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Abstract: 

Background - Studies of <15 atrial fibrillation (AF) patients have identified atrial-specific 

mutations within connexin genes, suggesting that somatic mutations may account for sporadic 

cases of the arrhythmia.  We sought to identify atrial somatic mutations among patients with and 

without AF using targeted deep next-generation sequencing of 560 genes, including genetic 

culprits implicated in AF, the Mendelian cardiomyopathies and channelopathies, and all ion 

channels within the genome. 

Methods and Results - Targeted gene capture and next generation sequencing were performed 

on DNA from lymphocytes and left atrial appendages of 34 patients (25 with AF).  Twenty AF 

patients had undergone cardiac surgery exclusively for pulmonary vein isolation, and 17 had no 

structural heart disease.  Sequence alignment and variant calling were performed for each atrial-

lymphocyte pair using the Burrows-Wheeler Aligner, the Genome Analysis Toolkit, and MuTect

packages.  Next generation sequencing yielded a median 265-fold coverage depth (IQR 164-

369).  Comparison of the 3 million base pairs from each atrial-lymphocyte pair revealed a single 

potential somatic missense mutation in 3 AF patients and 2 in a single control (12 vs. 11%; p=1).  

All potential discordant variants had low allelic fractions (range: 2.3-7.3%) and none were 

detected with conventional sequencing.  

Conclusions - Using high-depth next generation sequencing and state-of-the art somatic 

mutation calling approaches, no pathogenic atrial somatic mutations could be confirmed among 

25 AF patients in a comprehensive cardiac arrhythmia genetic panel.  These findings indicate 

that atrial specific mutations are rare and that somatic mosaicism is unlikely to exert a prominent 

role in AF pathogenesis.

Key words: atrial fibrillation, genetics, bioinformatics, arrhythmia, cardiac electrophysiology,
mosaicism, somatic mutation
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Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, and affected patients 

suffer from an increased risk of heart failure, stroke, and death.1,2 Despite its clinical 

importance, current treatment strategies for the arrhythmia, including both anti-arrhythmic drugs 

and catheter ablation, have relatively modest long term efficacy.3,4  The lack of definitive 

therapies for AF likely stems from a limited understanding of its underlying pathophysiology, 

emphasizing a need for novel insights.5 Recent work has increasingly highlighted a genetic 

contribution to the arrhythmia, especially when AF occurs in the absence of structural heart 

disease.6–14

Although a positive family history of the arrhythmia is a major risk factor for AF in the 

absence of overt cardiovascular disease,15 a substantial proportion of cases are sporadic.16  Given 

that these cases develop in the absence of identifiable risk factors, it is still probable that genetics 

play a role.  The apparent lack of family history may be secondary to complex polygenic 

interactions that may lead to correspondingly complex patterns of inheritance.  An alternative 

mechanism accounting for these sporadic cases may be de novo mutations occurring within 

germline or somatic cells that give rise to the atria.

A somatic mutation that develops within a myocardial progenitor cell will be absent from 

peripheral lymphocytes, precluding its detection on routine genetic testing.  The resultant cardiac 

“mosaicism”, referring to the mutation being confined to a proportion of cells in the heart, has 

the potential to result in regional electrical heterogeneity within the atria that could serve as an 

ideal substrate for the initiation and maintenance of AF.17  Guided by this concept, investigators 

identified somatic mutations within connexin genes, the molecular constituents of gap junctions, 

in early onset, sporadic AF patients (n=15 and n=10) who had no evidence of structural heart 
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disease or AF risk factors.18,19  Given the high yield of screening, the investigators hypothesized 

that cardiac mosaicism may be a common cause of sporadic AF within structurally normal 

hearts.  

 The advent of next-generation sequencing has revolutionized cancer diagnostics, a 

condition whose underlying pathophysiology is largely driven by somatic mutations.20  Through 

the ability to rapidly screen large numbers of genes in a cost-effective manner, next-generation 

sequencing has led to the identification of novel genetic culprits and has improved insight into 

the burden of somatic mutations within tumors.21 Equally as important and in parallel with these 

technological advances, increasingly sophisticated probabilistic variant calling approaches have 

been developed to maximize sensitivity and specificity of detected variants.  We sought to 

extend the use of these advances to the heart in order to evaluate the burden of atrial somatic 

mutations and investigate their potential impact on AF.   

