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Figure S1. Potential of mean force (PMF) curves for ADE, CYT, URA and THY (rows) with all side

chains in water (left) and in methanol (right).
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AGy , (unb) | B|AGL™,, (unb) C A C G U T

ALA | -6.28 ADE | -17.26 ALA -22.3 -159 -168 -17.1 -20.0
ARG | -21.31 CYT | -12.10 ARG -358 -32.6 -365 -32.3 -35.1
ASN | -8.60 GUA| -13.57 ASN  -254 -19.6 -20.2 -19.3 -22.0
ASP | 23.79 URA| -12.12 ASP 83 98 38 146 144
CYSH| -8.08 THY | -14.67 CYSH -249 -194 -199 -19.1 -21.3
GLN | -9.87 GLN -264 -212 -221 -21.2 -23.2
GLU | 22.79 GLU 78 91 22 139 128
HISA| -6.76 HISA -23.8 -18.7 -20.8 -18.7 -20.9
HISB| -2.72 HISB -19.5 -14.7 -16.5 -14.8 -17.3
HISH| -13.67 HISH -30.1 -27.5 -29.1 -25.3 -27.3
ILE | -15.47 ILE  -32.0 -263 -27.8 -27.9 -30.1
LEU | -15.69 LEU -32.9 -27.6 -27.5 -27.0 -30.3
LYSH| -18.64 LYSH -32.9 -30.8 -33.2 -29.1 -31.1
MET | -9.74 MET -27.3 -20.7 -243 -22.2 -253
PHE | -16.12 PHE -34.0 -27.4 -29.8 -289 -29.0
SER | -2.95 SER -19.2 -12.7 -13.3 -13.0 -14.6
THR | -4.99 THR -219 -15.3 -16.0 -15.7 -16.8
TRP | -20.00 TRP  -385 -31.9 -34.1 -32.0 -356
TYR | -14.76 TYR -31.9 -27.1 -284 -27.5 -30.4
VAL | -12.74 VAL -299 -23.6 -24.4 -249 -27.4

Figure S2. Free energy of bringing amino-acid side chains (A) and nucleobases (B) from
water to methanol and total free energy differences of bringing each pair of amino-acid
side chains and nucleobases from the unbound state in water to the bound state in
methanol (C).
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Figure S3. Distributions of the Pearson correlation coefficients between mRNA PUR

sequence profiles and cognate protein profiles of affinity for nucleobases in methanol.
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Figure S4. Correlations between mRNA PUR content and protein affinity profiles for

nucleobases in water. Distributions of correlation coefficients (A) and exemplary profiles

for ADE affinity (B) are shown. The best and typical matches for the examples in B and C

are chosen from proteins with a representative length (300-400 residues).

S6



A water
A C G U T

A| 1.00| 094| 0.89| 0.94| 0.92
_ C| 094| 100| 092| 0.95| 0.90
§ G| 0.89| 0.92| 1.00| 0.89| 0.84
U| 0.94| 095| 0.89| 1.00| 0.98
T| 0.92| 0.90| 0.84| 0.98| 1.00
B methanol
A C G U T
A| 0.79| -0.18| -0.34| 0.88| 0.78
_ C| 0.71] -0.16| -0.29| 0.84| 0.80
§ G| 0.61| 0.09| -0.06| 0.78| 0.70
u| 0.77| -0.29| -0.42| 0.83| 0.80
T| 0.81| -0.34| -0.49| 0.83| 0.78
C water
A C G U T
A| 1.00| -0.24| -0.40| 0.67| 0.57
Tg C| -0.24| 1.00| 0.85| -0.25| -0.30
% G| -0.40| 0.85| 1.00| -0.41| -0.48
€ u| o067| -025| -041| 1.00| 087
T| 0.57| -0.30| -0.48| 0.87| 1.00

Table S1. Pearson correlation coefficients between the binding free energy scales. A: water vs.
water, B: water vs. methanol, C: methanol vs. methanol.



