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Section 1.  Supplementary Methods 

1.1  Growth conditions and feeding experiment of B. subtilis 

Cell growth: B. subtilis 168 (a gift from the laboratory of G. Ordal) was grown aerobically in either Luria Bertani broth 

(LB) or  minimal medium at 37 °C with shaking at 220 rpm as previously described.(Sekowska and Danchin 2002) The 

minimal medium contained 8 mM K2HPO4, 4.4 mM KH2PO4, 27 mM glucose, 15 mM L-glutamine, 0.2 mM L-

tryptophan, 2.48 µM NaMoO4, 2.5 µM CoCl2, 2.52 µM CuCl2, 12.4 µM ZnCl2, 5.05 µM MnCl2, 50 µM FeCl3, 49.5 µM 

CaCl2, 610 µM MgCl2, 33.5 µM iron citrate, and 300 µM trisodium citrate with either 0.5–1 mM Mg2SO4 or 0.5–1 mM 

MTA. Overnight LB cultures were washed with minimal medium lacking sulfur before 1:400 dilution into 200 mL 

minimal medium containing either sulfate or MTA as the sole sulfur source. The cultures were harvested by centrifugation 

at OD600 = 0.6 as measured by a Genesys 20 spectrophotometer (Thermo Scientific, Waltham, MA), and the cells were 

kept on ice unless otherwise indicated. The cells were washed with 50 mL minimal medium without sulfur before being 

resuspended in 5 mL of minimal medium without sulfur. 

 MTA feeding experiment: For three biological samples prepared as described above, metabolite depletion of the 

concentrated cells was immediately carried out at 37 °C in 5 mL minimal medium without sulfur for 10 min. The cells 

were then transferred back onto ice. The OD600 (ca. 24) was measured for each in triplicate by 50-fold dilution of a small 

aliquot into minimal medium in a cuvette. The averaged OD value of the concentrated cells was then used to dilute the 

cells to aliquots of OD600 = 6 at a final volume of 1 mL. Sulfur feeding was initiated by addition of concentrated MTA or 

sulfate to 1 mM before transferring to 37 °C for 0, 2, 5, or 15 min. Immediately after incubation, the cells were transferred 

to a 4 °C centrifuge and spun at 16,100 × g for 2 min, transferred to ice, and the supernatant was quickly removed by 

pipetting. Immediately following removal of the supernatant, the cells were frozen with liquid nitrogen and stored at –80 

°C prior to extraction.   

 

1.2  Growth conditions and feeding experiment of R. rubrum 

Cell growth: R. rubrum (DSM 467, ATCC 11170) and its MTXu 5-P methylsulfurylase mutant (a gift from R. Tabita and 

Jaya Singh) were grown aerobically in LB medium or in the dark at 30° C on 20 – 2,000 mL minimal medium with sulfate 

or MTA as the sole sulfur source as described previously.(Erb et al. 2012) The minimal medium contained 17.9 mM malic 

acid, 35.0 mM NaOH, 22.4 mM NH4Cl, 0.5 mM CaCl2 × 2 H2O, and 15 mM potassium phosphate buffer (pH 6.8), 1 mL 

of trace element solution (5 g EDTA disodium salt, 3 g FeCl2SO4 × 4 H2O, 30 mg MnCl2 × 4 H2O, 50 mg CoCl2 × 6 H2O, 10 

mg CuCl2 × 2 H2O, 20 mg NiCl2 × 6 H2O, 30 mg Na2MoO4 × 2 H2O, 50 mg ZnSO4 × 7 H2O and 20 mg H3BO3 per l, pH 3), 

and 1 mL of biotin solution (15 mg per L) or 1 mL of full vitamin solution (80 mg p-aminobenzoic acid, 100 mg calcium 

pantothenate, 100 mg cyanocobalamin, 20 mg biotin, 200 mg nicotinic acid, 300 mg pyridoxamine, 200 mg thiamine 

dichloride per L) with either 0.4–0.9 mM MgSO4 × 7 H2O or 0.4 – 0.9 mM MTA and 0.4 – 0.9 mM MgCl2 × 6 H2O. The 

cultures were harvested at OD578 = 0.6 (Genesys 20 spectrophotometer) by centrifugation, and the cells were kept on ice 

unless otherwise indicated. The cells were then washed with 50 mL minimal media without sulfur. 
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1.3  In vitro reactions with 1-methylthio-D-xylulose-5-phosphate methylsulfurylase 

Unless otherwise stated, chemicals used for synthesis were purchased from Sigma-Aldrich, and buffers and reaction 

mixture components were purchased from Fisher Scientific. Production of glutathione-methylthiol disulfide and DXP 

from MTXu 5-P was monitored by 1H NMR with solvent suppression and LC-FTMS. The reactions (700 μL) in 100% 

H2O contained: 60 mM Tris-HCl (pH 7.9), 15 mM NaHCO3, 1 mM MgCl2, 6 mM glutathione (or without glutathione), 4 

mM MTXu/Ru 5-P, and 5 µM R. rubrum RLP. MTXu/Ru 5-P was enzymatically prepared from MTRu 1-P using the R. 

rubrum RLP. Immediately before inserting samples into the spectrometer, 100 μL of D2O was added.  The spectrum for 

MTXu/Ru 5-P was acquired and then the R. rubrum 1-methylthio-D-xylulose 5-phosphate methylsulfurylase was added to 

a final concentration of 10 μM.  

 

1.4 Liquid chromatography (LC)-Fourier transform (FT) mass spectrometry (MS) metabolomics 

Metabolite extraction: Metabolite extractions were performed at room temperature, with solvent B (10 mM ammonium 

bicarbonate buffer (pH 9.2) containing 90% (v/v) acetonitrile) used for the ZIC-pHILIC column (Merck SeQuant AB, S-

907 19, Umeå, Sweden) on the LC-FTMS instrument described below.  For each cell pellet originated from 1 mL of cells 

of OD600 = 6,375 µL, solvent B was added, vortexed for 15 min, and centrifuged two times at 16,100 ×  g for 5 min before 

adding to a fresh 96-well plate in the HPLC autosampler. 

