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1. Supplemental Methods

While most thresholds can be considered conservative and standard, we have included them
here for completeness and reproducibility sake.

1.1. Preprocessing
1.1.1. Read Alignment

We identified 282 patients with Kidney Renal Clear Cell Carcinoma (KIRC) in the The
Cancer Genome Atlas (TCGA) project that had a) RNA-seq data of the tumor, b) whole-
exome sequencing data of blood (germline), ¢) tumor as well as d) copy number variation
(CNV) available. We obtained the RNA-Seq samples for provided by the CGHub data por-
tal (https://cghub.ucsc.edu/). As only BAM files were available at the time the data was
obtained, a custom script was used to extract read information from the given alignment
files and generate valid FASTQ files for re-alignment (two FASTQ files with the reads in
the same order such that the aligner can align them in pairs). All reads were aligned to the
hgl9 human reference genome using the alignment software STAR (version Alpha 2.2.0)!
for computation time reasons. The annotation was enriched with splice junction informa-
tion extracted from the GENCODE annotation (version 14).2 We used the following options:
--outFilterMultimapScoreRange 2 --outFilterMultimapNmax 100 --outFilterMismatchNmax 10
--alignIntronMax 500000 --alignMatesGapMax 1000000 --sjdbScore 1 --sjdbOverhang 5.

We further obtained whole exome sequencing samples from normal (blood) and tumor
tissue taken from the same individuals. We followed the same strategy to use a custom
script to convert the downloaded alignment files from BAM into FASTQ format. Alignments
of all reads against the human hgl9 reference genome were again performed using STAR.
For this alignment, STAR was configured not to identify introns. We used the following
additional options: --sjdbScore -10 --scoreGapNoncan 0 --scoreGap -8 --alignIntronMin 100

--scoreGapGCAG O --scoreGapATAC O --scoreStitchSJshift O --alignIntronMax O
--alignSJoverhangMin 200 --alignSJDBoverhangMin 200.

In addition to the TCGA data files we also downloaded a subset (140) of the RNA-Seq
samples that were generated as part of GEUVADIS? as well as 460 RNA-Seq samples generated
in context of ENCODE.* We aligned these samples using the same STAR settings as were
used for the TCGA RNA-Seq samples.



1.2. Expression Estimation and Alternative Event Extraction

Based on the RNA-Seq alignments, we used a custom python script to count expression
information.All genome coordinates used for expression counting were based on the GEN-
CODE annotation (version 14). We used SplAdder® to augment this annotation with addi-
tional information from the RNA-Seq samples. The code for SplAdder is publicly available
(https://github.com/ratschlab/spladder). Using the augmented annotation, we counted
an alignment towards the expression of a gene, if it shared at least one position with any exon
of the gene. The expression counts were library size normalized using the expression counts of
all genes that had a read count larger than 10 in at most 95% of the samples as a size factor.

Using an adapted version of SplAdder, we extracted alternative splicing events from the
augmented annotation. To this end, the annotation was represented as a splicing graph and
events were sampled as subsets of this graph. We only focused on alternative 3’- and 5’-
splice site events as well as on exon skip events. To identify a high-confidence subset, we only
retained events that had at least 10 reads spanning any of the event’s introns in at least 80%
of the samples. We further required that an event was alternative, that is both isoforms were
expressed, in at least 1% of the samples. As a representation of relative isoform expression of
an event that could be used as phenotype for the association study, we used the splicing index
(PSI),5 which was computed as follows:

e For exon skips as PST = afljch’ where a and b are the number of alignments spanning

the introns directly before and after the cassette exon, respectively, and ¢ is the number

of alignments confirming the skipping of the cassette exon.

e For alternative 3’/5-events as PST = %, where a is the number of alignments spanning
the intron in the shorter event isoform and b is the number of alignments spanning the

intron in the longer event isoform.

A robustness analysis of SplAdder can be found in® Supplemental Table 20, demonstrating
reproducibility of splicing events under different thresholds.

1.3. Tumor-specific splicing analysis

Further, to identify tumor-specific splicing, we ranked all expressed genes by the ratio of the
average number of samples that expressed a certain intron in KIRC tumor over the aver-
age number of samples expressing the intron in KIRC normals, GEUVADIS and ENCODE

combined. To prevent division by zero, we added a pseudocount to the mean.

1.4. Enrichment analysis

The ranked list obtained from the tumor specific splicing analysis has been used for a functional
enrichment analysis of gene ontology (GO) terms using the GOrilla webserver.”

