
Supplementary Material

for

Heuristic exploitation of genetic
structure in marker-assisted gene

pyramiding problems

1 Recombination rates

When crossing two genotypes P and Q a number of possible genotypes can occur among the
offspring due to recombination of alleles, each with a certain probability. This section describes how
to compute these probabilities based on the recombination rates ri,p,q that indicate the expected
frequency of crossovers between the pth and qth loci of the ith chromosome and which are inferred
from the genetic map.

First, take the ith chromosome Pi of genotype P and any haplotype Hi with the same number of
loci as Pi. Suppose that Pi contains l heterozygous loci with ordered indices s = (ν1, . . . , νl). Then,
the probability Pr[Pi → Hi] that haplotype Hi is produced from chromosome Pi is computed as
follows [1]:

• If Hi contains at least one allele which does not occur at the respective locus in Pi then
Pr[Pi → Hi] = 0, i.e. it is impossible that Hi will be produced from Pi.

• Else, if s is empty (all loci are homozygous), Pr[Pi → Hi] = 1.

• Else

Pr[Pi → Hi] =
1

2

l−1∏
j=1


ri,νj ,νj+1 in case of a crossover

between loci νj and νj+1

1− ri,νj ,νj+1
otherwise

where there has been a crossover between loci νj and νj+1 if

Hi(νj) = Pi,1(νj) ∧ Hi(νj+1) = Pi,2(νj+1), or

Hi(νj) = Pi,2(νj) ∧ Hi(νj+1) = Pi,1(νj+1).

The factor of 1/2 is introduced because every sequence of crossovers defines two complemen-
tary haplotypes which are inherited with equal probability.

Now, take any chromosome Gi with the same number of loci as the ith chromosomes Pi and Qi
of both parents P and Q. The probability Pr[Pi, Qi → Gi] that chromosomes Pi and Qi will
produce haplotypes which together form a chromosome Gi is computed as follows:

Pr[Pi, Qi → Gi] =


Pr[Pi → Gi,1] · Pr[Qi → Gi,2] if Gi,1 = Gi,2

Pr[Pi → Gi,1] · Pr[Qi → Gi,2] if Gi,1 6= Gi,2

+Pr[Pi → Gi,2] · Pr[Qi → Gi,1].

The second case accounts for the fact that the haplotypes might swap their originating parents.
Gene Stacker explicitly models multiple chromosomes: the probability Pr[P,Q→ G] of obtaining
the entire phase-known genotype G from crossing the phase-known parents P and Q, with k
chromosomes, is computed by multiplying the independent chromosome probabilities:

Pr[P,Q→ G] =

k∏
i=1

Pr[Pi, Qi → Gi].

Note that this will account for up to 2k identical phase-known genotypes G depending on how
many haplotype pairs might swap their originating parents.

2 Joint population sizes

Sometimes several different genotypes or multiple occurrences of the same genotype are simultane-
ously targeted among offspring grown from a shared seed lot. In such case it is possible to compute

1

a joint population size, i.e. the number of offspring that needs to be generated so that at least the
number of desired occurrences of each targeted genotype are expected to be obtained. The same
individual and overall success rates can still be guaranteed, but the computed joint population
size is often much smaller than the sum of the population sizes required to obtain each targeted
genotype individually. This procedure may therefore significantly reduce the total population size.

Suppose that m distinct phase-known genotypes G1, . . . , Gm are targeted among the offspring,
where f1, . . . , fm occurrences of the respective targets are desired, with fi ≥ 1,∀i = 1, . . . ,m and∑m
i=1 fi = f . The joint population size N is then calculated as follows:

1. Compute the population sizes Ni required to obtain each target Gi individually using for-
mula (1) from the main article.

2. Set
N = max{Ni|i = 1, . . . ,m}

and compute the joint success probability (see below)

P = Pr[|G1| ≥ f1 & · · · & |Gm| ≥ fm;N].