 LC-FTMS analysis: LC-FTMS was performed using an 11T LTQ-FT Ultra mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA) equipped with an Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA). 100 µL 

of extracted metabolites were injected onto a 2.1 × 150 mm ZIC-HILIC column equilibrated with solvent A, 10 mM 

ammonium bicarbonate (pH 9.2). A linear gradient of 100% solvent B to 40% solvent B over 35 min, and then 40% 

solvent B to 100% solvent B in 10 min, followed by a 15 min re-equilibration at a flow rate 200 of µL/min was used for 

metabolomics experiments.  For in vitro reaction monitoring, a shorter gradient was used: 100% B for 5 min followed by 

a linear gradient down to 40% B over 10 min, then a return to 100% B over 5 min followed by a 15 min re-equilibration 

for 15 min. In the case of B. subtilis, for each time point and condition (sulfate versus MTA feeding), three injections 

(technical replicates) were analyzed for each of three extractions (biological replicates).  For R. rubrum analysis, four 

biological samples were each analyzed in triplicate for each time point and condition. All data were collected in negative 

profile mode at resolution of 50,000 with full scan set to m/z 100–1000. 

 

1.5 LC-MS data analysis platform 

Data processing: We used XCMS (Smith et al. 2006), a freely available and popular software package for LC-MS data 

pre-processing, including peak detection, peak matching, and retention time alignment. The raw LC-MS files were 

converted into XML format using the program MM File Conversion, one of the MassMatrix Mass spec Data File 

Conversion Tools (Xu and Freitas 2009). These XML-formatted files were used as input for XCMS. We used a binning 

method for fast data processing at the peak detection step, but it has some drawbacks. Apart from an optimal bin size 

issue, XCMS combines maximum signal intensities from adjacent slices into an overlapping combined chromatogram, 

thereby mixing potentially distinct peaks into a single peak. This peak mixing phenomenon reduces the benefits of using 
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high resolution LC-MS instruments, even though XCMS uses an intensity-weighted averaging strategy to reduce this 

effect. In addition, we might not detect close-by and partially overlapping features due to a post-processing step 

(implemented by the ‘rectUnique()’ function in the source code) that eliminates any peaks in the vicinity of higher intense 

peaks. This can be controlled by setting the ‘mzdiff’ option as a minus value, but in this case, we can get the same peak 

identification for several different peaks, which might be problematic for automatic data processing. XCMS provides 

another algorithm, centWave (Tautenhahn et al. 2008), that circumvents these issues by collecting the region of interest 

and using continuous wavelet transformation, but the longer processing time required by this method to search the entire 

list of regions of interest was prohibitive to our use. To properly address the issues with the binning method, we changed 

the source code in XCMS to filter minor mixing peaks in the major peaks using a 2 ppm mass tolerance in each bin 

allowing for more precise mass and area calculations. Also, we changed the rounding function to provide a precision of 5 

decimal points for mass and to include retention times for peak identifications, allowing automatic processing in the 

following procedures. We set mzdiff = –1.001 to detect close-by and partially overlapping peaks. To get as many peaks as 

possible, we set the signal-to-noise threshold at 2 or to the lowest value, which does not produce peak alignment errors 

(e.g., normally, snthresh = 2 or snthresh = 4). The parameters for xcmsSet(), group(), and rector() were set to the default 

values. 

  Data pre-processing: Multiple data pre-processing steps were introduced for data quality control (retention time 

filtering, non-biological peaks elimination, missing value imputation, and normalization), data redundancy elimination 

(adducts, isotopologues, and multimers), and automatic isotope pattern analysis for the experimental data. We eliminated 

peaks with retention times of less than 120 s or greater than 2,030 s, since salts and chemical impurities were frequently 

detected in these regions in our solvent system. Non-biological peaks were further filtered based on the mass distribution 

(e.g., integral versus non-integral) of metabolites in the KEGG and PubChem databases (Figure 1 and Figure S2). The 

portion of peaks in between high density areas was just below 0.3%, even in the PubChem database, containing large 

numbers of synthetic molecules. Peaks in this area were eliminated by the following criteria: i) if integral ≤ 100, then non-

integral ≥ 0.90 or ≤ 0.10; ii) if integral > 100 and ≤ 200, then non-integral ≥ 0.82 or ≤ 0.20; iii) if integral > 200 and ≤ 300, 

then non-integral ≥ 0.82 or ≤ 0.30; iv) if integral > 300 and ≤ 400, then non-integral ≥ 0.82 or ≤ 0.40; and v) if integral > 

400 and ≤ 500, then non-integral ≥ 0.82 or ≤ 0.50). A non-biological filter was not applied when masses were greater than 

500 m/z according to the mass distribution analysis. Missing intensity values were set to the integer values of the 

minimum intensity in each experimental data set (i.e., missing value imputation). A matrix containing all-by-all mass 

differences was constructed to check adducts, multimers (e.g., mostly dimers and trimers) and isotopologues (e.g., C, N, 

S, and O) based on a 2 ppm mass tolerance and a 60-s retention time tolerance for all detected peaks. For every peak, if 

there were mass differences corresponding to adducts or multimers, those peaks were eliminated, and isotopologues were 

also removed after isotope patterns (i.e., relative abundance and masses) were stored as a matrix for later use in molecular 

formula determination. For the remaining peaks, we calculated the mean intensities of biological and technical replicates 

and the relative ratios of mean intensities between control samples and treatment samples at each time point. Peaks were 

classified into the monoisotopic group or the isotopic group according to the presence of isotopologues. The isotopic 
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group was subdivided into the primary group and the secondary group based on the abundance change. The primary group 

included peaks with isotopic patterns showing > 20% of abundance change at each time point. 

 Molecular formula determination: For peaks within an isotopic group, molecular formulas were determined using 

six atoms (e.g., C, N, O, P, S, and H), because most biological molecules are mainly composed of these atoms. 

Halogenated molecules were excluded at this point, but they can be easily included if necessary. Molecular formula 

determination was carried out using three functional modules: a theoretical molecular formula modeling module, 

theoretical isotopic pattern modeling module, and matching probability calculation module between theoretically 

predicted isotopic patterns and experimentally observed isotopic patterns. Theoretical molecular formulas were predicted 

based only on monoisotopic masses using previously published algorithms (Liptak 2007; Bocker et al. 2009; Bocker et al. 

2008). Briefly, the algorithm constructs a data structure called an extended residue table to compute the smallest 

decomposable integer over given integer masses, and generates all possible decompositions of a query mass, recursively. 

For real-valued decompositions, the algorithm transforms the integer knapsack problem (Kellerer et al. 2004) with real-

valued coefficients into a problem instance with integer coefficients by introducing a blowup factor (i.e., scaling factor). 