Methods

Study Population

appendage excision at Sutter Hospital, Sacramento Medical Center were recruited between 

October 1, 2010 and November 1, 2012.  Patients were excluded if they had congenital heart 

disease, any history of rheumatic valve disease or mitral stenosis, if a right thoracotomy 

approach was employed, if they were unable to provide informed and witnessed signed consent, 

or if they were pregnant or incarcerated.  Participant demographics and medical details were 

obtained using a study questionnaire and were verified with a subsequent chart review.  All study 

participants provided informed written consent under protocols that were approved by the 

University of California, San Francisco (UCSF) and Sutter Hospital, Sacramento, CA.  
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Custom Targeted Genetic Panel

The genetic panel was designed in order to include all ion channels within the genome and genes 

previously implicated in Mendelian forms of cardiac disease as of November, 2013.  The list of 

ion channels was constructed through a search of the Uniprot Knowledgebase using the terms ion 

channel and human.  The 502 candidates were further manually curated to verify that the listed 

gene encoded an ion channel.  This strategy led to the identification of 398 separate genes that 

were incorporated into the genetic panel (Data Supplement, Table 1).  

An additional 162 genes were selected based on their documented or potential involvement in 

primary cardiac disease (Data Supplement, Table 1).  We constructed this aspect of the genetic 

panel through a review of the genetic culprits associated with the following conditions: Long QT 

syndrome, Short QT syndrome, Brugada syndrome, Catecholaminergic Polymorphic Ventricular 

Tachycardia, Early Repolarization Syndrome, Idiopathic Ventricular Fibrillation, 

Arrhythmogenic Right Ventricular Cardiomyopathy, Hypertrophic Cardiomyopathy, Dilated 

Cardiomyopathy, Restrictive Cardiomyopathy, Left Ventricular Non-Compaction, and 

Mitochondrial Cardiomyopathy.  In addition, we included all genes implicated by proxy in the 

pathogenesis of AF from genome wide association studies and other genes whose protein 

products have been implicated in the pathophysiology of the arrhythmia.   

We extracted all known exons of the 560 genes using the Ensembl General Transfer 

Format (gtf) file annotating all transcripts in the human genome (release 68).  In order to obtain 

exhaustive coverage of protein coding regions of genes of interest, a customized set of 

hybridization probes was designed and constructed using the Nimblegen SeqCap EZ Library kit 

(Roche NimbleGen, Madison, WI).  In total, 3,218,095 of the 3,330,918 bases of interest were 

covered by one or more probes. 
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DNA and Library Preparation 

Intraoperatively, left atrial appendage samples were immediately flash frozen in liquid nitrogen 

in a sterile fashion.  Genomic DNA was isolated from atrial tissue using the AllPrep DNA/RNA 

Mini Kit (Qiagen, Valencia, CA).  Matching lymphocyte DNA was purified from the buffy coat 

using the GentraPuregene Blood Kit (Qiagen) obtained from phlebotomy performed prior to 

surgery.  

In order to generate sequencing libraries, 1 microgram of DNA from each sample was 

randomly sheared to approximately 200 base pairs using a Covaris S2 Ultrasonicator (Covaris, 

Woburn, MA).  Subsequent library preparation was performed using the KAPA Library 

Preparation Kit (Kapa Biosystems, Wilmington, MA).  Briefly, genomic DNA fragments were 

end-repaired and underwent A-tailing prior to adaptor ligation with 24 unique NEXTflex DNA 

Barcodes (Bioo Scientific, Austin, TX).  Library enrichment was then performed through 

polymerase chain reaction (PCR) amplification, followed by analysis of the size and quantity of 

ligated fragments using the Agilent 2100 Bioanalyzer (Santa Clara, CA).  Recommended clean-

up was performed at each step using Agencourt AMPure XP Beads (Beckman Coulter, 

Indianapolis, IN).