3. If P < (γ′)f , adjust N using binary search in the interval

I = [max{Ni|i = 1, . . . ,m},
m∑
i=1

(fi ·Ni)]

to find the smallest N ∈ I for which P ≥ (γ′)f .

Formulas to compute Pr[|G1| ≥ f1 & · · · & |Gm| ≥ fm;N] are stated below. Taking the maximum
in step 2 ensures a success rate of at least γ′ for every target individually. Subsequently, step 3
further increases this initial estimate of the joint population size to guarantee a joint success
rate of at least (γ′)f so that this joint trial with f targets still contributes a factor of (γ′)f to
the overall success rate – just as if f independent Bernoulli trials would have been performed.
Such independent trials would require a population size of

∑m
i=1(fi · Ni) to obtain all targets,

which is the upper bound of I. By considering a joint trial, the total population size can be
significantly reduced while both the same individual and overall success rates are still guaranteed.
Experiments showed that in practice step 3 rarely has to be executed, leading to a significant
reduction in population size with almost no computational overhead.

The joint success probability Pr[|G1| ≥ f1 & · · · & |Gm| ≥ fm;N] of obtaining each targeted
phase-known genotype Gi at least fi times, when growing N plants in total, is computed as:

Pr[|G1| ≥ f1 & · · · & |Gm| ≥ fm;N] = 1 − ¬Pr[|G1| ≥ f1 & · · · & |Gm| ≥ fm;N]

= 1 − Pr[|G1| ≤ (f1 − 1) ∨ · · · ∨ |Gm| ≤ (fm − 1);N]

= 1 −
∑

i1∈[1,m]

Pr[|Gi1 | ≤ (fi1 − 1);N]

+
∑

(i1,i2)∈[1,m]2

i1<i2

Pr[|Gi1 | ≤ (fi1 − 1) & |Gi2 | ≤ (fi2 − 1);N]

−
∑

(i1,i2,i3)∈[1,m]3

i1<i2<i3

Pr[|Gi1 | ≤ (fi1 − 1) & |Gi2 | ≤ (fi2 − 1)

& |Gi3 | ≤ (fi3 − 1);N]

+ · · ·

· · ·

+ (−1)m Pr[|G1| ≤ (f1 − 1) & · · · & |Gm| ≤ (fm − 1);N]

2

Overall LPA: 0%

Plants: 170

1 1

88

64 15

1

S1

[0][0 0 0]

[1][0 0 1]

S2

[0][0 1 0]

[0][1 0 1]

S3 S4

[1][0 0 1]

[1][0 0 1]

[0][0 1 0]

[0][1 1 0]

S5

[0][1 1 0]

[0][1 1 0]

S6

[0][0 0 1]

[1][1 1 0]

Overall LPA: 0%

Plants: 170

1

1 88

1564

1

S1

[0][0 0 0]

[1][0 0 1]

S2

[0][0 1 0]

[0][1 0 1]

S3

[0][0 1 0]

[0][1 1 0]

S4S5

[0][1 1 0]

[0][1 1 0]

[1][0 0 1]

[1][0 0 1]

S6

[0][0 0 1]

[1][1 1 0]

Figure S1: Alternatives of the same schedule, obtained from a different alignment of genera-
tions, which are equally good in terms of the considered objectives (number of generations, total
population size and overall linkage phase ambiguity). Both alternatives are retained and will be
considered for further extension.

with

Pr[|Gi1 | ≤ fi1 & · · · & |Gik | ≤ fik ;N]

=

fi1∑
n1=0

· · ·
fik∑

nk=0

N · (N − 1) · · · (N − n1 − · · · − nk + 1)

n1! · · ·nk!
pn1
Gi1
· · · pnk

Gik
· (1− pGi1

− · · · − pGik
)N−n1−···−nk

where pGi is the probability of observing Gi among the offspring. These formulas follow from
the multinomial probability distribution. The joint success probability is computed through its
complement as the fi’s are expected to be small – often they are all equal to 1 – while N is expected
to be much larger. Also, m is expected to be relatively small. Therefore, a direct computation
would require to sum over significantly more terms, compared to this computation through the
complement.

