Novel and potent Dengue virus NS2B/NS3 protease inhibitors

Hongmei Wu, Stefanie Bock, Mariya Snitko, Thilo Berger, Thomas Weidner, Steven Holloway, Manuel Kanitz, Wibke E. Diederich, Holger Steuber, Christof Walter, Daniela Hofmann, Benedikt Weißbrich, Ralf Spannaus, Eliana G. Acosta, Ralf Bartenschlager, Bernd Engels, Tanja Schirmeister and Jochen Bodem

Supplementary Information

Contents:	Page
Chemistry: Synthesis and analytical data of compounds 1 – 8	1
Details and results of the QM computations	11
Cartesian coordinates of compound 3	12
Buffers for DENV-2 and DENV-3 purification	21
Experimental details of the HPLC-based enzyme assay	21
References	22
Supplementary Figure legends	23
Supplementary Table S1	24

Chemistry

All chemicals and solvents were obtained at analytical grade from Sigma-Aldrich (Germany), abcr (Germany), Iris Biotech and Alfa Aesar. Solvents were dried using standard procedures. Melting points were determined on a Stuart SMP10 apparatus. *Infrared spectra (IR) were recorded* on an *Avatar 330* FT-IR *Thermo Nicolet* spectrophotometer. Field desorption (FD) mass spectra were performed with a *VG-Instruments ZAB 2-SE-FDP* instrument. ¹H and ¹³C spectra were recorded on a Bruker Avance 400 (400 MHz) or Bruker Fourier 300 (300 MHz) at 300 K in CDCl₃, DMSO-d₆. Chemical shifts are given in parts per million (δ , ppm) and the residuals of non-deuterated solvents were used as internal standard (¹H NMR: CDCl₃: δ = 7.26 ppm, DMSO-d₆: δ = 2.50 ppm, ¹³C NMR: CDCl₃: δ = 77.16 ppm, DMSO-d₆: δ = 39.52 ppm). Coupling con-

stants (*J*) are given in Hertz (Hz). Multiplicity is reported as s (singlet), d (doublet), t (triplet), dd (doublet-doublet), dt (doublet-triplet), td (triplet-doublet), m (multiplet) and br (broad), respectively. Chromatography was performed using silica gel (0.060–0.200 mm) and UV monitoring. Reaction progress was determined by thin layer chromatography on Merck Silica Gel plates 60 F254 (UV detection). The purity of the compounds was determined by analytic HPLC (Waters[®]HPLC) with Diode Array Detector (DAD) using an Orbit 250 x 4,6 mm; 100 C18 5µm column. The analysis was performed using a solvent gradient conducted from 5% to 95% acetonitrile over water in 20 minutes with a flow rate of 1 ml/min.

Synthesis of intermediate I1:

To a solution of 2-mercaptobenzoic acid (1.54 g, 10 mmol) in 30 ml ethanol ethanolic sodium ethoxide (25 ml, 2%) was added under stirring (Figure S1). The solvent was then evaporated under reduced pressure. The resulting residue was dissolved in dimethylformamide (30 ml) and *p*-chloronitrobenzene (1.8 g, 11.4 mmol) was added to the solution. The reaction mixture was reflux for 6 hours. After cooling to room temperature, water was added under continuous stirring. The resulting precipitate was filtered off and dissolved in aqueous potassium carbonate solution (50 ml, 5%). The solution was washed with chloroform to remove excess *p*-chloronitrobenzene. The aqueous phase was neutralized with hydrochloric acid. The resulting precipitate was filtered, washed with methanol and dried to yield 2-(4-nitrophenylthio)-benzoic acid **I1** in 77% (2.1 g) yield ¹.

Synthesis of 1:

To a solution of 2-(4-nitrophenylthio)-benzoic acid (**I1**, 82.6 mg, 0.3 mmol) (Supplementary Figure S1), HBTU (136.5 mg, 0.36 mmol) and *N*-methylmorpholine (0.12 ml) in DMF 2thiophenamine (31.2 mg, 0.32 mmol) was added (Figure S1). After stirring at room temperature under argon atmosphere overnight, water was added. The mixture was extracted 3 times with

 CH_2Cl_2 , dried over anhydrous Na_2SO_4 , filtered, and the solvent was evaporated under reduced pressure. Compound **1** was obtained after chromatography as a yellow solid (35 mg, 33%) (Figure S1).

