides Separated by Capillary Zone Electrophoresis

Pierre Negri, Scott A. Sarver, Nicole M. Schiavone, Norman J. Dovichi, and Zachary D. Schultz* Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

*Corresponding Author email: Schultz.41@nd.edu

Abstract

This supplement contains a description of the CZE-ESI-MS experiments, discussion of the results, Figures S1 and S2, and Tables S1-S9. Figure S1 shows (A) the total and (B) the extracted ion electropherograms of the eight peptides resulting from the CZE-ESI-MS experiments. Figure S2 shows the mass spectra of the eight detected peptides. Table S1 summarizes the results of the CZE-ESI-MS experiments and lists each peptide, along with the observed m/z, expected m/z, sample concentration, and estimated LOD. Also included are tables summarizing the observed vibrational bands with assignments based on literature precedents in the SERS spectra of the eight biologically-active peptides shown in Figure 3. They include assignments for the bands observed in the SERS spectrum of Laminin Pentapeptide (Table S2), Bombesin (Table S3), Angiotensin III (Table S4), Somatostatin (Table S5), Amyloid β -Protein (Table S6), Angiotensin II (Table S8), and Substance P (Table S9).

CZE-ESI-MS Confirmation of Peptide Migration.

A 50 cm (72 μm i.d., 143 μm o.d.) uncoated fused silica capillary (Polymicro Technologies, Phoenix, AZ) was coupled to an Orbitrab Velos mass spectrometer (Thermo Fisher Scientific) via an eletrokinetically pumped sheath-flow electrospray interface.¹ The capillary dimensions and buffer conditions were matched to those used in the CZE-SERS experiments and were not optimized for MS detection. The electrospray ionization (ESI) emitter was generated from a borosilicate glass capillary and pulled (Sutter Instrument, Novato, CA) to an 8 μm i.d. tip. The same separation buffer was used for the CZE-ESI-MS experiments: 10 mM ammonium bicarbonate (pH 8). The sheath liquid was a mixture of 0.1% formic acid and 10% methanol in water to facilitate the electrospray. Voltages were provided by two Spellman CZE 1000R power supplies controlled by a custom LabView program. Electrospray and separation voltages were 1.2 kV and 10.2 kV, respectively, resulting in a 200 V cm⁻¹ separation. The sample was introduced into the separation capillary using a 2 s pressure injection. The injection block was identical to that used in the CZE-SERS experiments.

Full MS scans were obtained in the Orbitrap mass analyzer at a resolution of 70,000 (at m/z 200) over a range of 380-2000 m/z. The maximum allowed ion accumulation time was 250 ms, and the automatic gain control target was 1.00×10^6 . Extracted ion and total ion electropherograms were constructed from the data using MATLAB. The electropherograms were smoothed using a 7 point Savistky-Golay smoothing algorithm and background subtracted using the built-in baseline correction algorithm in MATLAB (msbackadj).

Figure S1. (A) Total and (B) extracted ion electropherograms of the eight peptides resulting from the CZE-ESI-MS experiment showing detection of Laminin Pentapeptide (m/z = 594.3367) at $t_{m1} = 318$ s, Bombesin (m/z = 810.4175) at $t_{m2} = 324$ s, Angiotensin III (m/z = 466.2615) at t_{m3} = 361.2 s, Somatostatin (m/z = 819.3678) at $t_{m5} = 378$ s, Amyloid β-Protein (m/z = 530.7956) at $t_{m4} = 367.2$ s, Angiotensin I (m/z = 648.8478) at $t_{m6} = 388.2$ s, Angiotensin II (m/z = 523.775) at $t_{m7} = 391.8$ s, and Substance P (m/z = 674.3733) at $t_{m8} = 695.4$ s as noted by the asterisk. The peptide concentration in this mixture is 5.0x10⁻⁶ M.