3 Alignment of generations

When combining two partial schedules through a crossing of their final plants, the generations of
these schedules can be aligned in different ways. Figure S1 shows two equally good alternatives of

3

Overall LPA: 0%
Plants: 279

11

88

167 15

7

S1

[0][0 0 0]
[1][0 0 1]

S2

[0][0 1 0]
[0][1 0 1]

S3 S4

[0][0 0 1]
[1][0 0 1]

[0][0 1 0]
[0][1 1 0]

S5

[0][1 1 0]
[0][1 1 0]

S6

[0][0 0 1]
[1][1 1 0]

Overall LPA: 0%
Plants: 280

1

1 881

15167

7

S1

[0][0 0 0]
[1][0 0 1]

S2

[0][0 1 0]
[0][1 0 1]

[0][0 1 0]
[0][1 0 1]

S3

[0][0 1 0]
[0][1 1 0]

S4 S5

[0][0 0 1]
[1][0 0 1]

[0][1 1 0]
[0][1 1 0]

S6

[0][0 0 1]
[1][1 1 0]

Figure S2: This figure shows two alternative alignments of generations in a crossing schedule,
where the left alignment is preferred over the right alignment since it has a lower total population
size, the same number of generations and the same overall linkage phase ambiguity. By performing
the crossing that creates seed lot S3 in the first generation (left), one parent plant can be reused,
while this plant has to be regrown if the crossing is postponed to the second generation (right).
The left alignment is retained, but the right alignment is (greedily) discarded.

the same schedule, obtained from a different alignment of the generations of the smaller schedules
from which the larger schedule was created. Both alignments are retained and will be considered
for further extension. In contrast, Figure S2 shows two alternative alignments of generations in
a crossing schedule where one alignment is greedily discarded (right) because it is dominated by
the other alignment (left) in terms of the objectives (number of generations, total population size
and overall linkage phase ambiguity).

4 Detailed algorithm

Figure S3 provides a detailed outline of the Gene Stacker algorithm. The input consists of a set of
parental genotypes G, the desired ideotype I and a genetic mapM. As output, an approximated
Pareto frontier F is produced. The queue Q contains those schedules that still have to be extended
and the algorithm iteratively dequeues partial schedules C from Q to create larger schedules Cnew

4

function GeneStacker(G, I,M)
Q ← [] . queue containing schedules to be extended
P ← [] . previously extended schedules
F ← [] . current Pareto frontier
for all parental genotypes P ∈ G do

add minimal schedule growing P to Q . add minimal schedules to queue
end for
while Q not empty do

C ← dequeue element from Q . schedule to be extended (≥ 1 alternatives C[i])
S ← Self(final plant from C, M) . compute seed lot obtained by selfing
for all genotypes G ∈ S do . consider each genotype in S as next target

Cnew ← []
for i = 0, . . . , |C| − 1 do . consider all alternatives of C

Cnew[i]← attach selfing, S and G to C[i] . extend C[i] to create Cnew[i]
end for
RegisterSchedule(Cnew, I, F , Q) . register new schedule (all alternatives)

end for
for all C ′ ∈ P do . combine with previous schedules

A← []
for i = 0, . . . , |C| − 1 do . align alternatives of C and C ′ (pairwise)

for j = 0, . . . , |C ′| − 1 do
B ← Align(C[i], C ′[j]) . align alternatives C[i] and C ′[j]
for all B′ ∈ B do . store constructed alignments

add B′ to A
end for

end for
end for
FilterAlignments(A) . remove non Pareto optimal alignments
S ← Cross(final plant from C, final plant from C ′, M) . compute seed lot obtained by crossing
for all genotypes G ∈ S do . consider each genotype in S as next target