This blowup factor inevitably causes a rounding error. To avoid this rounding error, previous studies decomposed 

additional integers by extending the upper bound using the maximum relative rounding error based on hydrogen atoms. A 

blowup factor can affect search space in the residue table due to the condition of coprimality between masses. In this 

study, we used 25,000 as a blowup factor. All of the possible molecular formulas were filtered by applying the seven 

golden rules (Kind and Fiehn 2007), except the trimethylsilylated compounds rule, which is only applicable to gas 

chromatography MS data, to select the most likely and chemically correct molecular formulas. For each predicted 

formula, we simulated theoretical isotopic patterns based on a dynamic programming approach in the context of the 

Markov process as described in a prior study (Snider 2007). We compared simulated isotopic patterns with the 

experimentally measured isotopic patterns based on Bayesian statistics, as described previously (W. Zhang and Chait 

2000; N. Zhang et al. 2002; Bocker et al. 2009; J. Zhang et al. 2005). Only the top three ranked molecular formulas were 

used for searching against the KEGG database. 

 Seed metabolites: Peaks in the primary group were searched against the publicly available KEGG database, using 

nominal masses and the top three predicted molecular formulas with 5 ppm mass tolerance. If there were any hits, we 

considered those as seed metabolites, referring to the metabolites showing: higher abundance changes upon perturbation, 

clear isotope patterns in experimental data, and search hits in the database. Metabolic pathway information was extracted 

from these seed metabolites and used to construct initial pathway clusters. Since the same metabolite can participate in 

many different pathways, multiple pathway information can be extracted from a single seed metabolite. Initial pathway 

clusters were used to further annotate peaks in the secondary group and the monoisotopic group. Since it is difficult to 

annotate monoisotopic peaks with high confidence, even if there are hits in the database, additional information is needed 

to increase confidence. Retention time is starting to be used, but there are still some hurdles to overcome, such as different 

solvent systems. Pathway information and chemical reaction information can be used as alternatives to confer high 

confidence upon putative annotation.  
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 Dynamic construction of metabolite sets (i.e. implicated pathways): After detecting seed metabolites and their 

respective pathways, peaks in the secondary group and the monoisotopic group were searched against the KEGG database 

with 5 ppm mass tolerance. Peaks in the secondary group can provide enhanced molecular formula information and 

increase the reliability of the search hits. For hits in the database, we compared the pathways and chemical reactions of 

those hits with those of the seed metabolites in the initial pathway clusters. If they matched with each other, we added 

those metabolites into the pathway clusters. This pathway comparison makes it possible to annotate monoisotopic peaks 

with high confidence which are usually difficult to annotate based solely on single mass information.  

 Metabolite set enrichment analysis (MSEA): Metabolite set enrichment analysis was carried out based on the 

same procedure and statistics as described in the previous gene set enrichment analysis (GSEA) studies (Subramanian et 

al. 2005; Mootha et al. 2003). After data processing, peaks were listed based on fold change. For each metabolite set, we 

calculated a maximum enrichment score by a normalized Kolmogorov-Smirnov (K-S) running sum statistic. For the 

metabolites M1, M2, ···, Mn in the peak list and a metabolite set S containing Nh members, we used 

 
if Mi is not a member of S, or  

 
if Mi is a member of S as the same way as the previous studies. 

 A running sum across all N metabolites was computed, and the maximum enrichment score (MES) was 

considered as the maximum observed positive deviation of the running sum for every metabolite set.  

 
 For a null distribution, we permuted the class labels for 1,000 times and recorded the maximum enrichment score 

for every permutation. The maximum enrichment score from the actual data was then compared to this null distribution, 

providing a nominal P value to indicate statistical significance. Every metabolite set with p < 0.05 was considered as 

active metabolic pathway. 
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Section 2.  Supplementary Tables 

 Table S1. Performance comparison of putative peak annotation approaches for R. rubrum. 

 10 min 20 min comment UIDa TSHb HRPPc UIDa TSHb HRPPc 

Search by mass only 
(mass tolerance = 2 ppm) 147 416 2.83 151 450 2.98 Hard-to-annotate peaks putatively with 

mass information only. 

Search by mass only 
(mass tolerance = 5 ppm) 228 705 3.09 261 779 2.98 Hard-to-annotate peaks putatively with 

mass information only. 

Search with mass & molecular 
formula 

(mass tolerance = 5 ppm) 
41 109 2.66 34 84 2.47 

Molecular formula information can 
reduce false positives, but coverage 
also can be reduced. 

Our seed metabolite approach 120 271 2.26 72 148 2.05 

Seed metabolites and clustering by 
pathways can reduce false positives 
and increase coverage by using 
monoisotopic peaks without isotopic 
information. 

aUID: Number of unique peak identifications having search hits in KEGG database. 
bTSH: Total number of search hits in KEGG database. 
cHRPP: Hit ratio per peak calculated by TSH/UID. 
 
The performance of putative peak annotation is represented by the hit ratio per peak (HRPP). Note that our approach shows the lowest HRPP values but 
the higher number of unique peaks in comparison with the conventional approach (i.e., search with mass and molecular formulas), implying better 
coverage and lower false positives. Search based only on mass cannot annotate peaks with confidence without any biological knowledge and manual 
curation. 
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 Table S2. Performance comparison of putative peak annotation approaches for B. subtilis. 

 2 min 5 min 15 min comment UIDa TSHb HRPPc UIDa TSHb HRc UIDa TSHb HRPPc 

Search by mass only 
(mass tolerance = 2ppm) 136 337 2.48 111 278 2.50 119 260 2.18 Hard to annotate peaks putatively 

with mass information only. 

Search by mass only 
(mass tolerance = 5ppm) 291 749 2.57 288 717 2.49 260 641 2.47 Hard to annotate peaks putatively 

with mass information only. 

Search with mass & 
molecular formula 

(mass tolerance = 5ppm) 
33 93 2.82 23 65 2.83 19 50 2.63 

Molecular formula information can 
reduce false positives, but coverage 
also can be largely reduced. 

Our seed metabolite 
approach 105 198 1.89 106 214 2.02 78 154 1.97 

Seed metabolites and clustering by 
pathways can reduce false positives, 
and increase coverage by using 
monoisotopic peaks without isotopic 
information. 

aUID: Number of unique peak ID having search hits in KEGG database 
bTSH: Total number of search hits in KEGG database 
cHRPP:  Hit ratio per peak calculated by TSH/UID 
 
A similar pattern of performance was observed in the B. subtilis metabolomics data. Our approach shows better coverage and lower false positives. 
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Table S3. Actively changing metabolic pathways and their constituent metabolites in B. subtilis detected by the enrichment analysis. 

