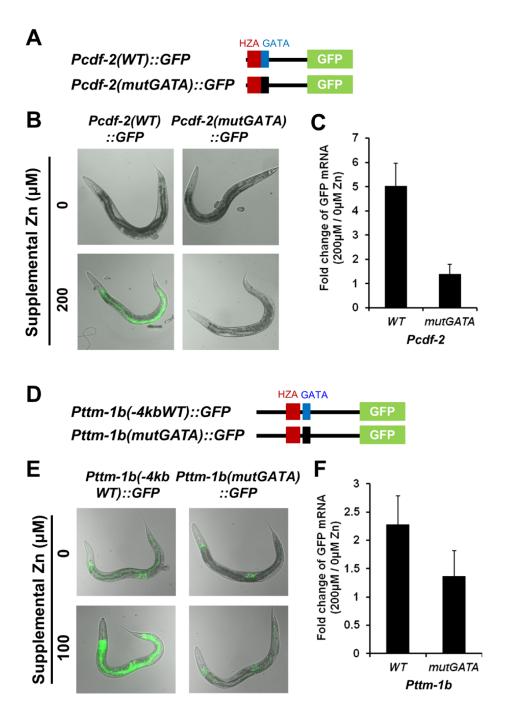


Ge	ne	Position	Strand	Sequence	<i>p</i> -value
C27H5.4		-1598	-	AACACAAACTACAA	7.36E-0
T08G5.1		-302	-	ATCACAAACTAGAG	7.36E-0
T08G5.10	mtl-2	-292	+	ATCACAAACTAGAG	7.36E-0
T26H2.5		-143	+	ATCACAAACTAGAA	1.66E-0
K11G9.6	mtl-1	-313	+	ATCAGAAACTAGAG	5.34E-0
F35E8.11	cdr-1	-125	+	AACAGAAACTACAA	5.34E-0
Y39B6A.24		-1144	-	AACAGAAACTACAA	6.15E-0
F28D1.3	thn-1	-1221	-	AACACAAACTCCGA	6.78E-0
T10B9.10	cyp-13A7	-135	+	AACACAAACCATAA	7.66E-0
T10B9.1	cyp-13A4	-131	+	AACACAAACCATAA	7.66E-0
R04D3.1	cyp-14A4	-127	+	AACACAAACTCTAC	1.14E-0
Y46G5A.24	bcmo-1	-294	+	AACACAAACAACAA	1.25E-0
T16G1.6		-86	+	GACAGAAACCACAG	1.37E-0
AC3.7	ugt-1	-218	+	GGCACAAACTCTAA	2.18E-0
F08F8.5	numr-1	-705	+	TGCACAAACCACAG	2.59E-0
T18D3.3	cdf-2	-194	-	ATCATAAACTAGAA	3.90E-0
F56A4.5		-118	-	CGCACAAACCATAG	3.90E-0
C17H1.8		-548	-	AGCACAAAACACAA	4.25E-0
F41B5.2	cyp-33C7	-143	+	ATCATAAACTACGG	5.80E-0
C02A12.1	gst-33	-143	-	GGCACAAACTAGGC	6.20E-0
B0507.8		-306	-	GACAGAAACTCCGC	1.08E-0
F53C3.12	bcmo-2	-862	-	ATCAGAAAATCGAA	1.15E-0
T10B9.2	cyp-13A5	-153	+	AACACAAATCATAG	1.26E-0
F35E8.8	gst-38	-202	-	ATCAAAGACTAGAG	2.57E-0
Y59E9AR.4	thn-5	-373	-	TTCAAAAACTATAG	3.40E-0
C08E3.6	fbxa-163	-64	-	AACAGAAACAAAAA	4.96E-0
F28D1.4	thn-3	-61	+	CTCATAAAATCCAG	5.58E-0
C31B8.4		-746	-	ATTACAAATTCCAA	9.40E-0
C17H1.3		-1057	+	AACAAAAAAACCAC	1.03E-0


Figure S1. The HZA element is present in genes induced by high cadmium

- (A) A 14 base pair sequence logo of the HZA element identified by MEME shown in the forward and reverse orientation. The promoter regions of the 29 cadmium-responsive genes [41] in panel B were analyzed. The height of the nucleotide at each position represents the frequency in the 29 DNA sequences. Panel A is identical to Figure 2C.
- (B) Each gene has a genomic designation, and 19 genes also have a genetic name (right). The numbers indicate the position of the upstream base pair of the HZA element. Positions are relative to the predicted translation start site of the gene (ATG), where the A is defined as +1 and the preceding nucleotide is defined as -1. Strand (+ or -) indicate the same and opposite orientation relative to the direction of transcription, respectively. Sequence lists the 14 nucleotides that conform to the HZA element. P values indicate a statistical match score of the site computed from the comparison with the HZA shown in Panel A.