Cnew ← []
for i = 0, . . . , |A| − 1 do . consider all retained alignments

Cnew[i]← attach crossing, S and G to A[i] . extend A[i] to create alternative Cnew[i]
end for
RegisterSchedule(Cnew, I, F , Q) . register new schedule (all alternatives)

end for
end for
Add C to P . add to list of already extended schedules

end while
return F . return final Pareto frontier approximation

end function

function RegisterSchedule(Cnew, I, F , Q)
for i = 0, . . . , |Cnew| − 1 do . consider all alternatives of Cnew

ResolveDepletedSeedLots(Cnew[i]) . resolve any depleted seed lots
if ideotype I obtained and constraints satisfied then

Update F with new solution Cnew[i] . update Pareto frontier
Remove Cnew[i] from Cnew . discard alternative (complete)

else if Prune(Cnew) then . check (heuristic) pruning criteria
Remove Cnew[i] from Cnew . discard alternative (pruned)

end if
end for
if |Cnew| > 0 then . check if any alternatives remain

Add Cnew to Q . queue schedule for further extension
end if

end function

Figure S3: Detailed outline of the Gene Stacker algorithm. The input consists of a set of
parental genotypes G, the ideotype I and the genetic map M. Crossing schedules are iteratively
extended to approximate the Pareto frontier of solutions with minimum number of generations,
total population size and overall linkage phase ambiguity.

5

by (a) selfing the final plant of C; and (b) combining C with each previously extended schedule
C ′ through a crossing of the final plants of both schedules. More precisely, every element C ∈ Q
consists of a series of a ≥ 1 alternatives C[0], . . . , C[a−1] of the same schedule. These alternatives
arise because there are several ways to align or interleave the generations of two smaller schedules
C and C ′ when combining them into a larger schedule Cnew: each generation of Cnew either
contains one single generation from C or C ′, or consists of the alignment of two generations; one
from each of the smaller schedules (see previous section for examples).

Whenever a crossing or selfing is performed to extend a schedule, the corresponding seed lot S is
constructed by (a) inferring all possible haplotypes that can be produced from each chromosome
of both parents; (b) creating all pairwise combinations, per chromosome, of haplotypes produced
by both parents; and (c) making all combinations of the obtained chromosomes. This yields the
set of possible offspring. During generation, the corresponding probabilities and linkage phase
ambiguities are computed.

After selfing the final plant of a partial schedule C, Gene Stacker considers each genotype G in the
constructed seed lot S to be fixed as a possible next target. For each genotype G, the alternatives
of a larger schedule Cnew are created by attaching G to each alternative C[i] of C.

To combine two partial schedules C and C ′ through a crossing of their final plants, Gene Stacker
first creates all alignments A of all pairs of alternatives C[i] and C ′[j]. Alignments are constructed
in a bottom-up fashion: first, the new crossing node is created, joining the parent plants, and then
the alignments are further completed by repeatedly inserting the previous generation from either
C[i], C ′[j] or both smaller schedules. Plant nodes and seed lot nodes occurring in both smaller
schedules which end up being aligned in the same generation of the new schedule are dynamically
reused. Of all constructed alignments within the constraints, only Pareto optimal alignments
are retained (in terms of the objectives of the main optimization problem); other alignments are
greedily discarded. Then, for every genotype G in S, the alternatives of a larger schedule Cnew
are created by attaching G as the next target to each retained alignment A[i].

For each alternative of every newly created schedule Cnew it is checked whether there are any
depleted seed lots, i.e. seed lots from which more seeds are taken than the amount provided by the
performed crossing(s). In such case, Gene Stacker indicates that the crossing should be performed
multiple times to provide additional seeds. For this, it may be necessary to have several duplicates
of the crossed genotypes, taking into account the number of crossings that can be performed with a
single plant. This affects the population sizes and may introduce new depleted seed lots; therefore,
this process is repeated until all depleted seed lots have been resolved.