Targeted Gene Capture & Sequencing

The barcoded DNA library for each sample was then pooled with equal quantities of 23 other 

unique barcoded libraries to a total of 1 microgram.  The corresponding 24 NEXTflex DNA 

Barcode Blockers and COT human DNA were added to each pooled sample and then heat dried 

using a DNA vacuum concentrator.  Hybridization of the genomic libraries with the custom 

designed genetic panel was then performed consistent with manufacturer specifications.  

 Following hybridization, the targeted fragments were pulled down and recovered using  
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Streptavidin-coupled Dynabeads (Life Technologies, Grand Island, NY).  Library enrichment 

and product analysis was repeated as detailed above.  101 base pair paired-end sequencing was 

performed on an Illumina HiSeq 2500 sequencer with 24 samples to each lane of a flow cell.  

Samples were demultiplexed prior to analysis. 

Analysis 

The Burrows-Wheeler Aligner (bwa) was used to align paired-end short reads to the human 

genome, while the Genome Analysis Toolkit (GATK) was used for local realignment and 

recalibration.22,23  Sequencing quality metrics, including number of mapped reads, number of 

duplicate reads, and number of mappable bases were performed with samtools, Picard tools, and 

GATK (Data Supplement, Figures 1 and 2).23,24  A total of 90 genes contained isolated base pair 

regions with inadequate coverage precluding reliable variant calling, collectively accounting for 

no more than 0.7% of the region of interest (Data Supplement, Figure 3).  

As a quality assurance measure, we compared single nucleotide polymorphism (SNP) 

minor allele frequencies observed from our data with those from the 1000 Genomes CEU 

population.25  We identified 2369 SNPs within our coverage area with minor allele frequency 

estimates of at least 5%.  As inclusion of non-European individuals would generate inconsistent 

frequency estimates, we performed principal components analysis and removed 3 individuals 

based on the first principal component.  Minor allele frequency estimates were generated using 

the remaining samples and plotted against 1000 Genomes CEU frequencies. 

 To improve variant calling, an estimate of cross-contamination of each sample was first 

obtained using the ContEst program (Data Supplement, Figure 4).26 Per sample estimates were 

then input into MuTect, allowing more accurate models for variant detection. MuTect is a state-

of-the-art somatic mutation caller designed to maximize sensitivity and minimize the impact of 
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technical sources of false positives.27 The software program uses a probabilistic model to call 

differences based on number of reads, mapping quality, strand bias, and estimates of cross-

contamination.  Importantly, “tumor” and “normal” sources are analyzed in parallel, preventing 

the false positives and negatives that typically arise from performing a post hoc comparison of 

variant files after variant calling has already been performed on the samples independently. 

We applied the default MuTect parameters to identify potentially discordant variants 

between atrial and lymphocyte DNA.  We observed that the overwhelming majority of variants 

that emerged from this analysis corresponded to G>T transversions (Data Supplement, Figure 5).  

Low level G>T transversions have become recognized as an important artifactual change that 

occurs with high coverage next-generation sequencing and are felt to arise secondary to 

oxidative damage that occurs during acoustic shearing of genomic DNA during sample 

preparation.28  This oxidative damage occurs regardless of DNA source (ie. tissue versus 

lymphocyte).  Although not an issue for germ-line mutation calling due to their trace quantities 

not being consistent with a heterozygous state, their low levels may be confused with somatic 

mutations.  As a result, the recommended bioinformatic approach to G>T transversions within 

the cancer literature has been to filter them from the analysis given the overwhelming probability 

that they represent sequence artifacts.28  Consistent with this methodologic approach, we also 

elected to filter G>T transversions from our analysis in an effort to minimize false positive 

findings.

 Among the final discordant atrial variants, SnpEff (v. 3.3) was used to assess their impact 

on protein coding sequence.29 Atrial-lymphocyte discordant variants expected to change protein 

sequence were further scrutinized with manual annotation, including examining their frequency 

in control populations, visualizing mapped reads, and analyzing whether the regions of interest 
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map ambiguously in the genome.  Discordant variants were also analyzed for their presence in 

multiple participants within the cohort and for evidence of occurrence in the “reverse direction” 

(absent in atrial cells and present within lymphocytes) among other members of the cohort; 

findings suggestive of systematic sequencing errors.  A summary of our overall analytical 

approach to discordant variant calling is outlined in Figure 1.  Somatic fractions, defined as the 

percentage of total reads within an atrial sample, were determined for each remaining discordant 

atrial variant.  