Metabolites Fold change p-value 
Pathway 

Name Monoisotopic 
mass (m/z) 

Retention time 
(sec) 2 min 5 min 15 min 2 min 5 min 15 min 

Adenine 134.0471 244 4.66 7.41 8.96 8.43 × 10-4 1.57 × 10-3 4.19 × 10-3 Purine salvage 
Hypoxanthine 135.0304 309 6.93 6.15 20.18 0.02 0.03 2.18 × 10-3 Purine salvage 

Deoxyadenosine 250.0944 205 2.57 3.49 1.55 0.06 6.79 × 10-3 0.35 Purine salvage 
Deoxyinosine 251.0785 274 9.68 2.80 - 0.048 0.28 - Purine salvage 

Adenosine/ 
Deoxyguanosine 266.0894 235 1.03 1.32 1.16 0.87 0.30 0.50 Purine salvage 

Inosine 267.0738 435 2.47 1.42 0.97 0.16 0.52 0.96 Purine salvage 
Guanosine 282.0838 881 0.56 - - 0.49 - - Purine salvage  

Xanthosine 283.0686 1486 0.45 0.08 - 0.24 0.30 - De novo purine 
biosynthesis 

AICAR 337.0543 1507 1.02 0.99 1.29 0.97 0.99 0.73 De novo purine 
biosynthesis 

AMP/dGMP/3’-AMP 346.0555 1534 1.22 1.16 0.01 0.71 0.45 0.12 De novo purine 
biosynthesis 

Xanthosine-5’-
phosphate 363.0346 1566 0.50 0.35 0.36 2.21 × 10-3 3.53 × 10-3 8.77 × 10-3 De novo purine 

biosynthesis 

MTPa 119.0171 191 91.35 1.17 - 2.74 × 10-4 0.46 - met salvage 
pathway 

MTOBb 147.0120 172 34.70 - - 1.13 × 10-4 - - met salvage 
pathway 

L-Methionine 148.0437 559 2.91 50.00 - 7.30 × 10-3 0.02 - met salvage 
pathway 

DHK-MTPenec 161.0285 201 11.48 4.64 5.08 6.54 × 10-4 1.98 × 10-3 0.02 met salvage 
pathway 

MTR 179.0383 190 3976.13 3927.10 1421.71 1.16 × 10-4 1.79 × 10-4 2.53 × 10-3 met salvage 
pathway 

DK-MTP-1P/ 
HK-MTPenyl-1Pd 240.9939 203 1.05 - - 0.80 - - met salvage 

pathway 
MTR-1P/MTRu-

1P/MTXu-1Pe 259.0046 1514 14.1 357.42 93.44 5.76 × 10-4 2.04 × 10-5 1.12 × 10-3 met salvage 
pathway 

MTAf 296.0825 181 40.17 32.18 95.48 4.63 × 10-3 1.33 × 10-3 6.56 × 10-4 met salvage 
pathway 

a 3’-Methylthiopropionate 
b 4-Methylthio-2-oxobutanoate 
c 1,2-Dihydroxy-3-keto-5-methylthiopentene 
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d 2,3-Diketo-5-methylthiopentyl-1-phosphate/2-Hydroxy-3-keto-5-methylthiopentenyl-1-phosphate 
e S-Methyl-5-thio-D-ribose/S-Methyl-5-thio-D-ribose-1-phosphate/S-Methyl-5-thio-D-ribulose-1-phosphate/S-Methyl-5-thio-D-xylulose-1-phosphate 
f 5’-Methylthioadenosine 
 
The subtilis-type methionine salvage pathway and the purine salvage pathway were detected as active pathways based on the MSEA. Fold changes and their 
corresponding p-values calculated by ANOVA were represented at selected time points. Metabolites in the subtilis-type methionine salvage pathway and the 
purine salvage pathway were up-regulated, and some of the metabolites in de novo purine biosynthesis were down-regulated or not affected upon MTA 
feeding at the metabolite levels. 
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Table S4. Abundance comparison of detected metabolites in the isoprenoid biosynthesis pathway between R. rubrum and B. subtilis. 

(a) Rhodospirillum rubrum 

Metabolites Fold change p-value 
Pathway Name Monoisotopic mass (m/z) Retention 

time (sec) 10 min 20 min 10 min 20 min 

DXP 213.0166 1497 5.55 417.77 2.67 × 10-4 1.24 × 10-3 Isoprenoid 
biosynthesis 

c-MEP 276.9878 1576 7.12 9.98 4.63 × 10-11 3.86 × 10-10 Isoprenoid 
biosynthesis  

CDP-ME 520.0728 1652 221.70 29.93 3.50 × 10-6 7.25 × 10-9 Isoprenoid 
biosynthesis 

 

(b) Bacillus subtilis 

Metabolites Fold change p-value  
Pathway Name Monoisotopic 

mass (m/z) 
Retention 
time (sec) 2 min 5 min 15 min 2 min  5 min 15 min 

MEP 215.0327 1513 0.90 0.88 1.17 0.65 0.53 0.63 Isoprenoid 
biosynthesis 

c-MEP 276.9880 1552 1.01 1.26 1.76 0.92 0.11 0.04 Isoprenoid 
biosynthesis 

CDP-ME 520.0738 1550 0.97 0.87 1.32 0.62 0.26 0.12 Isoprenoid 
biosynthesis 

 
Metabolites in isoprenoid biosynthesis are highly up-regulated in R. rubrum, but they are not affected in B. subtilis upon MTA perturbation.  
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 Table S5. Actively changing metabolic pathways and their constituent metabolites in R. rubrum detected by the enrichment analysis. 

Metabolites Fold change p-value 
Pathway 

Name Monoisotopic 
mass (m/z) 

Retention 
time (sec) 10 min 20 min 10 min 20 min 

Adenine 134.0467 180 75.35 64.94 4.78 × 10-17 1.63 × 10-12 Purine salvage 

Hypoxanthine 135.0307 566 - 4.62 - 1.34 × 10-6 Purine salvage 

Guanine 150.0416 128 - 1.51 - 0.07 Purine salvage 

Urate 167.0205 152 - 3.44 - 3.54 × 10-3 Purine salvage 

Adenosine/ 
Deoxyguanoisine 266.0890 394 - 0.64 - 0.11 Purine salvage 

Guanosine 282.0839 1102 3.6 1.09 5.85 × 10-6 0.43 Purine salvage 

dIMP 331.0479 1504 88.99 72.67 5.61 × 10-14 1.07 × 10-3 Purine salvage 

dAMP 330.0604 1382 35.51 0.77 1.27 × 10-8 0.14 Purine salvage 

N-formyl-GAR 313.0437 1614 244.27 - 2.81 × 10-13  - De novo purine 
biosynthesis 

AMP/3’-AMP/dGMP 346.0551 1502 263.93 73.11 5.00 × 10-10  3.54 × 10-3  De novo purine 
biosynthesis 