If the ideotype I is obtained, each alternative Cnew[i] for which all constraints are satisfied is
registered in the Pareto frontier F : if Cnew[i] is not dominated by any other solution currently
contained in F , it is added to F and all schedules dominated by Cnew[i] are removed from F . If
the ideotype is not yet obtained, Cnew is added to the queue Q for further extension, where some
alternatives Cnew[i] may be discarded by one of the applied heuristics or if it is predicted that all
extensions will violate the constraints and/or will be dominated by an already obtained solution
(pruning). Note that in the actual implementation, some (heuristic) pruning criteria are checked
at other points through the execution to enable early pruning (e.g. before combining two specific
partial schedules or before attaching a specific genotype G as the next target).

Gene Stacker continues untilQ is empty; termination is guaranteed because of a required constraint
on the number of generations. Note that the algorithm is not entirely exact as it greedily discards
non Pareto optimal alignments of partial crossing schedules. However, the impact of this greedy
approach on the solution quality is expected to be very small; it mainly prevents the introduction
of most likely redundant generations in Cnew when generations of the combined schedules can
easily be aligned without violating any constraints, and favors those alignments with the highest
amount of reuse, resulting in the lowest total cost.

6

Table S1: Heuristic presets combining well-chosen heuristics.

Preset Enabled heuristics Dual run

Best none
Better H0, H1a, H2a, H3s1 X
Default H0, H1a, H2a, H3s1, H4, H5, H6 X
Faster H0, H1b, H2b, H3s2, H4, H5c, H6 X
Fastest H0, H1b, H2b, H3, H4, H5c, H6

5 Heuristic presets

Gene Stacker provides five presets that each combine a set of well-chosen heuristics, offering
convenient tradeoffs between solution quality and execution time. The specific heuristics included
in each preset are listed in Table S1. In the default setting some less restrictive heuristics are
applied compared to those enabled when switching to presets faster and fastest. On the other
hand, preset better drops some heuristics and preset best does not apply any (optional) heuristics
at all. Presets better, default and faster perform two runs as they apply one of the dual run
heuristics H3s1 or H3s2, while preset fastest applies H3 in a single run.

6 Results for the first constructed example

Figure S4 shows an overview of all reported solutions for the first constructed example, when
running Gene Stacker in default mode with an overall success rate of γ = 0.95 and a maximum
of 4 generations, 10% overall linkage phase ambiguity, 4 crossings per plant, 5000 plants per
generation, and 2500 seeds obtained from each crossing. Three schedules are non-ambiguous,
while the remaining two schedules have a small linkage phase ambiguity of 8.28% which in turn
yields a (slightly) lower total population size. The approximated Pareto frontier clearly reflects the
tradeoffs between the three objectives: minimizing the total population size, number of generations
and overall linkage phase ambiguity.

7 Specification of real stacking problems

This section gives a full description of all discussed problems from cotton, tomato and rice.

7.1 Cotton

One example from cotton is considered. The problem consists of 6 parental genotypes and a
heterozygous ideotype with 11 loci spread across 5 chromosomes:

G1 =

[
0
1

] [
0 0 1
0 0 1

] [
0 0
0 0

] [
0 0
0 0

] [
1 0 0
1 0 0

]
,

G2 =

[
0
0

] [
1 1 0
0 0 0

] [
0 0
0 0

] [
0 0
0 0

] [
0 0 0
0 0 0

]
,

G3 =

[
0
0

] [
0 0 0
0 0 0

] [
1 1
1 1

] [
0 0
0 0

] [
0 0 0
0 0 0

]
,

7

Overall LPA: 0%
Plants: 580

11

495

83

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[0][0 0 1]
[1][1 1 1]

[0][0 0 1]
[1][1 0 1]

S4

[1][1 0 1]
[1][1 1 1]

Overall LPA: 0%
Plants: 275

11

158

68

47

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[0][0 0 1]
[1][0 1 1]