AmRNA CmRNA GmRNA UmRNA F‘URmRNA

Aorot 034 | -018| 039]| -0.56 0.58

Corot 035| -010| 0.25]| -0.52 0.49

Gorot 011 | 010| 023| -043 0.27

Uprot 033 | -019| 034]| -0.50 0.54
1 0.05 0.005 0.0005 <10*

Table S2. Median values of pairwise Pearson coefficients between sequence profiles of mRNA
nucleobase content and their cognate proteins’ profiles of binding free energy with a given

nucleobase in water. Colors represent the P-values, obtained by shuffling the affinity scales 10*
times.

S8



AmRNA CmRNA GmRNA UmRNA PURmRNA

Aorot 022| -023| 029]| -0.28 0.40

Corot 016 | -017| 025]| -0.23 0.32

Gorot 010 | -009| 020/ -0.20 0.24

Uprot 020 | -021| 027]| -0.26 0.37
1 0.05 0.005 0.0005 <10*

Table S3. Median values of pairwise Pearson coefficients between sequence profiles of mRNA
nucleobase content and their cognate proteins’ profiles of binding free energy with a given

nucleobase in methanol including AGw.-m(unb). Colors represent the P-values, obtained by
shuffling the affinity scales 10* times.
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Ag
Cal
Gsal
Usc

Acdn Cedn Gedn Ucdn PURcdn

0.40 0.08 0.21 -0.67 0.54

0.41 0.18 0.09 -0.64 0.45

0.26 0.29 0.08 -0.56 0.30

0.40 0.12 0.10 -0.59 0.44
0.05 0.005 0.0005 <10*

Ag
Cal
Gsal
Use

Acdn Cedn Gedn Ucdn PURcdn

0.54 -0.02 0.14 -0.67 0.61

-0.25 0.42 -0.20 0.14 -0.40

-0.25 0.47 -0.37 0.26 -0.53

0.34 0.03 0.27 -0.63 0.54
0.05 0.005 0.0005 <10°

Table S4. Pairwise Pearson correlation coefficients between binding free energies of amino acids

to a given nucleobase (scl) and the average nucleobase content of their codons over the whole

human proteome (cdn). Results are shown for water (A) and methanol (B); colors represent the

P-values, obtained by shuffling the affinity scales 10° times.
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Theory

Potentials of mean force and binding free energy

The potential of mean force (PMF) is defined as the free energy along a reaction coordinate r,
where r represents e.g. a specific angle or a distance. A prerequisite for the calculation of a PMF
is sufficient sampling at each value of r. Unfortunately, this also includes some higher energy
configurations that are, by definition, sampled only rarely in molecular dynamics (MD)
simulations. Visiting such configurations in simulation can be enhanced by applying umbrella
sampling (US), which makes use of biasing potentials to overcome energy barriers. The biasing
potentials in this study are defined as harmonic distance restraints centered at several values
along the reaction coordinate r. Although the performed simulations give rise to biased
probabilities along r for each window separately, the weighted histogram analysis method
(WHAM) is used to combine and unbias these results, leading to a raw potential of mean force,
AGpam(r). This can in turn be used to obtain the probability P(r) to find the two molecules at a
radial distance r.

P(r) = Cle—AGWHAM(T)/kBT 1

Here, C; is a constant, k; is the Boltzmann constant and T the temperature in the units of Kelvin.
The PMF is defined in terms of the radial distribution function g(r):

AGpyp(r) = —kgT Ing(r)

The radial distribution function based on MD simulations is defined as the ratio between P(r)
and the probability of finding the two molecules at distance r in the case of a homogenous
distribution, as show in eq. 3.