 Attempted verification of potential discordant variants was pursued with Sanger 

sequencing of atrial DNA from relevant study participants.  Amplification of targeted genomic 

regions was performed using polymerase chain reaction (primer sequences provided in the Data 

Supplement) followed by DNA sequencing using the ABI PRISM dye terminator method 

(Applied Biosystems, Foster City, CA, USA).   

Somatic Mutation Rate 

Because of the sensitivity of the sequencing employed, it is not possible to definitively 

distinguish potential false positive discordant variants that pass through our filtering protocol 

from actual somatic mutations with low somatic fractions.  In order to obtain a conservative

estimate, we based our calculations of somatic mutation rates on the assumption that all possible 

somatic mutations that passed our a priori filtering processes were real.  These rates were 

calculated by dividing the total number of somatic mutations by the total number of nucleotides 

examined in both AF cases and controls.  The mean somatic mutation rate was reported as the 

number of somatic mutations per 100 million nucleotides.   

Statistical Analysis

Normally distributed continuous variables are presented as means + standard deviation and the
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Student’s t-test.  Comparison of categorical values was performed using the Chi-squared and 

Fisher’s Exact tests.  SNP minor allele frequencies within our cohort and the 1000 Genomes 

Project CEU subpopulation were compared using the Pearson pairwise correlation coefficient.  

In order to evaluate the possibility that filtering of G>T transversions may have resulted in a 

reduced sensitivity for detecting bona fide somatic mutations, we conducted a Monte Carlo 

simulation analysis to estimate the anticipated number of G>T transversions that would result in 

functional coding changes.  Given that there are 12 nucleotide changes that could be observed for 

somatic mutations, with each assumed to be equally likely, we were able to generate a robust 

bootstrap estimate of the number of G > T changes expected under the assumption of no 

oxidative artifact.  We used the total number of pre-filtered observed changes (synonymous and 

non-synonymous) as an empirical distribution and performed 10,000 random draws.  For each 

draw and for each potential variant, we estimated a probability of missense mutation (using the 

observed missense rate and allowing some uncertainty) and totaled the result.  A posterior mode 

and 95% credible interval were computed from the posterior distribution.  

 Two-tailed p-values < 0.05 were considered statistically significant.  Statistical analyses 

were performed using Stata version 12 (College Station, Tx, USA) and R. 

Results

Patient Characteristics

A total of 34 patients undergoing cardiac surgery with left atrial appendage excision at Sutter 

Hospital, Sacramento provided both atrial tissue and peripheral blood for sequencing analysis.  

Twenty-five had a history of AF, and 20 were undergoing cardiac surgery exclusively for a 

minimally invasive AF ablation.  Among the participants with AF, the mean age at diagnosis was 

63.0 + 11.9 years and 16 (64%) were male.  Seventeen participants had AF in the absence of 

ble to generate a robobobobu

e assumpttttioiii n offff no ooo

r s

y a

or each potential variant, we estimated a probability of missense mutation (using

missense rate and allowing some uncertainty) and totaled the result.  A posterior m

redible inter al erer comp ted from the posterior distrib tion

rtifafafafactctct.  WeWeWeW  usesesed ddd the total number of pre-e-e-fififf ltl ered observed chchchchanges (synonymous

ymomomoous) as an ememmpirricccall dididid striiiibububub tiiioon aaand perrformrmmmededed 1000,0000 raraandddooom ddddrararar wwws...  Fooorr ea

or eaccchhhh popopop tentnttiaiai llll vava iiririana t, wwweeee estimamamateteteteddd a a prprprobobbabababbililililititityyy ofoff mmmmisisii sesennse mumumum tatiiionon (ususiining

missense rate andddd alllllllowiiini g gg some uncertaiiintytyty) )) ) and totallled ddd thhhe resulltll .  A ppposterior m

eddibiblle iint ll tedd ffr thhe te iri ddiistribib tiio



DOI: 10.1161/CIRCGENETICS.114.000650

11

structural heart disease, 13 of whom had no family history of the arrhythmia.  There were 11 

individuals with AF in the absence of all known AF risk factors (including hypertension), 9 in 

the absence of a known family history.  The remaining baseline characteristics of the participants 

are summarized in Table 1.