[0][0 0 1]
[1][1 0 1]

S4

[1][0 1 1]
[1][1 0 1]

S5

[1][1 0 1]
[1][1 1 1]

Overall LPA: 8.28%
Plants: 274

11

6872

38

94

S1

[0][0 0 0]
[1][0 0 1]

S2

[0][0 1 0]
[0][1 0 1]

S3 S4

[1][0 0 1]
[1][0 0 1]

[0][0 1 1]
[0][1 0 1]

LPA: 8.28%

S5

[0][0 0 1]
[1][1 1 1]

[0][0 0 1]
[1][1 0 1]

S6

[1][1 0 1]
[1][1 1 1]

Overall LPA: 8.28%
Plants: 201

1

711

17 39

36

36

S1

[0][0 0 0]
[1][0 0 1]

S2

[0][0 1 0]
[0][1 0 1]

S3

[0][1 0 1]
[0][1 0 1]

[0][0 1 1]
[0][1 0 1]

LPA: 8.28%

S4S5

[0][1 0 1]
[0][1 1 1]

[0][0 0 1]
[1][1 0 1]

S6

[0][1 0 1]
[1][1 1 1]

S7

[1][1 0 1]
[1][1 1 1]

Overall LPA: 0%
Plants: 236

1

721

40

72

50

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[1][0 0 1]
[1][0 0 1]

S4

[0][0 0 1]
[1][0 1 1]

[0][0 0 1]
[1][1 0 1]

S5

[1][0 1 1]
[1][1 0 1]

S6

[1][1 0 1]
[1][1 1 1]

Figure S4: Overview of all reported solutions for the first constructed example, when running
Gene Stacker in default mode with an overall success rate of γ = 0.95 and a maximum of 4
generations, 10% overall linkage phase ambiguity, 4 crossings per plant, 5000 plants per generation,
and 2500 seeds obtained from each crossing.

8

G4 =

[
0
0

] [
1 1 0
0 0 0

] [
1 1
0 0

] [
0 0
0 0

] [
0 0 0
0 0 0

]
,

G5 =

[
0
0

] [
0 0 0
0 0 0

] [
0 0
0 0

] [
1 1
1 1

] [
0 1 1
0 1 1

]
,

G6 =

[
0
0

] [
1 1 0
1 1 0

] [
0 0
0 0

] [
1 1
0 0

] [
0 0 0
0 0 0

]
,

I =

[
0
1

] [
1 1 1
1 1 1

] [
0 0
1 1

] [
1 1
1 1

] [
1 0 0
1 1 1

]
.

The genetic map states the following distances between subsequent loci on the same chromosome:

• 2nd chromosome: 15 cM, 10 cM

• 3rd chromosome: 10 cM

• 4th chromosome: 8 cM

• 5th chromosome: 45 cM, 10 cM

7.2 Tomato

Both considered stacking problems from tomato consist of the same 4 parental genotypes with 8
loci spread across 6 chromosomes:

G1 =

[
1
0

] [
0 0
0 0

] [
0
0

] [
0
0

] [
0
0

] [
0 0
0 0

]
,

G2 =

[
0
0

] [
0 0
0 0

] [
0
1

] [
0
1

] [
0
1

] [
1 1
1 1

]
,

G3 =

[
0
0

] [
0 1
0 1

] [
0
0

] [
0
0

] [
0
0

] [
0 0
0 0

]
,

G4 =

[
0
0

] [
1 0
1 0

] [
0
0

] [
0
0

] [
0
0

] [
0 0
0 0

]
.

The genetic map states the following distances between subsequent loci on the same chromosome:

• 2nd chromosome: 4 cM

• 6th chromosome: 10cM

The first problem (Tomato-1) has a homozygous ideotype

I =

[
1
1

] [
1 1
1 1

] [
1
1

] [
1
1

] [
1
1

] [
1 1
1 1

]
,

while the second problem (Tomato-2) has a heterozygous ideotype

I =

[
0
1

] [
1 1
1 1

] [
0
1

] [
0
1

] [
0
1

] [
1 1
1 1

]
.