PGV
g(r) = —(;)(rl)’ox 3

Here, V,o is the volume of the box and V(r) the volume available at distance r. This definition of
g(r) includes the correction for the fact that the available volume increases with r, i.e. includes
the Jacobian which accounts for the transformation of Cartesian positions of the molecules to
intermolecular distances. The PMF can thus be obtained by combining equations 1-3:

AGpyr = —kgT InP(r) — kgT InV,,, + kgT In 4mr?dr

AGWHAM(T) + ZkBT Inr + CZ

The PMF can also be used to calculate the free energy of binding, with a necessary prerequisite
being that several corrections be applied. For this, two regions along the reaction coordinate r
are defined, V,, and V,,;, which correspond to bound and unbound states, respectively. The lower
boundary of V, is simply defined as the minimum distance for which AGyuam(r) is determined.
For the upper boundary of V,, the distance for which AGyyam(r) shows a maximum value is
chosen. The unbound region V,,;, is defined as the region between x and y, where x and y are
chosen such, that AGpye(r) is flat in this whole region based on visual inspection. The
concentration penalty as shown in eq. 5 accounts for the free energy associated with bringing
the ligand from V,,;, to the volume available at r.

S11



V(r) Amrr?dr
AGopc (1) = —kBTan = —kgTIn——

unb unb

Here, V,, is the volume available in the unbound state during the simulations. It can easily be
shown that, apart from a constant, the sum of this penalty and AGpy is the same as AGypam. The
free energy difference between the bound and unbound state can now be calculated using:

AG(Vy, Vynp) = —kgT In f e ~A6wraM/KBT gy 4 ko T In f e A6wramM(T)/KBT gy

Vb Vunb 6
= —kgT In f 4rrr2e~86pmr(M/KBT gy 4 ko T In f 4mr2e~2Gpmr(M/kBT gy
Vp Vunb

The definition used here for the unbound state is not very general, as it depends on the largest
simulated distance. For this reason, a standard state correction is added to AG(Vp,Vyn,), making
the free energy independent of the choice of the unbound state.

Vunb 7
Vo

AGgy = —kpT In

Here, Vo is the standard volume of 1.661 nm>. Although the free energy difference is hereby
independent on the exact choice of the unbound state, it is still slightly dependent on the
definition of the bound state.

Q, €————— N, —> D,
AGN—>Q(W) AGN—>D(W)

AGW—>M(unb) AG=0

AGy..qM AGy.,
QM E NQ() N ND() DM

Scheme S1. Thermodynamic cycle for the calculation of the free energy difference
between a molecule Q in water and in methanol. Subscripts W and M refer to the solvents
water and methanol, D to the dummy state without partial charges and no Lennard-Jones
interactions with the surroundings, N to the neutral state where all partial charges are

zero, Q to the state with partial charges.

Free energy from unbound (water) to bound (methanol) state

The free energy of bringing the unbound state from water to methanol, AGw.u(unb) can be
obtained from the thermodynamic cycle as shown in scheme S1, where the subscripts W and M
denote the solvents water and methanol, respectively, Q denotes a molecule with partial
charges, N denotes the molecule with its partial charges set to zero and D denotes a dummy
state, where the partial charges and Lennard-Jones interactions of all atoms of the molecule are
set to zero, leaving only covalently bound dummy atoms.
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The free energy difference between Dy and Dy, is 0, because neither of these states interacts
with the solvent. We thus only have to determine the free energy difference between D and Q
in both solvents. Since the distance between the sidechain analog and nucleobase is larger than
the cutoff of electrostatic interactions in the unbound state, we assume that their contributions
to AGw.m(unb) can be calculated from separate simulations. The thermodynamic cycle of
scheme S1 is thus calculated separately for individual nucleobases as well as individual amino-
acid side chains.

The total free energy of changing a neutral, dummy molecule D into a charged, fully interacting
molecule Q can be calculated with:

AG,_ ., =AG,_\+AG,_,+AG,, 8

where AGgyq is the standard state correction.

The raw charging free energy (AG,.y) is obtained from Tl simulations with 11 equally distributed
A-states between 0 and 1, where A=0 represents the neutral state and A=1 the fully charged
state. Simulations are 1 ns in length at each A-state. Integration over <dH/dA>, using the
trapezoidal rule results in AG,,,. In order to obtain a method-independent charging free energy,
several effects must be accounted for. The charging free energies were obtained from
simulations with cutoff truncation, a reaction field correction and periodic boundary conditions,
which requires the following correction terms (1-3);

A. The type A correction accounts for the error in the solvent polarization caused by the use of
effective electrostatic interactions, rather than Coulombic interactions. It can be divided into
two parts, where the first one compensates for the neglected interactions that were outside
of the cutoff sphere (A;) and the second one compensates for the errors made within the
cutoff sphere (A,).