Figure S2. The HZA element was necessary for transcriptional induction of *cdf-2* and *ttm-1b* in response to high zinc (A, D) Diagrams (not to scale) of the *cdf-2* and *ttm-1b* promoter regions extending 204bp and 4067bp upstream of the translation start codons (black line), respectively, that were fused to the coding region for GFP. The fragments include the wild-type GATA binding site (blue box), and the wild-type HZA element (red box) or a mutated HZA element (black box) consisting of 15bp of scrambled nucleotide sequence. (B, E) Fluorescence microscope images of transgenic animals at L4/adult stages containing the indicated promoter constructs and cultured with 0μM, 100μM or 200μM supplemental zinc. Bright field images are overlaid with GFP fluorescence signal (green) that were captured with the identical settings and exposure times. Images in panel E (left) are identical to Figure 1B (middle). (C, F) Transgenic animals containing promoter fragments shown in panel A or D were cultured with 0μM or

 $200\mu M$ supplemental zinc, and GFP mRNA levels were analyzed by qRT-PCR. The bars indicate the fold change of GFP mRNA levels as the ratio between the level at $200\mu M$ and $0\mu M$ supplemental zinc. A positive value indicates induction in high zinc. Values are the average \pm SEM of two independent experiments (panel C) or three independent experiments (panel F). GFP mRNA was consistently elevated at $200\mu M$ supplemental zinc in two or three independent trials, indicating this is a reproducible result. However, the combined data did not reach statistical significance at the level of p<0.05 because the values of the fold changes varied between the experiments.

Figure S3. The GATA element was necessary for zinc-responsive transcriptional regulation of *cdf-2* and *ttm-1b*. (A, D) Diagrams (not to scale) of the *cdf-2* and *ttm-1b* promoter regions extending 204bp and 4067bp upstream of the translation start codons (black line), respectively, that were fused to the coding region for GFP. The fragment includes the wild-type HZA element (red box) and the wild-type GATA element (blue box) or the mutated GATA element (black box) consisting of scrambled nucleotide sequence. (B, E) Fluorescence microscope images of transgenic animals at L4/adult stages containing the indicated promoter constructs and cultured with 0μM, 100μM or 200μM supplemental zinc. Bright field images are overlaid with GFP fluorescence signal (green) that were captured with the identical settings and exposure times. Images in panel E (left) are identical to Figure 1B (middle). (C, F)

Transgenic animals containing promoter fragments shown in panel A or D were cultured with $0\mu M$ or $200\mu M$ supplemental zinc, and GFP mRNA levels were analyzed by qRT-PCR. The bars indicate the fold change of GFP mRNA levels as the ratio between the level at $200\mu M$ and $0\mu M$ supplemental zinc. A positive value indicates induction in high zinc. . Values are the average \pm SEM of two independent experiments (panel C) or three independent experiments (panel F). GFP mRNA was consistently elevated at $200\mu M$ supplemental zinc in two or three independent trials, indicating this is a reproducible result. However, the combined data did not reach statistical significance at the level of p<0.05 because the values of the fold changes varied between the experiments.