9

7.3 Rice

The two considered problems from rice have the same 8 parental genotypes with 10 loci spread
across 6 chromosomes:

G1 =

[
0
0

] [
1
1

] [
1 1
1 1

] [
0 0
0 0

] [
1 1 1
0 0 0

] [
1
1

]
,

G2 =

[
1
0

] [
1
0

] [
1 1
0 0

] [
0 0
0 0

] [
1 0 0
0 0 0

] [
0
0

]
,

G3 =

[
0
0

] [
1
1

] [
1 1
1 1

] [
0 0
0 0

] [
1 0 0
1 0 0

] [
0
0

]
,

G4 =

[
0
0

] [
1
1

] [
1 1
1 1

] [
0 0
0 0

] [
0 0 0
0 0 0

] [
1
1

]
,

G5 =

[
1
0

] [
1
0

] [
1 1
0 0

] [
0 0
0 0

] [
0 0 0
0 0 0

] [
0
0

]
,

G6 =

[
0
0

] [
1
1

] [
1 1
1 1

] [
0 0
0 0

] [
0 0 0
0 0 0

] [
0
0

]
,

G7 =

[
0
0

] [
1
1

] [
1 1
1 1

] [
1 1
1 1

] [
1 0 0
1 0 0

] [
0
0

]
,

G8 =

[
1
1

] [
0
0

] [
0 0
0 0

] [
0 0
0 0

] [
0 0 0
0 0 0

] [
0
0

]
.

The genetic map states the following distances between subsequent loci on the same chromosome:

• 3rd chromosome: 5 cM

• 4th chromosome: 9 cM

• 5th chromosome: 50 cM, 8 cM

The first problem (Rice-1) has a homozygous ideotype

I =

[
1
1

] [
1
1

] [
1 1
1 1

] [
1 1
1 1

] [
1 1 1
1 1 1

] [
1
1

]
,

while the second problem (Rice-2) has a heterozygous ideotype

I =

[
1
1

] [
1
1

] [
1 1
1 1

] [
0 1
1 1

] [
0 0 0
1 1 1

] [
1
1

]
.

8 Solutions for real stacking problem from cotton

Figures S5 up to S8 show all solutions reported for the cotton example when applying preset
fastest with a maximum of 5 generations. Running this preset took 2 hours and 15 minutes to
complete; all other presets ran out of memory.

As the number of seeds obtained from a crossing is set to 250 some crossings are performed multiple
times to provide a sufficient amount of seeds so that all targeted genotypes can be obtained among
the offspring. Furthermore, a cotton plant can only be crossed twice (or selfed once); therefore,
for some genotypes several duplicates are targeted to be able to perform all crossings. Population

10

Overall LPA: 0%
Plants: 7256

1 2 1

352 8948

2837 1443

2780

S1

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

x3

S2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

S3

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S4

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S5S6 S7

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][1 0 0]

x3

[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

x6

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x6

612

S8S9

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][1 1][1 1][1 0 0]

x6

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

x6

12

S10

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure S5: Three generation solution for the cotton example. Some crossings are performed 6 up
to 12 times to provide a sufficient amount of seeds. For most genotypes occurring in the schedule,
several duplicates are targeted to be able to perform all crossings.

sizes are computed in such way that at least the required number of instances is expected among
the offspring, for each targeted genotype (see section 2).

When restricting the number of generations to 4 instead of 5, preset faster reports a different
solution with four generations (Figure S9) that has a lower total population size compared to the
respective schedule found by preset fastest, before being interrupted when the time limit of 24
hours is exceeded.