B. The type B correction compensates for the error in the solvent polarization due to the finite
microscopic size of the system and the periodicity.

C. The type C correction accounts for the error in the potential at the ionic site due to an
inappropriate summation scheme (C1).

D. The type D correction compensates for the inaccurate dielectric permittivity of the solvent
model.

The formulas for the corrections described below are appropriate for simulations with a non-
polarizable force field, periodic boundary conditions (PBC) with cubic boxes, electrostatics with
cutoff truncation (CT) and Barker-Watts (BW) reaction field correction with a molecular-based

cutoff (BM).

Correction Al can be calculated with:

AGS] = -(87¢,)"'N q; (1-¢, )R 9
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where g is the permittivity of vacuum, q, the net charge of the ‘ion’, €, is the permittivity of the
solvent model (61.0 for SPC water and 18.6 for methanol) and R¢ the cutoff radius.

The definition of the A, correction term is based on continuum-electrostatics calculations, but
this numerical procedure can be substituted by an empirical expression as proposed by Reif &
Hinenberger (eq 43. in ref (2)), with virtually no loss of accuracy. The empirical function used is:

AGY = (8nz,)" N,g;R: {-107"b,[1-b,e," ~b e 10
+b, (gf (1+10'be +107Dge] ))1]

+b, (RZR, ) (1-bye ™ +bye 2 +10™D, e

(g;+b“)"}

where the optimized fitting coefficients bj, j=1...11 can be found in ref (2) and R, represents the
ionic radius. The ionic volume is estimated by measuring the difference in box volume between
the neutral state and the dummy state. The ion is assumed to be spherical and R, can thus be
determined from V, = 4/3 T R},

The type B correction term is related to the type A corrections and can be expressed as:
N L ,
MCT(ES) +vCT(8S)
2R,

X[(8J‘[€0 ) N, (1 - e's‘l)R,‘1 + AGET]

11
AGS = —%exp
C

where p" and v' can again be determined from empirical expression as proposed by ref (2)
BW [ -1 12
Au (gs) = d/t,l + d,u,ng

BW ! -1
4 (gs) = dv,l + dv,2€s

with d,;and dyj, i=1,2 representing the fitting coefficients as stated in ref (2).

The C1 correction term is calculated analytically with:

-1
3
L2y -1) . 1=[%AR] Y,
Ngysq, 3
2€,, +1
BW <L> _V1
where gy is the permittivity assigned to the medium outside of the cutoff sphere (which is
ideally set to permittivity of the solvent model €’;), Ns is the number of solvent molecules, y’ is
the quadropole moment trace of the solvent model and L is the box length. Assuming that the
solvent has a single van der Waals interaction site (which is its molecular center M) and that it is
spherical, y’s can be calculated through the analytical function:

w
Vs = E‘L”?z

where N is the number of atoms in the solvent molecule, q; is the partial charge of atoms i of the
solvent and r; is the distance of atom i to the center M. The above mentioned assumptions are
valid for the SPC water model and applying eq. 14 results in y’s=0.0082e'nm”. In order to be able

13

AGE =N, (6¢,)

14
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to calculate the C1 correction term for methanol, we assume that the oxygen atom is the
molecular center of methanol, that methanol looks spherical and rotates isotropically around
the oxygen, even though the carbon atom also is a van der Waals interaction site. The effective
quadropole moment trace calculated with eq. 14 is then equal to 0.0103e ‘nm?. To test if these
assumptions are reasonable for methanol, the charging free energies for ASP in methanol are
calculated, once from simulations with ey equal to 18.6 (BM scheme) and once without
reaction field correction beyond the cutoff sphere (egw=1, CM scheme). In the first case we use
the effective quadropole moment trace to calculate the C1 correction and in the latter case, no
C1 correction term is required (as can be easily seen from eq. 14). After applying all corrections,
the difference between the BM and CM scheme was only around 2.5 kJ/mol (results not shown).
Taking into account that CM calculations are very crude because of the large cutoff artifacts, we
can say that the effective quadropole moment trace of 0.0103 e ‘nm? is able to account for the
exclusion potential of methanol very well and we used this value in all further calculations.