¹H-NMR (CDCl₃, 400 MHz), δ [ppm] = 8.93 (s, 1 H), 8.07 (d, ³*J* = 8.9 Hz, 2 H), 7.94 – 7.91 (m, 1 H), 7.60 – 7.52 (m, 3H), 7.27 (d, ³*J* = 9.5 Hz, 2 H), 6.91 (dd, ³*J* = 5.5 Hz, ⁴*J* = 0.9 Hz, 1 H), 6.86 (dd, ³*J* = 5.5 Hz, ³*J* = 3.8 Hz, 1 H), 6.68 (dd, ³*J* = 3.7 Hz, ⁴*J* = 1.3 Hz, 1 H). ¹³C-NMR (CDCl₃, 101MHz), δ [ppm] = 163.26, 146.44, 145.51, 138.54, 137.83, 136.02, 132.27, 130.63, 130.12, 129.73, 128.64, 124.51, 124.20, 118.83, 112.83. FT-IR: \tilde{v} [cm⁻¹] = 3244, 3101, 2921, 2852, 1633, 1579, 1557, 1502, 1336, 1309, 736, 695. Melting point: 136 °C FD-MS: [M] 356.0 Purity: 96%

Synthesis of 2:

To a solution of 2-(4-nitrophenylthio)-benzoic acid (**I1**, 165.0 mg, 0.6 mmol), HBTU (250.3 mg, 0.66 mmol) and *N*-methylmorpholine (0.24 ml) in DMF 2-amino-6-nitrobenzothiazole (128.8 mg, 0.66 mmol) was added (Figure S1). After stirring at room temperature under argon atmosphere overnight, water was added. The precipitate was collected by filtration and washed with water. The obtained crude compound was purified by chromatography to yield compound **2** as a yellow solid (50 mg, 19%) (Supplementary Figure S1).

¹H-NMR (400 MHz, DMSO-d₆), δ [ppm] =13.39 (s, 1H), 9.08 (d, ⁴J = 2.4 Hz, 1H), 8.30 (dd, ³J = 9.0 Hz, ⁴J = 2.4 Hz, 1H), 8.16 – 8.10 (m, 2H), 7.92 (d, ³J = 9.0 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.69 – 7.57 (m, 3H), 7.41 – 7.34 (m, 2H).

¹³C-NMR (101 MHz, DMSO-d₆), δ [ppm] = 167.14, 163.44, 153.32, 145.97, 145.62, 143.18,
137.72, 134.81, 132.44, 132.23, 130.05, 129.45, 129.41, 128.90 (2C), 124.29 (2C), 121.89,
120.82, 119.19.

FT-IR: *ν̃* [cm⁻¹] = 3224, 3162, 3097, 2945, 2844, 1683, 1573, 1502, 1336, 1262, 1242. Melting point: 253 °C FD-MS: [M] 452.8 Purity: 99%

Synthesis of intermediate I2:

A mixture of 2-mercaptobenzoic acid (1.0 g, 6.5 mmol), sodium hydroxide (0.6 g, 15.0 mmol) and 1-chloro-4-(trifluoromethyl)benzene (1.6 g, 8.86 mmol) in 6 ml DMF was heated under reflux for 20 hours (Figure S1). After cooling to room temperature, the mixture was poured into water (15 ml) with stirring. Then 1 M aqueous hydrochloride solution was added to the mixture and a pH of 2-3 was adjusted. The resulting precipitate was filtered, washed with water and dried to give **I2** in 13% (300 mg) yield (Supplementary Figure S1).

Synthesis of 3:

In the same manner as that described for the preparation of **2**, starting from 2-[[4-(trifluoromethyl)phenyl]thio]-benzoic acid (**12**, 179.0 mg, 0.6 mmol) and 2-amino-6nitrobenzothiazole (128.8 mg, 0.66 mmol), compound **3** was obtained after precipitation and chromatography as a white powder (87.8 mg, 31%) (Supplementary Fig. 1). ¹H-NMR (400 MHz, CDCl₃) δ [ppm] = 11.58 (s, 1H), 8.76 (d, ⁴*J* = 2.2 Hz, 1H), 8.16 (dd, ³*J* = 8.9, ⁴*J* = 2.2 Hz, 1H), 7.94 (dd, ³*J* = 7.5 Hz, ⁴*J* =1.7 Hz, 1H), 7.53 – 7.41 (m, 4H), 7.35 – 7.33 (m, 4H). ¹³C-NMR (75 MHz, DMSO-d₆) δ [ppm] = 167.23, 163.60, 153.28, 143.14, 141.12, 136.33, 133.27, 132.37, 132.25, 130.45 (2C), 129.28, 128.30, 127.41(q, *J* = 31,9Hz), 127.20, 126.19 (q, 2C, *J* = 3.7 Hz), 124.05 (q, *J* = 272.2Hz), 121.83, 120.71, 119.13. FT-IR: \tilde{v} [cm⁻¹] = 3097, 2933, 1679, 1507, 1336, 1295, 1123, 1058. Melting point: 198 °C

FD-MS: [M] 475.2

Purity: 99%

Synthesis of intermediate I3:

Same procedure as that described for the preparation of compound **I1**. Starting from 3mercaptobenzoic acid (1.29 g, 8.2 mmol), and *p*-chloronitrobenzene (1.1 g, 7.2 mmol), compound **I3** was obtained as a yellow solid (1.06 g, 53%).

Synthesis of 4:

In the same manner as that described for the preparation of 2, starting from 3-(4-

nitrophenylthio)-benzoic acid (**I3**, 275.3 mg, 1.0 mmol) and 2-amino-6-nitrobenzothiazole (214.7 mg, 1.1 mmol) **4** was obtained after precipitation and chromatography (dichlormethane) as yellow solid (105 mg, 23%) (Supplementary Figure 1).

¹H-NMR (400 MHz, DMSO-d₆) δ [ppm] = 13.43 (s, 1H), 9.11 (d, *J* = 2.3 Hz, 1H), 8.38 (t, *J* = 1.6 Hz, 1H), 8.32 (dd, *J* = 8.9, 2.4 Hz, 1H), 8.29 – 8.23 (m, 1H), 8.21 – 8.15 (m, 2H), 7.94 (d, *J* = 8.9 Hz, 1H), 7.88 (ddd, *J* = 7.7, 1.7, 1.1 Hz, 1H), 7.74 (t, *J* = 7.8 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.44 – 7.39 (m, 1H).

¹³C-NMR (75 MHz, DMSO-d₆) δ [ppm] = 165.57, 164.30, 153.27, 146.34, 145.43, 143.16, 138.50, 133.90, 133.39, 132.23, 131.13, 130.72, 129.74, 127.72 (2C), 124.42 (2C), 121.87, 120.60, 119.16.

FT-IR: \tilde{v} [cm⁻¹] = 3154, 3117, 3072, 2913, 1675, 1573, 1336, 1262, 1242, 726.

Melting point: 241 °C

FD-MS: [M] 452.8

Purity: 99%

Synthesis of intermediate I4:

To a suspension of methyl-4-amino-2-methoxybenzoate (1.5 g, 8.28 mmol), potassium thiocyanate (3.25 g, 33.44 mmol) in 15 ml acetic acid, bromine (1.33 g, 8.32 mmol) was added drop-

Wu et al.

wise at room temperature (Figure S1). After stirring at room temperature overnight, the suspension was subsequently incubated at 60 °C overnight followed by stirring at room temperature overnight. The suspension was concentrated, the solid was poured into a half saturated Na-HCO₃ solution and stirred for 30 minutes. The suspension was filtered off, the solid was washed with water and dried to afford 2-amino-5-methoxy-benzothiazole-6-caboxylic acid methyl ester **4** 1.55 g (79% yield) (Supplementary Figure 1).

Synthesis of intermediate I5:

In the same manner as that described for the preparation of **2**, starting from 2-[[4-(trifluoromethyl)phenyl]thio]-benzoic acid (**I2**, 298.3 mg, 1 mmol) and compound **I4** (262.0 mg, 1.1 mmol), intermediate **I5** was obtained after precipitation and chromatography as solid (346 mg, 67%) (Supplementary Figure S2).