11

Overall LPA: 0%
Plants: 1534

1 21

1 215256 24

1115270119

215 292

364

S1

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

S2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

S3

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S4

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S5S6 S7 S8

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][1 1][0 0 0]

[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

2

S9S10 S11 S12

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][1 1 0][1 1][1 1][0 0 0]
[0][1 1 0][1 1][1 1][0 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

2

S13 S14

[0][1 1 0][0 0][1 1][0 0 0]
[0][1 1 1][1 1][1 1][1 1 1]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

2

S15

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure S6: Four generation solution for the cotton example. Some crossings are performed twice
to obtain a sufficient amount of seeds. For two genotypes occurring in the schedule, two duplicates
are targeted to be able to perform all crossings.

12

Overall LPA: 0%
Plants: 1210

1121 1

154 125 1

124 54 54 56

1 25140140

95 225

307

S1

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

S3

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S4

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

S5

[0][0 0 0][1 1][0 0][0 0 0]
[0][0 0 0][1 1][0 0][0 0 0]

S6 S7 S8 S9

[0][1 1 0][0 0][1 1][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2
[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][0 0][1 0 0]

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][0 0][0 0 0]
[0][0 0 0][1 1][1 1][0 1 1]

S10S11 S12 S13

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 0][0 0][0 0][1 0 0]

[0][0 0 1][0 0][0 0][1 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

S14 S15 S16

[0][1 1 0][0 0][0 0][0 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][1 1][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

S17 S18

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][1 1][1 1][1 1 1]

2

S19

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure S7: Five generation solution for the cotton example with zero linkage phase ambiguity.
Only the final crossing is performed twice to provide a sufficient amount of seeds. For two genotypes
occurring in the schedule, two duplicates are targeted to be able to perform all crossings.

13

Overall LPA: 3.14%
Plants: 1077

11 12 1

121 53119 1

1117 5355

24 13679

173 218

119

S1

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

S2

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S3

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

S4

[0][0 0 0][1 1][0 0][0 0 0]
[0][0 0 0][1 1][0 0][0 0 0]

S5

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S6 S7S8 S9

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][0 0][0 0 0]
[0][0 0 0][1 1][1 1][0 1 1]

[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

S10S11S12

[0][0 0 1][0 0][0 0][1 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

S13S14S15

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][1 1][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

[1][0 0 1][0 0][1 1][1 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

LPA: 3.14%

S16S17

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][1 1][1 1][1 1 1]

[1][1 1 0][0 0][1 1][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

S18

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure S8: Five generation solution for the cotton example with an overall linkage phase ambi-
guity of 3.14%. In return, a reduction in the total population size is obtained compared to the
reported non-ambiguous schedule with five generations. No crossings are performed multiple times
in this schedule as a single crossing always provides enough seeds to obtain all targeted genotypes.

14

Overall LPA: 0%
Plants: 1400

11 1 2

2 268 191

53 576 140

215 88

267

S1

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

S2

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S3

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

x2

S4

[0][0 0 0][1 1][0 0][0 0 0]
[0][0 0 0][1 1][0 0][0 0 0]

S5S6 S7 S8

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][1 0 0]

x2
[0][0 0 0][0 0][0 0][0 0 0]
[0][0 0 0][1 1][1 1][0 1 1]

[0][0 0 0][0 0][0 0][0 1 1]
[1][0 0 1][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

3

S9S10 S11

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][1 1][1 0 0]

S12 S13

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][1 1][1 1][1 1 1]

[0][0 0 1][0 0][1 1][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

2

S14

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure S9: Additional four generation solution for the cotton example, reported by preset faster
when restricting the number of generations to 4 instead of 5. This schedule has a lower total
population size compared to the solution with four generations that is found by preset fastest.

15

References

[1] Stefan Canzar and Mohammed El-Kebir. A mathematical programming approach to marker-
assisted gene pyramiding. In Teresa M Przytycka and Marie-France Sagot, editors, Algorithms
in Bioinformatics, WABI 2011, LNBI 6833, pages 26–38, Heidelberger Platz 3, 14197 Berlin,
Germany, 2011. Springer.

16