GMP/3’-GMP 362.0500 1660 50.82 1.04 1.46 × 10-9 0.73 De novo purine 
biosynthesis 

cGMP 344.0396 1262 - 0.58 - 0.32 De novo purine 
biosynthesis 

ADP/PAP/dGDP 426.0213 1723 - 0.24 - 1.33 × 10-3 De novo purine 
biosynthesis 

GTP 521.9828 1015 - 0.47 - 0.02 De novo purine 
biosynthesis 

ADP-ribose 558.0634 1533 636.60 2.03 1.14 × 10-11 4.39 × 10-4 De novo purine 
biosynthesis 

MTA 296.0818 186 206.86 104.35 9.91 × 10-7 1.33 × 10-10 Rubrum-type met salvage 

MTR 179.0381 183 16.43 81.65 5.59 × 10-6 1.68 × 10-9 Rubrum-type met salvage 

S13 
 



MTR-1P/MTRu-5P/MTXu-5P 259.0042 1373 1647.16 4997.37 5.36 × 10-13 1.24 × 10-3 Rubrum-type met salvage 

MTRu-1P 259.0042 1435 565.65 852.11 1.00 × 10-10 1.22 × 10-3 Rubrum-type met salvage 

DXP 213.0166 1497 5.55 417.77 2.67 × 10-4 1.24 × 10-3 Isoprenoid biosynthesis 

c-MEP 276.9878 1576 7.12 9.98 4.63 × 10-11 3.86 × 10-10 Isoprenoid biosynthesis 

CDP-ME 520.0728 1652 221.70 29.93 3.50 × 10-6 7.25 × 10-9 Isoprenoid biosynthesis 

S-Adenosyl-L-homocysteine 383.1135 1385 702.93 0.65 4.72 × 10-14 5.02 × 10-4 Active methyl cycle 

S-Adenosyl-L-methione 397.1291 1588 148.43 0.47 6.22 × 10-7 2.12 × 10-4 Active methyl cycle 

O-Acetyl-L-serine 146.0456 1476 0.0005 0.64 2.55 × 10-4 0.02 Sulfur metabolism 

O-Acetyl-L-homoserine 160.0613 427 - 0.20 - 1.53 × 10-3 Sulfur metabolism 

Adenosine-3’,5’-bisphosphate 426.0215 1723 - 0.49 - 1.33 × 10-3 Sulfur metabolism 

5’-Oxoproline 128.0351 1519 0.65 - 0.25 - Glutathione metabolism 

Glutamate 146.0456 1523 28.10 0.64 8.03 × 10-4 0.02 Glutathione metabolism 

Ascorbate 175.0246 341 33.92 0.20 3.78 × 10-5 1.46 × 10-5 Glutathione metabolism 

Glutathione 306.0759 1525 510.45  0.0034 0.05 0.08 Glutathione metabolism 

Methylthiolglutathione 352.0636 1338 914.34 1573.83 1.35 × 10-11 1.05 × 10-4 Glutathione metabolism 

S-Glutathionyl-L-cysteine 425.0797 1758 75.55 1.92 9.53 × 10-6 0.10 Glutathione metabolism 

Glutathione disulfide 611.1442 1816 1.31 0.65 0.02 0.09 Glutathione metabolism 
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Fumarate 115.0035 1610 7.94 1.0 4.59 × 10-12 0.02 TCA cycle 

Succinate 117.0191 1561 0.31 0.74 6.29 × 10-3 9.20 × 10-6 TCA cycle 

Malate 133.0140 1616  10.96  1.01 2.20 × 10-10  0.04 TCA cycle 

2-Oxoglutarate 145.0140 1566  269.65  74.42 1.91 × 10-12 1.04 × 10-3 TCA cycle 

α-ketobutyrate 101.0242 348 0.048 0.47 6.54 × 10-5 0.04 Butanoate metabolism 

Hydroxybutanoate 103.0396 518 1.59 1.91 0.37 0.30 Butanoate metabolism 

2-Acetolactate 131.0348 191 1.89 0.38 0.01 3.32 × 10-11 Butanoate metabolism 

Glutamate 146.0456 1523 28.1 0.64 8.03 × 10-4 0.02 Butanoate metabolism 

2-Hydroxyglutarate 147.0296 1573 96.89 0.80 8.29 × 10-15 3.05 × 10-3 Butanoate metabolism 

 
In total, eight pathways were detected as active pathways by MSEA. Fold changes and their corresponding p-values by ANOVA 
are represented at selected time points. Except for sulfur metabolism, detected pathways are up-regulated at the metabolite levels. 
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Table S6.  Genes and primers list used by qRT-PCR experiments. 

Genes Primers 

B. subtilis 

16SBsF AGTGATGAAGGTTTTCGGAT 
16SBsR GCTCCTCAGCGTCAGTTACA 
    
BSU13620F GGGATATCACGAGGCTTC 
BSU13620R CAGGGTTTAAACGGACATCAA 
BSU27270F GGAAAAGTAAATGCTGCTAT 
BSU27270R ATCGCCTGTTGCAATCGTTC 
BSU13560F GAATCGAAAGCAGCGCTCTC 
BSU13560R AAACAAGTCTTTCCGTAATG 
BSU13550F TCATGGGCGCTTGAGAGACT 
BSU13550R ACCTTGCAGGACAGGCCTTG 
BSU16550F TAGAAGCAGCAGTGATGGAG 
BSU16550R CCCGCGTCTTGTCCCGAAAA 
BSU00090F TCAGAAAGCCCTGGTGAAAC 
BSU00090R CATGCCGCGGTATACCTTA 
BSU06440F GTGACCGCCATGCTGACTA 
BSU06440R GCGAATTTCTCGATGCTTGT 
BSU14520F CGCTGAATATCCATTTTATGCTT 
BSU14520R CCTGATCGCTCAAAACTTGC 
BSU27610F GCTTGGCGTAGGTTTTGC 
BSU27610R GCCATAATCCACTTTGATTACTTCA 
BSU00140F TAAACGGCTTGGATTTAAAACAT 
BSU00140R TGAAAGCTCCAACGTTCAAA 
BSU07840F GTCAAGGACTGGCTGGAGAT 
BSU07840R CGCCTTTAGCTGGATCAATTT 
BSU23490F CGGAAGTCATTGTAGCGAATC 
BSU23490R CGCGTTAGAGATGCAGGAA 
BSU19630F TCACCGTGAGTGATCACGTATT 
BSU19630R TGTCGTTTGACGCTCTTCC 
BSU27610F GCTTGGCGTAGGTTTTGC 
BSU27610R GCCATAATCCACTTTGATTACTTCA 
BSU00680F TGATGAAACATGATATCGAGAAAGT 
BSU00680R CGCTCGTTAATTCTGCACCTA 
BSU06520F AACAGCTGACATCCGTTCAA 
BSU06520R TCGAAGCCGTGCATATCTAA 
BSU24270F TGACTTTGTAAAGCCGAAAGC 
BSU24270R ACAGTTCCGCTGACAAGACC 
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Genes Primers 