The D type correction is calculated with:
-1 2( -1 -1 -1 15
AG, =(87&,) N g, (ss —¢, )R,

where g is the experimentally determined permittivity of the solvent. Here we have used g,
=78.4 for water and &, =33.0 for methanol.

The final charging free energy is thus determined by:

AGy ., =AG,, +AG, +AG,, +AG, +AG,, +AG,

Note that the above corrections all scale with the net charge and thus will only contribute to the
charging free energies of the charged amino acid side chains and not to the neutral amino acid
side chains or nucleobases.

16

The free energy of cavity formation, AGp..y, is again calculated from Tl simulations, now with 22
A-states between 0 and 1, where A=0 represents the neutral state (all atomic partial charges set
to zero) and A=1 the dummy state. A softcore-potential for the Lennard-Jones interactions with
ay=0.5 is used to prevent numerical instabilities and the simulations are 1 ns in length at each A-
state. Integration over <dH/dA>, using the trapezoidal rule results in —AGp_.y.

In addition to the corrections for electrostatic interactions, the standard state correction, AGgy,
has to be applied in order to compare to experimental values. This can be done by

RTbH° o

AG,, =RTIn| -2 Ps

where R is the ideal gas constant (8.314*107 ki/mol/K) , T is the temperature (298K), b° is the
molality (=1mol/kg), ps is the density of the solvent at T (997 kg/m? for water and 788 kg/m? for
methanol) and P° is the pressure (100 ki/m?). This results in standard state corrections of 7.36
and 7.95 kJ/mol for methanol and water simulations, respectively.

Once AGp..q has been calculated for all amino acid side chains and nucleobases in both water
and methanol, the values of AGy..um(unb) can be determined with:

S15



AG, ., (unb) = AG,, (M)~ AG,_,(W) 18
and are given in figure S3A and S3B for the amino acid side chains and nucleobases, respectively.
The free energy difference between a nucleobase and a sidechain analog in the unbound state
in water to the bound state in water is then:

” os 19
AGy st pouna = DGy 2y, unb) + MG, (unb) + AG,,, (M)

where the values of AGping(M) can be found in figure 2B and the final results AGw ynb->m bound are
shown in figure S4C.

Methods

Molecular dynamics (MD) simulations

The simulation box lengths used for MD simulations ranged between 3.7 and 4.1 nm and
contained anywhere between 1600 and 2300 water molecules. The systems were equilibrated
by applying position restraints to the solute (initial force constant of 2.5x10" kJ mol™) and
generating velocities from the Maxwell-Boltzmann distribution at the temperature of 50 K. After
20 ps of simulation time, the force constant of the position restraints was lowered by a factor
10, whereas the temperature was increased by 50 K. This procedure was continued until a
temperature of 250 K was reached. The last equilibration step was performed for 40 ps at the
final temperature of 298 K, whereby position restraints were switched off, and instead the
center-of-mass translation was removed every 1000 steps. The systems were weakly coupled (4)
to an external bath with a temperature of 298 K and a coupling time of 0.1 ps, whereby the
solute and solvent degrees of freedom were coupled to the heat bath independently. The
pressure was kept constant at 1 atm using isotropic weak coupling with a compressibility of 7.51
x 10” (k) mol™® nm?)™* and a relaxation time of 0.5 ps (4, 5). Non-bonded interactions were
calculated using a triple range cutoff scheme. Within the short-ranged cutoff of 0.8 nm, all
interactions were calculated based on a pairlist which was generated every 5 steps. The
interactions between 0.8 and 1.4 nm were calculated with every pairlist update and were kept
constant between updates. Interactions beyond 1.4 nm were accounted for by a reaction field
contribution with a dielectric permittivity of 61, which is appropriate for SPC water (6). All
simulations described above were repeated with methanol as solvent, whereby the cubic boxes
were slightly larger (box lengths ranging between 4.1 and 4.9 nm) and filled with anywhere
between 1300 and 1800 methanol molecules. The pressure was again kept constant at 1 atm
using isotropic weak coupling, but now with a compressibility of 2.08 x 10” (kJ mol™ nm?)* (7,
8). The dielectric permittivity used to calculate the reaction field contribution for interactions
beyond 1.4 nm was equal to 18.6 as is appropriate for the methanol model used in these
simulations (9).