1.4.1. Variant Calling

We have used the HaplotypeCaller in GATK (version 3.1.1)%% to create gVCF files
for each new BAM file. We followed the good-practice guidelines for variant calling



with GATK and used these options: -stand call conf 50.0 -stand emit_conf 10.0 -ERC GVCF
--variant_index_type LINEAR --variant_index_parameter 128000 -mbq 15 -dcov 200 --minPruning
5 -pairHMM VECTOR_LOGLESS_CACHING -S STRICT. We then performed joint variant calling across
normal and tumor samples separately using the downsampling option (-dcov 300).

In addition to the joint calling, we also generated calls of somatic variants using the MuTect
package (version 1.1.5)1% on 282 matching tumor normal pairs of exome sequencing samples.
We retained all variants labeled as PASS by MuTect.

1.5. Quantitative Trait Analysis
1.5.1. Preprocessing

The splicing index is being used as a quantitative phenotype. In order to address some un-
wanted properties of this phenotype we have performed an inverse normal transform on all
splicing indices estimated by SplAdder. Assuming there are no ties, this transformation will
address concerns about deviations from the normal distribution. However, ties in the rankings
can create multi-modalities in the data and introduce an increase of false positives. To resolve
such ties, we have added a small amount of random pseudo-noise in the range of 107 to
each estimate before transformation. Splicing events which exclusively exhibited ties (e.g.: no
variation), have been removed from analysis. We also excluded phenotypes in which less than
10% of the samples had any valid estimates. These steps are very conservative and lead to a
decrease in sensitive, however they ensure a low false positive rate, which is desired in this
analysis.

Tumor variant calls have been filtered in the following way: Variants that have less than 100
samples with valid calls, quality of less than 100, are multi-allelelic or indels have been removed
from analysis. We further required more than 5 alternate alleles for each polymorphic position.
All variants have been encoded into an additive scheme with 0 representing the homozygous
reference state, 1 the heterozygous state and 2 the homozygous alternate allele. In this study we
ignore the existence of variants that appear subclonally. The encoding has been standardized
and centered. Finally, we have intentionally avoided any imputation of missing variant calls
since somatic variants do not follow the typical linkage patterns. Instead we have done a
trivial imputation by adding random variant calls according to the observed freqencies in the
remaining samples.

MuTect calls have been filtered to PASS calls only and non-recurring (e.g., uniquely called
on only one sample) variants have been removed. We used a binary encoding to represent the
detection status of a somatic variant. All variant positions were centered and standardized.

1.5.2. Mized Model Analysis

We have used a linear mixed model to perform our QTL analysis for splicing phenotypes.
For the analysis of the GATK tumor calls our model takes into account hidden confounder
using PANAMA!! and population structure as random effects. Copy number variation (where
available) from Ciriello et al.'? and gene expression have been used as fixed effects in the sQTL
analysis. More formally:

Y = B+ Bsts + Bete + Pee + K+ T+ € (1)



with k ~ N(0,07K) , m ~ N(0,05P), € ~ N(0,021) where K is the exome wide kinship ma-
trix, P is a kernel matrix estimated using PANAMA to account for hidden confounders (see
Section 1.5.3), z. are copy number variations from Ciriello et al.'? and =z, is the gene expres-
sion estimate as described above. Genetic effects are then tested using a Likelihood ratio test
where Hy : 8, = 0. We have used LIMIX'3 in order to efficiently perform this analysis across
all samples and single nucloetide variants (SNVs). Benjamini-Hochberg step-up procedure!*
has been used for FDR estimation for all SNVs per event.

For the analysis of the somatic variant call we employed the same model, however re-
placing the population structure random effect with a separate factor accounting for cancer
heterogeneity. Thus the new model is

Y:BO+6S$5+BC$c+Be$e+W+ﬂ'+€ (2)

with w ~ N(0,025) where S is a somatic genetic relatedness matrix based on MuTect calls.

1.5.3. Kinship Calculation and PANAMA

In order to account for confounding effects due to systematic genetic similarities and popula-
tion structure we have estimated the kinship matrix K as

K=X"X/n (3)

where X is the exome-wide additive genotype matrix and n the number of loci. P has been
estimated directly via PANAMA!! based on the library size normalized expression counts.

1.5.4. Integrative Analysis

We have used annotations from the UCSC genome browser in order to annotate all sQTLs.
We integrated ClinVar!® data, COSMIC!® data as well as other known GWAS loci.



2. Expression Confounding to Cancer-specific Introns
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Fig. 1. Gene expression distribution in tumor and normal KIRC samples for the top ranked genes with
cancer-specific introns. Expression between sampls was normalized by mean of the total counts of all genes.
Expression counts are shown as log;, counts (y-axis) for KIRC normal/tumor (x-axis).
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