R. rubrum 

Rr16SRTF GTAACACCAGAAGAAGCCCC 
Rr16SRTR CATGTACCCCGACATCTAGCA 
    
Rru_A1692F CCCATATCAGCATCCACACA 
Rru_A1692R GTCGCCGCACATGAAGAT 
Rru_A2483F GCCTTCTTCATCTCAACGACA 
Rru_A2483R CTTCATCTCGGCCAATCC 
Rru_A0149F TCGAACGGCGAATTCCTA 
Rru_A0149R GCTGGCGACTCTGTCTGG 
Rru_A2168F GGCGCCGATATCATCTGT 
Rru_A2168R GATGTTGATCATCCTGTCTTGC 
Rru_A1963F GCATGAGCGCGATATGAG 
Rru_A1963R CAAGGACAAGGGTGGTATCG 
Rru_A3655F AGACCCTGCATCCGAAGAT 
Rru_A3655R CTGGTGCTCGGGATTGTC 
Rru_A0917F CTTCGGAACGGAGACCATC 
Rru_A0917R GAAACCGAGAAGGGAAAGGT 
Rru_A1998F ATGCCGGTCAGCTTTTCA 
Rru_A1998R ATCAAGCAAGACGGTGTCGT 
Rru_A2289F TATTCGATCGGCAAGGACA 
Rru_A2289R CGAGGGATAGAACGCCTTG 
Rru_A0774F TAACCTTTCCCGGGTTGC 
Rru_A0774R ATAGCCGCCCTTGAGATAGG 
Rru_A0098F CAGGTGATCTCCTATGCGGTA 
Rru_A0098R GTCGGGATGTAGAACAACAGG 
Rru_A1616F GGTGGAACCCCGCTTATT 
Rru_A1616R AACTCGGCCTTGCCTAAAAT 
Rru_A0263RTF GTCGCGCTTGTGGAAGAT 
Rru_A0263RTR GCGCAAGACCTCGTCGATCA 
Rru_A1592RTF CTGACCGCCAATGGCAATGC 
Rru_A1592RTR GGCGTTGTGTTCGGAATCAA 
Rru_A0054RTF TCGAAAAGCTGGCTGTCGAT 
Rru_A0054RTR  CTGCGGCTTGGCCTTTTCCT 
Rru_A0774RTF ATCGGCTTCGCCTATACCCG 
Rru_A0774RTR GGCGGCGACCTCGGCGAT 
Rru_A0361RTF CGTGGCCATGTGCTCGC 
Rru_A0361RTR ATAGAGATTGCTTTCGG 
Rru_A360RTF CCGATCAATATCCTGACCCA 
Rru_A360RTR CAGCGCCACATAGAAGGGCA 
Rru_A2000RTF CGTCGATCTGCTCGCCTAT 

S17 
 



Genes Primers 
Rru_A2000RTR CATCGCCAGATCGGCCTCGG 
Rru_A0607RTF TACGATATCTCGACGTTGCTG 
Rru_A0607RTR ATTGGCGCCCATCTTGCCAA 
Rru_A0299RTF GTCGCCCGCTTCGCCGTGAT 
Rru_A0299RTR GCGGGCCCCCGGCGGCACGA 
Rru_A1057RTF ATCGAGGATATCCGCAAGGA 
Rru_A1057RTR CCCGTGCTTGGCCGCCACAT 
Rru_A0787RTF GAGCCGGGAAAAGATCGCC 
Rru_A0787RTR CCCGATGTCACGTAATCGGCC 
Rru_A0786RTF CAATCCGACCCGCGCCGCCT 
Rru_A0786RTR GTGCGCAGGCCATGCTCCTT 
Rru_A1530RTF CAAGGGCTTGCGCGACGTCGC 
Rru_A1530RTR AGGGTCGCCGCCACCATGCG 
Rru_A1531RTF GTTCGACATGCTCAAGACCT 
Rru_A1531RTR TTGTGCACATATTCGGCCAT 
Rru_A1682RTF GGTGGTTCGCCGCAACCGCGT 
Rru_A1682RTR GTGACCAGGGCGCCATCCTTG 
Rru_A1254RTF GACCGACCCCGAGGCCTTCG 
Rru_A1254RTR CCGCCATTGATCAACTCGTC 
Rru_A1691RTF AACCGTCGAGCGGGCGACCA 
Rru_A1691RTR TAGAAGGCCACCTCGGGGAA 
Rru_A2619RTF CAAACCCTTCGACGAGGA 
Rru_A2619RTR CTCGACGACGATCAGCAC 
Rru_A0784RTF TTCGACGACCAAATACATCG 
Rru_A0784RTR TGCCGCTATCGATGATGAC 
Rru_A3776RTF CGACAGCCTGACTCACGA 
Rru_A3776RTR CATAGCCGATATCCTTGATCG 
Rru_A1836RTF CTGGTCGGCTTTGAACTGA 
Rru_A1836RTR TTCAGGGCGTCGATGAAG 
Rru_A2075RTF CGTCGATGTCGAACAGGTC 
Rru_A2075RTR GTCGACGATCAGCGGAAT 
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Table S7. Quantitative real time polymerase chain reaction (qRT-PCR) of B. subtilis. 