CZE-ESI-MS confirmed the identity, the elution order and the migration times of the peptides observed in the CZE-SERS experiments. The capillary dimensions and separation buffer composition were kept identical to those used in the optimized SERS experiments to provide a direct comparison. However, the large inner diameter of the capillary required a lower separation voltage (10.2 kV for CZE-ESI-MS vs. 15 kV for CZE-SERS) in the mass spectrometry experiment, which produced slightly longer migration times when compared to the CZE-SERS experiments; however, the migration order was unaffected. Attempting to increase the voltages to match those used in the CZE-SERS experiments resulted in a breakdown of the electrospray ionization due to the high conductivity of the larger diameter capillary. The total ion count electropherogram in Figure S1A shows co-migration of many of the peptides. This much poorer resolution is in contrast with the SERS and the TPE electropherograms shown in Figure 1. Interestingly, Substance P was detected late in the CZE-ESI-MS experiments and the peak generated has significantly lower signal to noise than the other peptides (Figure S1B). This effect was consistently observed in replicate MS runs. This low ionization efficiency is attributed to the existence of two basic amino acid residues in Substance P (R and K). The experiment was run in a carbonate buffer (PH=8) compatible for both ESI-MS and SERS detection, which may affect the ionization efficiency of Substance P relative to other peptides. Using isotachophoresis to pre-concentrate the sample at its isoelectric point enabled MS detection at nanomolar concentrations²

Figure S2. Mass spectra of the eight peptides resulting from the CZE-ESI-MS experiments extracted at $t_{m1} = 318$ s (Laminin Pentapeptide, m/z = 594.3367), $t_{m2} = 324$ s (Bombesin, m/z = 810.4175), $t_{m3} = 361.2$ s (Angiotensin III, m/z = 466.2615), $t_{m4} = 367.2$ s (Somatostatin, m/z = 819.3678), $t_{m5} = 378$ s (Amyloid β -Protein, m/z = 530.7956), $t_{m6} = 388.2$ s (Angiotensin I, m/z = 648.8478), $t_{m7} = 391.8$ s (Angiotensin II, m/z = 523.775), and $t_{m8} = 695.4$ s (Substance P, m/z = 674.3733). The asterisks indicate the ions used for identification of each peptide.

Table S1. Tabulated results from the CZE-ESI-MS experiment including the observed m/z,

		Observed	Predicted	Sample Conc	Estimated LOD
Peptide Name	S/N	m/z	m/z	(uM)	(nM)
Laminin Pentapeptide (+1)	1900	594.336	594.336	5.00	7.7
Bombesin (+2)	2300	810.416	810.415	5.00	6.5
Angiotensin III (+2)	1600	466.261	466.262	5.00	9.7
Somatostatin (+2)	4300	819.365	819.881	5.00	3.5
Amyloid Beta-Protein (+2)	4700	530.794	530.795	5.00	3.2
Angiotensin I (+2)	6500	648.845	648.847	5.00	2.3
Angiotensin II (+2)	8199	523.774	523.775	5.00	1.8
Substance P (+2)	5	674.3733	674.372	5.00	3000

predicted m/z, sample concentration, and estimated LOD for each of the eight detected peptides.

Table S2. Observed vibrational bands with assignments in the SERS spectra of Laminin

 Pentapeptide shown in Figure 5a. Bands allowing identification of this peptide are highlighted in

 red.

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
693	COO ⁻ deformation ³	
854	Fermi resonance between ring breathing and out-of-plane ring bend overtone ^{4, 5}	Tyr
1135	NH ₃ ⁺ deformation ⁶	
1204	C_{β} - C_{γ} stretching ⁷⁻⁹	Tyr
1249	Amide III vibration ¹⁰	
1293	CH_2 wagging ⁶	
1344	C-H deformation ⁶	
1361	CH ₂ scissoring ¹¹	
1444	CH ₂ scissoring ¹²	
1631	Amide I vibration ^{10, 12}	

Table S3. Observed vibrational bands with assignments in the SERS spectra of Bombesin shownin Figure 5b. Bands allowing identification of this peptide are highlighted in red.

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
674	C-S stretching ^{13, 14}	Met
693	COO ⁻ deformation ³	
843	C-C stretching ⁶	
915	C-COO ⁻ stretching ⁶	
1040	C-N stretching ¹⁰	
1173	NH ₃ ⁺ deformation ¹⁵	
1225	Combined N-H bending and C-N stretching ⁶	
1245	Amide III vibration ¹⁰	
1324	CH ₂ wagging ⁶	
1344	CH ₃ symmetric deformation ⁶	Pyr
1481	CH ₃ asymmetric bending ¹²	Pyr
1537	Amide II vibration ⁴	
1547	Indole vibration ^{4, 7, 9, 16}	Тгр
1579	COO ⁻ asymmetric stretching ⁶	
1586	Amide II vibration ¹⁰	
1631	Amide I vibration ^{10, 12}	
1657	Amide I vibration (NH ₂) ¹²	

Table S4. Observed vibrational bands with assignments in the SERS spectra of Angiotensin III

 shown in Figure 5c. Bands allowing identification of this peptide are highlighted in red.