Next Generation Sequencing

Targeted gene capture and high-throughput sequencing permitted alignment of 16.5 million reads 

per sample (IQR 12.2-19.5 million) at a median 265-fold coverage depth (IQR 164-369) (Figure 

2).  With respect to GJA1 and GJA5, the median fold-coverage depths were 267 (IQR 171-422) 

and 234 (IQR 149-369), respectively.  The median number of mapped bases per sample was 3.25 

million (IQR 3.246-3.259 million), or 99.3% of the bases of interest.  Comparison of the minor 

allele frequencies of 2369 SNPs from our cohort and the 1000 Genomes Project CEU 

subpopulation revealed a strong correlation (rho = 0.96; Data Supplement, Figure 6). 

Analysis and Filtering Steps

Bioinformatic analysis using the somatic mutation caller MuTect initially identified 8710 

discordant base calls when treating lymphocytes as the reference (“germline”) DNA source and 

atrial tissue as the somatic DNA source.  Notably, 8604 (98.8%) of these discordant base calls 

represented G>T transversions, an aforementioned common source of artifactual DNA mutations 

arising secondary to oxidative damage during sample preparation.28  No G>T transversions 

resulting in non-synonymous missense mutations were observed within GJA1 or GJA5.

Selective filtering of false positive G>T transversions was precluded by the absence of 

previously reported contextual and strand bias.  Monte Carlo simulation analysis revealed a 63%

probability that none of the previously filtered G>T transversions reflected bona fide functional 

somatic mutations (95% CI: 0-2) (Data Supplement, Figure 7).  Classification of G >T 
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transversions as false positives reduced the list of discordant base calls to 106.  From this list, an 

additional 5 were flagged by MuTect as having poor coverage, and thus reduced reliability for 

variant calling.

Potential Atrial Specific Variants

The above filters resulted in a total of 101 potential somatic atrial variants.  A “reverse” analysis, 

treating atrial samples as reference and lymphocytes as the somatic tissue revealed a comparable 

number (93) of variants.  Within the overall list, 12 represented non-synonymous SNPs predicted 

to impact the protein coding regions of a total of 11 genes.  The remaining discordant base calls 

represented synonymous SNPs or were located within intronic regions. 

 Of the 12 potential non-synonymous SNPs observed within atria and not in lymphocytes, 

an additional 7 were found to be consistent with sequencing artifact on the basis of their 1) being 

observed in multiple participants (a systematic error associated with the sequencing protocol was 

felt to be the likely explanation, particularly given that certain of these variants were present 

within highly repetitive regions of DNA prone to alignment errors); 2) being observed in the 

“reverse direction” (present within lymphocytes and absent from atrial cells) among other 

participants; 3) having a greater than 50% carrier frequency within the general population.  The 5 

remaining discordant genetic variants did not have population data frequency available 

indicating that they were either rare or novel (Table 2).  The discordant variants were carried by 

3 of the 25 participants with AF and 2 were present within a single control participant with no 

prior history of the arrhythmia (12% vs. 11%, p=1).

Somatic Fractions and Sanger Sequencing

The somatic fractions, defined as the percentage of total reads within the relevant atrial sample, 

for the 5 remaining potential non-synonymous cardiac somatic mutations ranged from 2.3 to 
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7.3%.  Sanger sequencing of atrial samples from each patient carrying a potential discordant 

variant yielded electropherograms with no evidence of a somatic mutation (Figure 3).

Somatic Mutation Rate

Among the 25 AF cases, there were 3 potential somatic mutations and an average of 3.25 million 

mapped base pairs per sample corresponding to an average somatic mutation rate of 4  per 100 

million nucleotides (range: 0-31, standard deviation: 10).  A total of 2 potential somatic 

mutations were observed among the 9 control participants, and the average mapped base pairs 

per sample was also 3.25 million.  This yields an average somatic mutation rate among controls 

of 7 per 100 million (range: 0-62, standard deviation:21).   