Table S1

Strain ^a	Plasmid ^b	Genotype ^c
WU1418	pHR21	amEx207(Pmtl-1(WT)::GFP;myo-3:mCherry)
WU1420	pHR21	amEx208(Pmtl-1(WT)::GFP;myo-3:mCherry)
WU1421	pHR21	amEx209(Pmtl-1(WT)::GFP;myo-3:mCherry)
WU1394	pKD8	amEx183(Pmtl-1(WT)::MTL-1::GFP::mtl-13'UTR;myo-3::mCherry)
WU1422	pHR22	amEx210(Pmtl-1(mutHZA)::GFP;myo-3:mCherry)
WU1423	pHR22	amEx211(Pmtl-1(mutHZA)::GFP;myo-3:mCherry)
WU1424	pHR22	amEx212(Pmtl-1(mutHZA)::GFP;myo-3:mCherry)
WU1425	pHR23	amEx213(Pmtl-1(mutGATA)::GFP;myo-3:mCherry)
WU1426	pHR23	amEx214(Pmtl-1(mutGATA)::GFP;myo-3:mCherry)
WU1427	pHR23	amEx215(Pmtl-1(mutGATA)::GFP;myo-3:mCherry)
WU1395	pID1	amEx184(Pmtl-1(mut(1-21))::MTL-1::GFP::mtl-13'UTR;myo-3::mCherry)
WU1396	pID1	amEx185(Pmtl-1(mut(1-21))::MTL-1::GFP::mtl-13'UTR;myo-3::mCherry)
WU1428	pHR24	amEx216(Pcdf-2(WT)::GFP;myo-3::mCherry)
WU1429	pHR25	amEx217(Pcdf-2(mutHZA)::GFP;myo-3::mCherry)
WU1430	pHR25	amEx218(Pcdf-2(mutHZA)::GFP;myo-3::mCherry)
WU1431	pHR25	amEx219(Pcdf-2(mutHZA)::GFP;myo-3::mCherry)
WU1432	pHR26	amEx220(Pcdf-2(mutGATA)::GFP;myo-3::mCherry)
WU1433	pHR26	amEx221(Pcdf-2(mutGATA)::GFP;myo-3::mCherry)
WU1344	pHR6	amEx154(Pttm-1b(-6kb)::GFP;myo-3::mCherry)
WU1345	pHR6	amEx155(Pttm-1b(-6kb)::GFP;myo-3::mCherry)
WU1346	pHR6	amEx156(Pttm-1b(-6kb)::GFP;myo-3::mCherry)
WU1347	pHR6	amEx157(Pttm-1b(-6kb)::GFP;myo-3::mCherry)
WU1343	pHR18	amEx153(Pttm-1b(-2.4kb)::GFP;myo-3::mCherry)
WU1409	pHR13	amEx198(Pttm-1b(-4kb)::GFP;myo-3::mCherry)
WU1410	pHR13	amEx199(Pttm-1b(-4kb)::GFP;myo-3::mCherry)
WU1411	pHR13	amEx200(Pttm-1b(-4kb)::GFP;myo-3::mCherry)
WU1412	pHR14	amEx201(Pttm-1b(-4kb)(mutHZA)::GFP;myo-3::mCherry)
WU1413	pHR14	amEx202(Pttm-1b(-4kb)(mutHZA)::GFP;myo-3::mCherry)
WU1414	pHR14	amEx203(Pttm-1b(-4kb)(mutHZA)::GFP;myo-3::mCherry)
WU1415	pHR20	amEx204(Pttm-1b(-4kb)(mutGATA)::GFP;myo-3::mCherry)
WU1416	pHR20	amEx205(Pttm-1b(-4kb)(mutGATA)::GFP;myo-3::mCherry)
WU1417	pHR20	amEx206(Pttm-1b(-4kb)(mutGATA)::GFP;myo-3::mCherry)
WU1397	pID24	amEx186(3XGATA&HZA::pes-10::NLS-GFP;myo-3::mCherry)
WU1398	pID24	amEx187(3XGATA&HZA::pes-10::NLS-GFP;myo-3::mCherry)

^a The name of the strain containing the extrachromosomal array formed by injection of the indicated plasmid and a plasmid with a transformation marker. The wild-type N2 strain was injected in all cases.

^b The name of the plasmid that contains the zinc-responsive promoter fragment.

^c The name of the extrachromosomal array that contains the indicated plasmid and plasmid pCJF104 [*Pmyo-3::mCherry*], a coinjection marker that expresses mCherry from the muscle-specific *myo-3* promoter.

Table S2. Candidate genes predicted by a bioinformatic search (without *C. elegans* Regulatory Module Detector (CERMOD) search criteria)