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
693	COO ⁻ deformation ³	
854	Fermi resonance between ring breathing	Tyr
	and out-of-plane ring bending overtone ^{4, 5}	
912	C-COO ⁻ stretching ⁶	
958	C-C stretching ¹²	
1204	Combined ring breathing and C_{β} - C_{γ} stretching ⁷⁻⁹	Tyr and Phe
1249	Amide III vibration ¹⁰	
1288	Imidazole C-H in-plane bending ¹⁷	Tyr
1444	CH ₂ scissoring ¹²	Arg
1482	Combined imidazole ring stretching	Tyr
	and imidazole C ₁ -H in-plane bending ¹⁸	
1602	Ring C-C stretching ¹⁰	Phe
1631	Amide I vibration ^{10, 12}	

Table S5. Observed vibrational bands with assignments in the SERS spectra of Somatostatin

 shown in Figure 5d. Bands allowing identification of this peptide are highlighted in red.

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
674	C-S stretching ^{13, 14}	Cys-Cys
693	COO ⁻ deformation ³	
1256	Amide III vibration ¹⁰	
1344	CH ₃ symmetric deformation ⁶	Ala
1378	CH ₂ scissoring ¹¹	
1454	CH ₂ scissoring ¹²	
1520	NH ₃ ⁺ deformation ⁶	
1534	Amide II vibration ⁴	
1547	Indole vibration ^{4, 7, 9, 16}	Trp
1602	Ring C-C stretching ¹⁰	Phe
1631	Amide I vibration ^{10, 12}	

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
674	C-S stretching ^{13, 14}	Met
962	C-C stretching ¹²	
1180	NH ₃ ⁺ deformation ¹⁵	
1290	CH_2 wagging ⁶	
1458	CH ₂ scissoring ¹²	
1481	CH ₃ asymmetric bending ¹²	lle and Met
1514	NH_3^+ deformation ⁶	
1579	COO ⁻ asymmetric stretching ⁶	
1586	Amide II vibration ¹⁰	
1631	Amide I vibration ^{10, 12}	

Protein shown in Figure 5e. Bands allowing identification of this peptide are highlighted in red.

Table S6. Observed vibrational bands with assignments in the SERS spectra of Amyloid β-

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
915	C-COO ⁻ stretching ⁶	
948	C-C stretching ¹²	
1004	Symmetric ring breathing mode ^{6, 10, 19}	Phe
1204	Combined ring breathing, C_{β} - C_{γ} stretching and imidazole ring deformation ^{7-9, 18}	Phe, Tyr and His
1249	Amide III vibration ¹⁰	
1288	Imidazole C-H in-plane bending ¹⁷	Tyr and His
1344	CH ₃ symmetric deformation ⁶	Leu
1482	Combined imidazole ring stretching	Tyr and His
	and imidazole C ₁ -H in-plane bending ¹⁸	
1517	NH ₃ ⁺ deformation ⁶	
1547	Amide II vibration ⁴	
1602	Ring C-C stretching ¹⁰	Phe
1631	Amide I vibration ^{10, 12}	

Table S7. Observed vibrational bands with assignments in the SERS spectra of Angiotensin I

 shown in Figure 5f. Bands allowing identification of this peptide are highlighted in red.

Table S8. Observed vibrational bands with assignments in the SERS spectra of Angiotensin II

 shown in Figure 5g. Bands allowing identification of this peptide are highlighted in red.