Discussion

Our next-generation sequencing study targeting 560 genes found no evidence to support a role 

for somatic mosaicism in the pathogenesis of AF among 25 affected patients (17 with no 

structural heart disease and 11 with no AF risk factors including hypertension) and 9 control 

participants.  Our study screening for atrial somatic mutations is the largest to date and is the first 

to assess a large number of genes.  We found no missense somatic mutations within the GJA5

and GJA1 genes and no difference in the frequency of potential somatic mutations between AF 

cases and controls within our cohort (12% vs. 11%, p=1).  Our findings also suggest that atrial 

somatic mutations are rare, further reinforcing the notion that atrial mosaicism exerts a minimal 

role in AF pathogenesis.   

 Our findings contrast with previous work suggesting that approximately 20% of non-

familial AF occurring in the absence of structural heart disease may be secondary to somatic 

mutations within GJA5 and GJA1, encoding connexin 40 and 43, respectively.18,19 Given a 

nearly 20% yield from screening just two genes, it was reasonable to speculate that somatic 
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mosaicism may reflect a common underlying pathophysiology in AF with important clinical 

implications.  In addition to failing to detect any evidence of somatic mutations within either 

GJA5 or GJA1, the overall somatic mutation rate among AF cases in our study was also very low 

(4 per 100 million nucleotides).  We found only 3  discordant atrial-lymphocyte genetic variants 

projected to result in functional changes and each had a very low atrial somatic fraction.  

Notably, none could be confirmed by traditional Sanger sequencing.  Indeed, even if “real”, it is 

unclear if such low somatic fractions (from 2.3-7.3%) would have any meaningful clinical 

relevance. These findings argue that atrial mosaicism is unlikely to exert a prominent role in AF 

pathophysiology.  

 There are two possible explanations for the contrasting results between the current and 

previous studies, namely patient selection and sequencing artifact secondary to formalin fixation.  

In both previous connexin studies, the investigators restricted their cohort to individuals with 

early onset (age<55), sporadic AF.18,19  The mean age at AF diagnosis in the GJA5 study was 

45.1 + 5.9 years and patients were free of co-morbidities, while our AF cohort was older (63.0 + 

11.9 years), approximately 50% had hypertension, and 7 of the 25 study participants with AF had 

an affected family member.  It is conceivable that the selection criteria for the previous cohorts 

may have resulted in patients that had a higher burden of atrial specific mutations within cardiac 

genes. 

 Patient selection alone, however, is unlikely to account for our discordant findings in 

relation to the prior AF somatic mutation reports.  The previously reported high rate of atrial 

somatic mutations was likely impacted by PCR artifacts following DNA extraction from 

formalin-fixed paraffin-embedded tissue.30  A growing number of papers within the oncology 

literature have warned about the potential for erroneously identifying somatic mutations in tumor 
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samples previously fixed with formalin.30–33 Within the field of cardiology, initial reports 

suggesting that NKX2-5 somatic mutations were a common cause of congenital heart disease 

were subsequently shown to likely reflect false positives secondary to formalin-fixation.34–36 Of 

note, our atrial DNA samples were obtained from tissue that was flash-frozen immediately after 

excision, whereas the previous connexin mutations were identified following DNA extraction 

from formalin-fixed and paraffin-embedded left atrial appendage tissue.18,19 Despite the apparent 

overestimation of the role of atrial specific connexin mutations in AF, it should be noted that the 

reported atrial somatic GJA1 mutation has also been reported as a somatic mutation from a flash-

frozen gastrointestinal tumor source.37  It is also important to emphasize that these somatic 

mutations were described alongside the first connexin germline mutation associated with AF, 

findings subsequently substantiated by the role of rare connexin 40 mutations in familial AF.38,39  

 Although it is conceivable that our bioinformatic methods for detecting somatic 

mutations with next-generation sequencing may have underestimated their true prevalence, it 

should be noted that the approach utilized has been extensively validated and shown to have 

extremely high sensitivity and specificity.20,40,41  At our median sequencing depth (265-fold), the 

estimated sensitivity for detecting somatic mutations with an atrial somatic fraction of 10% is 