Gene ^a		GATA Position ^b	HZA Position ^c	
B0412.2	daf-7	-804	-822	
B0563.7		-1462	-1448	
C01C10.2a		-664	-672	
C03B1.10		-72	-67	
C03F11.1		-735	-718	
C06A5.1		-253	-261	
C06A5.9	rnf-1	-348	-343	
C06C6.4	nhr-63	-1071	-1066	
C06E2.5		-223	-231	
C07A9.11	ncx-7	-133	-146	
C07G3.8a		-1243	-1225	
C07G3.8b		-401	-383	
C08E3.1		-1380	-1375	
C08E3.13		-128	-136	
C11D2.2		-210	-224	
C15A7.4		-202	-200	
C17B7.11	fbxa-65	-143	-151	
C17F4.12		-39	-22	
C24A3.1		-70	-89	
C24A3.4		-387	-382	
C33A11.4b		-1034	-1053	
C34B4.1b	max-1	-1377	-1385	
C35C5.5	lev-8	-397	-384	
C42D8.5a	acn-1	-393	-388	
C47F8.2	nhr-165	-189	-187	
C47F8.8	nhr-81	-1415	-1420	
C50B6.12	str-37	-1454	-1459	
C50B6.7	amylase	-1352	-1350	
D2023.1g		-155	-146	
D2023.3a		-1320	-1315	
F02E8.5	atg-16.1	-1101	-1099	
F08D12.4		-352	-367	
F08F1.6	spp-13	-284	-279	
F10A3.1	,,	-151	-146	
F13D11.4		-184	-173	
F13H8.6		-1264	-1272	
F16A11.3a	ppfr-1	-400	-408	
F17E9.11	lys-10	-193	-188	
F18E9.1	,	-1205	-1186	
F20C5.5		-424	-443	
F22B3.5a		-897	-905	
F23D12.5		-687	-682	
F23H12.8	fipr-1	-552	-571	
F26F2.9	,	-755	-738	

F28G4.1	cyp-37B1	-102	-97
F31E9.6	3)/2 31 = 1	-791	-809
F35E8.10		-936	-923
F35E8.11	cdr-1	-109	-125
F38C2.4a		-845	-840
F43B10.1		-1223	-1214
F45C12.15		-410	-418
F45D11.1		-852	-847
F45D11.14		-308	-303
F45D11.15		-329	-324
F45D11.16		-329	-324
F46F3.4c		-353	-365
F46F3.4d		-829	-841
F47B8.10		-1277	-1262
F49E12.2	dod-23	-913	-931
F54D8.3b	alh-1	-913 -632	-627
F55A4.8a	airi- i	-500	-514
F55B11.1		-1203	-1201
F59B1.2		-1203 -1017	-1033
F59B1.6			
		-650	-637
F59B2.12		-935 	-943 4037
H12D21.10a		-1022	-1037
H12D21.6		-1046	-1034
H27A22.1a		-225	-220
K01A12.4	h = = 4 d	-107	-102
K02A4.1	bcat-1	-1467	-1481
K02E7.6		-317	-312
K04H4.5		-914	-909
K11G9.6	mtl-1	-323	-313
M02D8.6		-105	-100
M04C9.2		-59	-67
M05D6.4	lact-4	-220	-212
M110.4e	ifg-1	-186	-194
R08A2.2		-543	-531
R08A2.4	fbxa-147	-385	-400
R10H1.2a	srab-14	-1475	-1483
R12C12.8a		-1401	-1420
T05B11.3	clic-1	-606	-592
T05B11.6	srr-10	-141	-158
T05G11.2	srbc-77	-232	-227
T08G5.1		-297	-305
T08G5.10	mtl-2	-297	-292
T18D3.3	cdf-2	-182	-194
T18D3.4	myo-2	-1203	-1194
T21C9.7	srg-32	-217	-225
T21E8.1a	pgp-6	-1410	-1418
T21E8.1c		-239	-247
T23B3.4	ckr-1	-1067	-1075

T25B9.7	ugt-54	-649	-663
T26H2.5		-156	-145
W01A8.1a	mdt-28	-34	-47
W01A8.2		-859	-857
W06G6.11b		-395	-384
Y105C5A.13b		-130	-138
Y105C5B.2	gcy-25	-410	-426
Y105E8A.24a		-1320	-1315
Y22F5A.3b	ric-4	-485	-480
Y37D8A.3		-1167	-1148
Y39A1B.2a		-631	-644
Y43E12A.2		-1450	-1433
Y54G2A.16		-357	-339
Y54G9A.4		-73	-81
Y64G10A.6		-616	-611
Y71F9B.1		-969	-964
ZC142.1	srt-13	-983	-978
ZC443.6	ugt-16	-86	-100
ZK265.8a		-1042	-1040
ZK287.2a		-510	-502
ZK287.2b		-1000	-992
ZK688.6a	рср-5	-37	-45
ZK813.3		-1017	-1030
ZK909.4	ces-2	-865	-882

Each gene has a genomic designation, and 44 genes also have a genetic name (right).

Numbers indicate the position of the upstream base pair of the GATA element or the HZA element.

Positions are relative to the predicted translation start site of the gene (ATG), where the A is defined as +1 and the preceding nucleotide is defined as -1. To search for the GATA element, we used a 12 bp weight matrix, and to search for the HZA element, we used a 15 bp weight matrix.