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
622	COO ⁻ deformation ¹²	
693	COO ⁻ deformation ³	
915	C-COO ⁻ stretching ⁶	
948	C-C stretching ¹²	
1004	Symmetric ring breathing mode ^{6, 10, 19}	Phe
1225	Combined N-H bending and C-N stretching	
1249	Amide III vibration ¹⁰	
1288	Imidazole C-H in-plane bending ¹⁷	Tyr and His
1327	CH deformation ⁶	Phe
1361	CH ₂ scissoring ¹¹	Phe, Pro, Asp and Arg
1482	Combined imidazole ring stretching	Tyr and His
	and imidazole C ₁ -H in-plane bending ¹⁸	
1534	Amide II vibration ⁴	
1573	COO ⁻ asymmetric stretching ⁶	
1602	Ring C-C stretching ¹⁰	Phe
1631	Amide I vibration ^{10, 12}	

Table S9. Observed vibrational bands with assignments in the SERS spectra of Substance Pshown in Figure 5h. Bands allowing identification of this peptide are highlighted in red.

Peak Position (cm ⁻¹)	Proposed Band Assignment	AA Contribution
947	C-C stretching ¹²	
1004	Symmetric ring breathing mode ^{6, 10, 19}	Phe
1135	NH ₃ ⁺ deformation ⁶	
1170	NH ₃ ⁺ deformation ¹⁵	
1269	Amide III vibration ¹⁰	
1327	CH deformation ⁶	Phe
1344	CH ₃ symmetric deformation ⁶	Met
1361	CH ₂ scissoring ¹¹	Arg and Met
1484	CH ₃ asymmetric bending ¹²	Arg and Met
1527	Amide II vibration ⁴	
1602	Ring C-C stretching ¹⁰	Phe
1631	Amide I vibration ^{10, 12}	

References

- 1. R. Wojcik, O. O. Dada, M. Sadilek and N. J. Dovichi, *Rapid Communications in Mass Spectrometry*, 2010, 24, 2554-2560.
- 2. M. Larsson and E. S. M. Lutz, *Electrophoresis*, 2000, 21, 2859-2865.
- 3. J. S. Suh and M. Moskovits, *Journal of the American Chemical Society*, 1986, 108, 4711-4718.
- 4. E. Smith and G. Dent, *Modern Raman Spectroscopy: A Practical Approach*, Wiley, 2005.
- 5. M. N. Siamwiza, R. C. Lord, M. C. Chen, T. Takamatsu, I. Harada, H. Matsuura and T. Shimanouchi, *Biochemistry*, 1975, 14, 4870-4876.
- 6. S. Stewart and P. M. Fredericks, *Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy*, 1999, 55, 1641-1660.
- 7. R. P. Rava and T. G. Spiro, *Journal of the American Chemical Society*, 1984, 106, 4062-4064.
- 8. I. R. Nabiev, S. D. Trakhanov, E. S. Efremov, V. V. Marinyuk and R. M. Lasorenkomanevich, *Bioorganicheskaya Khimiya*, 1981, 7, 941-945.
- 9. F. Wei, D. M. Zhang, N. J. Halas and J. D. Hartgerink, *Journal of Physical Chemistry B*, 2008, 112, 9158-9164.
- 10. D. Naumann, *Applied Spectroscopy Reviews*, 2001, 36, 239-298.
- 11. N. B. D. Colthup, L. H.; Wiberly, S. E., *Introduction to Infrared and Raman Spectroscopy*, Academic Press: New York, 1990.
- 12. S. Stewart and P. M. Fredericks, *Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy*, 1999, 55, 1615-1640.
- 13. M. Rycenga, J. M. McLellan and Y. N. Xia, *Chemical Physics Letters*, 2008, 463, 166-171.
- 14. T. Watanabe and H. Maeda, *Journal of Physical Chemistry*, 1989, 93, 3258-3260.
- 15. T. M. Herne, A. M. Ahern and R. L. Garrell, *Journal of the American Chemical Society*, 1991, 113, 846-854.
- 16. T. Miura, H. Takeuchi and I. Harada, *Biochemistry*, 1991, 30, 6074-6080.
- 17. H. Takeuchi, N. Watanabe, Y. Satoh and I. Harada, *Journal of Raman Spectroscopy*, 1989, 20, 233-237.
- 18. S. Martusevicius, G. Niaura, Z. Talaikyte and V. Razumas, *Vibrational Spectroscopy*, 1996, 10, 271-280.
- 19. E. Podstawka, Y. Ozaki and L. M. Proniewicz, *Applied Spectroscopy*, 2004, 58, 570-580.