99.999%.  When the atrial somatic fraction drops to 5%, 2%, and 1%, our sensitivity for 

detection correspondingly falls to 99.2%, 76.8%, and 26.9%, respectively.27 These sensitivity 

estimates far exceed those for Sanger sequencing, the approach utilized for identifying the 

previous somatic mutations in AF patients.  The atrial somatic fractions for the previously 

documented GJA5 and GJA1 somatic mutations implicated in AF were estimated to range from 

20 to 34% based on the results of allelic subcloning.18,19 Given our anticipated sensitivity, it is 

very unlikely that we failed to detect somatic mutations with atrial somatic fractions in that

matic mutation from m m m a 

ze thhhh tttat tttthhhhese somatatataticicicic 

were described alongside the first connexin germline mutation associated with A

b A

h

w ,

noted that the approach tili ed has been e tensi el alidated and sho n to ha

wererere dddesesescrcrcribibibibeddd aaalongside the first connexixixix nn germline mutattatioioioion associated with A

bssesequqqq ently subsbsbstanntiiiai teddd d byb ttthheh roole ooff raaree coonnnnnnexexee in 440 mmuutatititiooons inininin famamamiliaaal A

houghhh itititit iiis cooncnc ieieivavablbblble thhhatatat oour bbbbioioioininininfofoformrm tatatticicii mmmmetetethohohodsdsds fffforor ddd ttetetectitititingngngn  somom tataticici  

with next-gegg neration seqqquencinii g gg may yy hahh ve underestiiiimatedd dd thhhh iieir true ppprevalence,

tedd hthat thhe hh tililii ded hh bb te ii lel liliddatedd dd hsh to hh



DOI: 10.1161/CIRCGENETICS.114.000650

16

range.

The challenges of recognizing artifactual mutations in previous small scale studies 

highlights one of the main strengths of our study – the analysis of an unprecedented number of 

bases within multiple genes across multiple affected and control individuals.  Focus on a small 

number of genes or samples would have failed to detect systematic biases, such as the G>T 

oxidative changes, or sample cross-contamination, and these would have been erroneously 

interpreted as somatic mutations.  Additionally, the availability of control samples allowed 

filtering of recurrent artifactual mutations that likely arise from alignment errors.  In fact, the 

somatic mutation calling pipeline of most large tumor sequencing centers includes a critical 

filtering step whereby all variants previously observed in a large panel of hundreds of control 

samples are removed, as these are likely to represent artifact arising from one or more steps in 

the variant calling process.42   

 The absence of evidence to support a role for atrial somatic mutations in AF within our 

cohort should not be viewed as evidence to completely rule out somatic mosaicism as a 

pathophysiological mediator of AF.  Although our results suggest that such a mechanism is 

likely rare, at least one other study identified a potential disease-causing somatic mutation in an 

arrhythmic disease.43 However our results suggest that the vast majority of cases of sporadic, AF

occurring in the absence of overt cardiovascular disease develop secondary to either another 

genetic mechanism or some as yet unknown exposure.  Because this form of AF accounts for up 

to 30% of all AF cases and the majority appear to be sporadic, these patients comprise a 

substantial number in the population.16,44  Furthermore, because understanding the etiology of the 

disease in these individuals should uncover mechanisms unique to AF itself (rather than simply 

an AF risk factor, such as congestive heart failure), it is critical to assure that research efforts are 
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on the right track.  Therefore, although our results are “negative”, we believe this comprehensive 

investigation is sufficiently robust to steer the field towards examining novel polygenic or gene-

environment interactions, as well as potential behaviors or environmental influences that may be 

important.   

Limitations

Although our study examining for atrial somatic mutations involves both the largest number of 

patients and genes tested to date, our cohort size of 25 AF patients and 9 controls is still modest.  