Umbrella sampling

The restraining distances in US ranged between 0.2 and 1.9 nm, with a separation between
individual steps of 0.1 nm. The weighted histogram analysis method (WHAM) (10) was used to
unbias US simulations and to obtain PMF curves. In order to verify that convergence had been
reached, the production runs were divided into 5 ns-long segments and the PMF was
determined for each of them. In cases where the binding free energies calculated from these
PMFs showed a discrepancy of more than 1.5 k) mol™, the simulations at all windows were
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prolonged by 5 ns, until convergence had been reached. Following this routine, the pairs GUA-
HISB, THY-GLU and URA-GLU were prolonged up to 20, 20 and 15 ns, respectively, for the
simulations in water. In methanol, the ADE-ARG, CYT-LYSH, GUA-ASN, GUA-GLU and GUA-HISB
pairs were prolonged to a total simulation time of 15 ns or, in the case of CYT-ASP, 20 ns.

Matching between mRNA composition and cognate proteins’ nucleobase affinity

The possibility of direct complementary interactions between mRNA and their cognate proteins
was investigated based on the human proteome as extracted from the UniProtkKB database
(April 2013 release). Entries were required to be Swiss-Prot reviewed and have a protein
existence annotation of at least “predicted” (i.e. proteins annotated as “uncertain” were
excluded). The cross-references section of the UniProtkB entry provided the ENA (European
Nucleotide Archive Database, http://www.ebi.ac.uk/ena) accession numbers of the mRNA
sequences, from which the first one complying with the length criterion (RNA length = 3x
protein length +3) was chosen. This procedure resulted in 16954 protein sequences together
with their cognate mRNAs.

A binding preference scale was defined for each of the four RNA nucleobases (A, C, G and U) in
both environments (water and methanol) based on the binding free energies between amino-
acid side-chain analogs and nucleobases. For histidine, the average of the binding free energies
for the two neutral forms (HISA/HISB) was chosen. Throughout the text, the scales are
designated as, for example, G,y(wat), which refers to the scale of binding free energies of
amino-acid side-chain analogs to GUA in water.

The Pearson correlation coefficients between the sequence profiles capturing nucleobase
content of mRNAs and nucleobase-affinity profiles of their cognate protein sequences were
evaluated after applying a sliding-window averaging procedure to each sequence, where the
window consisted of 21 side chains or codons. For this analysis, the minimum length of proteins
was set to 43 side chains, corresponding to 2w+1 where w is the size of the averaging window.
In cases where glycine or proline side chains were present along the protein sequence, these
side chains were excluded from the average over the window in question, since the binding free
energies could not be determined for these side chains using our current setup. The
corresponding codons in the cognate mRNA were consequently also excluded from the window
average. These window averages were thus calculated over fewer than 21 side chains/codons.

The significance of Pearson correlation coefficients was determined by random shuffling of the
affinity scales. Each scale was shuffled 10" times and the Pearson correlations coefficients (R)
between the nucleobase content of the mRNA and the nucleobase affinity of their cognate
proteins were calculated for each of these shuffled scales. The P-values were then determined
from the fraction of randomized scales which absolute value of R is greater than the R obtained
with the original scale (|R| > | Roriginal| )-

The significance of the effective free energies of interactions was evaluated by generating 10°
randomized variants of each native mRNA sequence by exhaustively shuffling the positions of its
codons. For each protein, the interaction energy was then not only determined for its cognate,
native mRNA but also the shuffled ones. P-values were defined as the fraction of its randomized
mRNAs that exhibited lower interaction free energies than the cognate mRNA.
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