Genes 
Fold change 

Function Pathway 0 min 2 min 5 min 15 min 
BSU27270 1.2 ( 0.2 )* 4.1 ( 0.2) 5.9 ( 0.2 ) 2.9 ( 0.2 ) 5’-Methylthioadenosine/S-adenosylhomocysteine nucleosidase 

Subtilis-type met-salvage 
BSU13560 1.5 ( 0.4 ) 5.6 ( 0.4 ) 4.4 ( 0.2 ) 2.9 ( 0.3 ) Methylthioribose kinase 
BSU13550 1.5 ( 0.3 ) 7.9 ( 0.4 ) 9.5 ( 0.4 ) 3.2 ( 0.2 ) Methylthioribose-1-phosphate isomerase 
BSU13620 1.1 ( 0.1 ) 3.5 ( 0.3 ) 5.4 ( 0.2 ) 3.1 ( 0.2 ) Acireductone dioxygenase 
BSU24270 1.2 ( 0.1 ) 1.1 ( 0.1 ) 1.4 ( 0.3 ) 1.3 ( 0.2 ) 1-Deoxy-D-xylulose 5-phosphate synthase Non-mevalonate isoprenoid 

biosynthesis BSU16550 1.1 ( 0.1 ) -1.6 ( 0.1 ) -2.9 ( 0.1 ) -1.6 ( 0.2 ) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase 
BSU14520 1.3 ( 0.3 ) -1.1 ( 0.1 ) -1.1 ( 0.2 ) 1.1 ( 0.2 ) Adenine deaminase 

Purine salvage 

BSU27610 1.3 ( 0.2 ) 1.3 ( 0.3 ) 1.9 ( 0.4 ) 1.9 ( 0.2 ) Adenine phosphoribosyltransferase 
BSU00680 1.1 ( 0.1 ) 1.5 ( 0.2 ) 1.5 ( 0.2 ) 1.9 ( 0.3 ) Hypoxanthine-guanine phosphoribosyltransferase 
BSU23490 1.3 ( 0.1 ) 1.9 ( 0.1 ) 1.5 ( 0.2 ) 1.1 ( 0.1 ) Purine nucleoside phosphorylase 
BSU19630 1.4 ( 0.3 ) 1.6 ( 0.2 ) 1.9 ( 0.2 ) 1.4 ( 0.3 ) Purine nucleoside phosphorylase 
BSU07840 1.6 ( 0.2 ) 1.3 ( 0.2 ) 1.7 ( 0.2 ) 1.9 ( 0.2 ) Bifunctional 2’,3’-cyclic nucleotide 2’-phosphodiesterase 
BSU00140 1.7 ( 0.2 ) 1.6 ( 0.2 ) 1.2 ( 0.1 ) 1.7 ( 0.2 ) Deoxyadenosine/deoxycytidine kinase 
BSU06440 1.6 ( 0.2 ) 1.3 ( 0.2 ) 1.7 ( 0.2 ) -1.1 ( 0.1 ) Adenylosuccinage lyase 

De novo purine biosynthesis BSU06520 1.4 ( 0.2 ) 1.8 ( 0.2 ) 1.9 ( 0.3 ) 1.5 ( 0.2 ) Bifunctional phosphoribosylaminoimidazolecarboxamide 
BSU00090 1.4 ( 0.3 ) 1.1 ( 0.1 ) 1.5 ( 0.2 ) 1.2 ( 0.2 ) Inosine 5’-monophosphate dehydrogenase 

*( ) stands for standard deviation 

Candidate genes for qRT-PCR are manually selected based on metabolomics analysis. The purine metabolism is divided into the purine salvage pathway and 
the de novo purine biosynthesis pathway. Primer sequences read 5’ to 3’, and expression patterns are monitored at selected time points (0 min, 2 min, 5 min, 
and 15 min). 
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 Table S8. Quantitative real time polymerase chain reaction (qRT-PCR) of R. rubrum. 

Genes 
Fold change 

Function Pathway 0 min 10 min 20 min 0.6 OD 
Rru_A0361 1.6 ( 0.2 )* 5.5 ( 0.5) 6.9 ( 0.6 ) 1.1 ( 0.2 ) 5’-Methylthioadeonsine phosphorylase 

Rubrum-type met-
salvage 

Rru_A0360 1.1 ( 0.1) 4.5 ( 0.4 ) 4.9 ( 0.3 ) 1.2 ( 0.2 ) Methylthioribose-1-phosphate isomerase 
Rru_A1998 1.0 ( 0.1 ) 3.4 ( 0.4 ) 4.3 (0.3 ) 1.1 ( 0.1 ) Ribulose 1,5-bisphosphate carboxylase 
Rru_A2000 1.1 ( 0.1 ) 2.9 ( 0.4 ) 3.1 ( 0.4 ) 1.2 ( 0.2 ) MTXu 5-P methylsulfurylase 
Rru_A0774 1.1 ( 0.1 ) 6.7 ( 0.2 ) 7.9 ( 0.5 ) 3.5 ( 0.4 ) O-acetylhomoserine/O-acetylserine sulfhydrylase 
Rru_A0784 1.1 ( 0.1 ) 8.1 ( 0.2 ) 5.7 ( 0.5 ) 7.2 ( 0.7 ) O-acetylhomoserine/O-acetylserine sulfhydrylase 
Rru_A2619 -1.1 ( 0.2 ) -3.8 ( 0.4 ) -8.8 ( 0.7 ) 1.2 ( 0.1 ) 1-Deoxy-D-xylulose-5-phosphate synthase Non-mevalonate 
Rru_A1592 1.1 ( 0.1 ) 4.9 ( 0.2 ) 7.4 ( 0.7 ) 1.4 ( 0.4 ) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase Isoprenoid 

biosynthesis Rru_A0263 -1.1 ( 0.1 ) 6.6 ( 0.3 ) 7.9 ( 0.6 ) 1.5 ( 0.2 ) 4-Diphosphocytidyl-2-C-methyl-D-erythritol kinase 
Rru_A3776 -1.3 ( 0.1 ) 2.1 ( 0.2 ) 3.1 ( 0.2 ) -1.2 ( 0.2 ) S-adenosylmethionine synthetase 

Active methyl 
cycle 

Rru_A1531 1.1 ( 0.1 ) -5.1 ( 0.3 ) -4.9 ( 0.3 ) -1.2 ( 0.2 ) Methionine synthase 
Rru_A1530 1.6 ( 0.2 ) -4.5 (0.4 ) -3.9 ( 0.3 ) -1.2 ( 0.2 ) 5,10-Methylenetetrahydrofolate reductase 
Rru_A0787 1.1 ( 0.1 ) 6.7 ( 0.6 ) 7.9 ( 0.3 ) 4.5 ( 0.3 ) Cystathionine β-synthase 

Trans-sulfuration 
Rru_A0786 1.1 ( 0.1 ) 5.8 ( 0.2 ) 8.2 ( 0.5 ) 5.1 ( 0.3 ) Cystathionine γ-lyase 
Rru_A1691 1.1 ( 0.1 ) 1.4 ( 0.2 ) 1.2 ( 0.2 ) -1.2 ( 0.2 ) Spermidine synthase 

Arginine 
metabolism Rru_A1254 1.3 ( 0.1 ) -1.1 ( 0.1 ) -1.4 ( 0.1 ) 1.1 ( 0.4 ) Putrescine aminotransferase 