In addition, our bioinformatic methods for identifying somatic mutations with next-generation 

sequencing, although highly sensitive and state-of-the-art, could potentially have failed to 

identify bona fide atrial somatic mutations (particularly those with an atrial somatic fraction <

2% when our sensitivity is estimated to drop below 95% given our median 265-fold coverage 

depth).  Although the frequency of potential somatic mutations was similar in both cases and 

controls, we cannot exclude the possibility that the discordant variants among the AF cases were 

pathogenic while those in controls were benign.  Finally, although our genetic panel covered 

more than 3 million base pairs and an exhaustive number of genes related to cardiac 

pathophysiology (including the genes previously implicated in somatic mutations), it remains 

possible that genetic mosaicism involving undiscovered variants related to AF could yet be 

important.  We chose to restrict our analysis to 560 genes in order to assure high depth coverage, 

thereby maximizing our sensitivity and specificity for accurately identifying somatic mutations. 

Conclusions

Using high-depth next generation sequencing and state-of-the art somatic mutation identification 

approaches, we found no evidence to support a role for pathogenic atrial somatic mutations in 

AF using a comprehensive cardiac genetic arrhythmia panel.  These findings indicate that atrial 
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specific mutations are rare and suggest that somatic mosaicism likely exerts a minimal role in the 

pathogenesis of AF.  
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Table 1: Clinical Characteristics of Study Participants

Data are n (%) or mean + standard deviation 

AF
n= 25 

No AF
n= 9 p value 

Age (years) 64.2 + 12.0 78.4 + 8.2 0.003

Male 16 (64.0) 6 (66.7) 0.886

White Race 24 (96.0) 8 (88.9) 0.380

Hypertension 13 (52.0) 6 (66.7) 0.447

Diabetes Mellitus 5 (20.0) 1 (11.1) 0.549

Coronary Artery Disease 5 (20.0) 4 (44.4) 0.154

Congestive Heart Failure 3 (12.0) 1 (11.1) 0.943

Indication For Surgery

AF Ablation 20 (80.0) 0 (0) <0.001

Coronary Artery Bypass Grafting 2 (8.0) 4 (44.4) 0.014

Aortic Valve Replacement 1 (4.0) 4 (44.4) 0.003

Mitral Valve Surgery 2 (8.0) 2 (22.2) 0.256

4 444 (4(4(4(44.4.4.4.4)4)4)4) 0.00 151515154444

1 (11 1)1)1)1) 0000 99943e Heart Failure 3 ( .0) ( . ) 0.9 3

0

C 4

Aortic Valve Replacement 3

e Heaeaeartrtrtt FFFFaiaiaiailurereree ( .0) ( . ) .9

FFFor Surgery

AFAFAFA  AbAbAbblalalalationonnn 200 (80000.0.0.0))) 0 (0(0(00)))) <000.00

Coronary Arterrryyy ByByByB papapassssss GGGGrararaftftftininini gg 2 2 2 (8(8(8(8.0.00) 44 4  (4(4(44.4.4.4.4)4)4)4 0.014

AoAoAortrticicic VValalalveve RRepeplalalacecemementnt 111 (4(4(4(4.000)))) 4 444 (4(4(4(4444.4)4)4)4 0.003
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Table 2: Possible Discordant Non-Synonymous Atrial/Lymphocyte Genetic Variants 

* ADRA2B and SCN1A were both identified in a single control participant.  3 different study 
participants with atrial fibrillation carried the remaining 3 potential discordant variants.

Figure Legends: 

Figure 1:  Stepwise Filtering Approach for the Identification of Potential Pathogenic Atrial 

Somatic Mutations.

Figure 2: Sequencing Coverage Depth Among Atrial and Lymphocyte Samples.  Boxes 

represent 25th to 75th quartiles and lines within boxes represent median values.  Outliers are 

displayed by distinct dots. 

Figure 3: Possible Low Level Somatic Variants Identified with Next-Generation Sequencing 

Failed Detection with Sanger Sequencing.  

Genomic Position Gene Nucleotide
Change 

Amino Acid
Change 

Atrial 
Somatic Fraction

chr1:27440338 SLC9A1 C > A L264F 0.073

chr2:96781756 ADRA2B* C > A A45S 0.044

chr2:166894395 SCN1A* C > A R918L 0.029

chr15:78921890 CHRNB4 C > A V253F 0.030

chrX:152826150 ATP2B3 C > A D938E 0.023

pant.  3333 didididifffffffferent ststststuududud
scordaaadantntntnt vvvvarararariaiaiaiantntntntssss

0.023

ggends: 