Rru_A1692 1.1 ( 0.2 ) -1.1 ( 0.1) 1.1 ( 0.1 ) -1.5 ( 0.2 ) S-adenosylmethionine decarboxylase related 
Rru_A0149 1.2 ( 0.1 ) 1.3 ( 0.1 ) -1.1 ( 0.1) 1.3 ( 0.1 ) PfkB protein 

Purine salvage Rru_A2483 1.1 ( 0.2 ) 1.3 ( 0.2 ) 1.2 ( 0.1) 1.5 ( 0.2 ) 5’-Nucleotidase 
Rru_A0607 1.6 ( 0.1 ) 1.1 ( 0.1 ) 1.2 ( 0.2 ) 1.4 ( 0.2 ) Adenine phosphoribosyltransferase 
Rru_A2168 1.3 ( 0.3 ) -1.1 ( 0.2 ) 1.1 ( 0.2 ) 1.4 ( 0.2 ) Phosphoribosylglycinamide formyltrasferase 

De novo purine 
biosynthesis 

Rru_A1963 1.3 ( 0.2 ) 1.1 ( 0.2 ) 1.2 ( 0.2 ) -1.3 ( 0.1 ) Adenylosuccinate lyase 
Rru_A0299 1.1 ( 0.2 ) 1.2 ( 0.1 ) 1.3 ( 0.3 ) 1.1 ( 0.2 ) Glutamine amidotransferase 
Rru_A3655 1.3 ( 0.2 ) 1.3 ( 0.2 ) 1.1 ( 0.2 ) 1.2 ( 0.1 ) Phosphoribosylaminoimidazolecarboxamide formyltranferase 
Rru_A2289 -1.1 ( 0.2 ) -1.7 ( 0.3 ) -2.1 ( 0.2 ) -3.2 ( 0.2 ) Sulfate adenylyltransferase subunit 2  
Rru_A0098 1.0 ( 0.1 ) 1.2 ( 0.1 ) 1.3 ( 0.2 ) 1.1 ( 0.2 ) Cystathionine γ-synthase Sulfur metabolism 
Rru_A1616 1.4 ( 0.2 ) 1.1 ( 0.1 ) -1.1 ( 0.2 ) 1.5 ( 0.2 ) Cysteine synthase A  

*( ) stands for standard deviation 

Candidate genes for qRT-PCR are selected manually based on metabolomics analysis. Detected active pathways are further categorized based on previous studies and 
plausible hypothesis. Primer sequences read 5’ to 3’, and expression patterns are monitored according to the time points (i.e., 0 min, 10 min, 20 min, 0.6 OD). 
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Table S9. Genes and their counts per million (CPM) of control (CPM_Ctrl) and treatment (CPM_Trt) in the 

RNAseq experiment for R. rubrum. 

 See separate Excel file titled Supplementary Material 2 (Table S9).  

 

Section 3.  Supplementary Figures 

 

Fig. S1. The LC-MS analysis platform system design. Our LC-MS analysis platform was composed of four major 
functional modules, including data processing, peak grouping, molecular formula determination and pathway activity 
profiling modules. Each module consisted of sub-modules to deal with arising issues in the metabolomics data analysis. 
Non-biological signals and redundant peaks were filtered by a data pre-processing sub-module. Missing values were 
imputed at the data quality control stage. Remaining peaks were categorized into the isotopic group (primary and 
secondary groups) or the tertiary group. Molecular formulas were predicted in the molecular formula prediction module 
based on previous published algorithms. Based on predicted molecular formulas and nominal masses, peaks were 
putatively annotated and active pathways were assigned by MSEA. Notably, the concept of seed metabolites and 
dynamic build-up of metabolite sets to be evaluated enabled the streamlined process to detect active pathways from raw 
LC-MS data. These detected active pathways were further validated by transcriptomics, and metabolites highly perturbed 
but not annotated were listed for further experiments. 
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Fig. S2. Mass distribution of PubChem database. The distribution of the integral parts and the non-integral parts of the 
masses in the PubChem database was investigated as a proof-of-concept of the mass filter. As with the KEGG database, 
there was a region not occupied by molecules in PubChem, even though many synthetic molecules are listed in the 
PubChem database. Only > 0.3% of molecules appeared in-between the high density areas, indicating that this region can 
be used as a mass filter for non-biological signals at the data processing step without much information loss. By 
eliminating spurious peaks in this region, we enhanced processing time and concentrated on the major peaks in the 
subsequent steps. 
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Fig. S3. Extracted (negative) ion chromatograms for m/z 352.0636 (glutathione-methanthiol disulfide) for in vitro 
reactions with 1-methylthio-D-xyulose 5-phosphate methylsulfurylase (A) with or (B) without glutathione as a co-
substrate. Only the reaction with glutathione produced a peak with the exact mass of glutathione-methane thiol disulfide. 
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Fig. S4.  Extracted (negative) ion chromatograms for m/z 352.0636 (glutathione-methanthiol disulfide) for MTA 
feeding reactions. A) Two minute R. rubrum MTA feeding reaction cell extract spiked with 1 μL of the in vitro reaction 
from Figure 5S. B) Two minute R. rubrum MTA feeding reaction cell extract. C) Control R. rubrum cell extract that had 
not been fed exogenous MTA. Only one peak is present in the spiked sample, thus supporting the assignment of the peak 
at m/z 352.0636 as glutathione-methanthiol disulfide in the MTA feeding reactions. The presence of glutathione-
methanethiol disulfide in the unfed cell extract supports glutathione as the in vivo cosubstrate for 1-methylthio-D-xyulose 
5-phosphate methylsulfurylase in R. rubrum. 
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Fig. S5. Pearson correlation between metabolites in implicated pathways (R. rubrum). Metabolites-metabolites 
correlation analysis was carried out based on Pearson correlation analysis. Pearson correlation coefficients of percentage 
changes in metabolite abundances were clustered by agglomerative hierarchical clustering. Euclidean distance was used 
as a distance measure. In each pathway, there was a clear correlation between constituent metabolites. In addition, there 
was a strong correlation between intertwined active pathways. The non-mevalonate isoprenoid biosynthesis showed a 
moderate correlation, and sulfur metabolism showed an anti-correlated pattern. This is because metabolites in sulfur 
metabolism were down-regulated, whereas metabolites in other pathways were up-regulated. 
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Fig. S6. Pearson correlation between metabolites in implicated pathways (B. subtilis). In B. subtilis, metabolites in 
each active pathway showed strong correlation, but there was a weak correlation between the subtilis-type methionine 
salvage pathway and the purine salvage pathway. In addition, there was an anti-correlation between de novo purine 
biosynthesis and other pathways. 
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