Synthesis of 5:

An excessive amount (0.4 ml, 0.4 mmol) of a solution of boron tribromide (1M in dichloromethane) was added dropwise to a solution of 103.7 mg (0.2 mmol) of intermediate **I5** in 5 ml of dry dichloromethane at -78 °C. The reaction mixture was stirred for 24 hours and then quenched with water at room temperature. After extraction with dichloromethane and ethyl acetate the combined organic layers were dried over sodium sulfate, filtered and the solvents removed *in vacuo*². The crude product was purified via column chromatography and recrystallized with ethyl acetate/ methanol and gave 170 mg (0.368 mmol, 46%) of the desired product **5** as a white powder (Supplementary Figure S1).

¹H-NMR (400 MHz, DMSO-d₆) δ [ppm] = 13.08 (br, 2H), 8.47 (s, 1H), 7.82 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.61 – 7.49 (m, 2H), 7.44 (m, 3H), 7.21 (s, 1H).

¹³C-NMR (101 MHz, DMSO-d₆) δ [ppm] =171.71, 170.32, 159.97, 141.21, 136.64, 133.22,
132.27, 132.10, 130.41 (2C), 129.17, 128.26, 127.22, 126.16 (2C), 125.41, 124.40, 122.71,
122.42, 110.55, 106.69.
FT-IR: *ν̃* [cm⁻¹] = 3253, 3154, 2950, 2355, 1683, 1602, 1320, 1252.
Melting point: 285 °C
FD-MS: [M] 490
Purity: 99%

Synthesis of intermediate I6:

A mixture of 2-iodbenzoic acid (248.0 mg, 1mmol), 6-methoxy-2-naphthol (174.2 mg, 1 mmol), K_2CO_3 (276.4 mg, 2 mmol), Cu powder (63.6 mg, 1 mmol) in 5 ml xylene was kept at reflux for 8 h ³. After cooling to room temperature, water was added and the mixture was acidified with 1 M aqueous hydrochloride and extracted with ethyl acetate three times, dried over anhydrous Na₂SO₄ and filtered off (Supplementary Figure S2). The solvent was evaporated under reduced pressure. After purification by chromatography (silica gel, petro ether/EtOAc = 2/1 with 0.1% formic acid) the product could be obtained as an off-white solid (107 mg, 36%) (Figure S2). ¹H-NMR (300 MHz, DMSO-d₆), δ [ppm] = 7.84 (m, 2H), 7.71 (d, J=9.0 Hz, 1 H), 7.60-7.51 (m, 1H), 7.26 (m, 4H), 7.13 (dd, J= 9.0, 2.4 Hz, 1H), 7.03 (d, J= 8.2 HZ, 1H), 3.85 (s, 3H)

Synthesis of intemediate I7:

A solution of 1.0 eq. of bromine (1.5 ml, 29.276 mmol) in 20 ml of glacial acetic acid was added drop-wise to a solution of 1.0 eq. (4.600 g, 30 mmol) of 3,4-dimethoxyaniline and 4.0 eq. (11.7 g, 120 mmol) of potassium thiocyanate in 40 ml of glacial acetic acid at room temperature (Supplementary Figure S1). If heating occurred, the reaction was temporarily cooled in an ice water bath (0 °C) and then stirred at room temperature for at least 10 hours (overnight). The reaction mixture was filtered and the filter residue washed with water. The filtrate solution were combined

and neutralized with concentrated aqueous ammonia solution (26%). The precipitate was filtered off, washed with water, dried *in vacuo* and finally gave rise to the desired product **I7**⁴ as a dark purple, crystalline powder which was used directly in the next synthesis step without further purification (Supplementary Figure S2).

¹H-NMR (300 MHz, DMSO-*d*₆): δ (ppm) = 3.74 (d, 6 H, *J* = 7.5 Hz, OC<u>*H*</u>₃), 6.97 (s, 1 H, ArC<u>*H*</u>),

7.20 (s, 1 H, N<u>*H*</u>₂), 7.28 (s, 1 H, Ar-C<u>*H*</u>).

¹³C-NMR (75 MHz, DMSO-*d*₆): δ (ppm) = 55.68, 56.20 (O<u>C</u>H₃), 102.35, 104.83 (Ar-<u>C</u>H), 121.30, 144.63 (Ar-C_a), 146.64, 148.19 (Ar-C-OCH₃), 165.81 (S–C=N).

IR (neat): \tilde{v} [cm⁻¹] = 3366.63, 3309.42, 3088.76, 2994.78, 2962.09, 2933.48, 2761.86, 2157.98, 1650.40, 1601.36, 1535.98, 1470.60, 1433.83, 1401.14, 1352.10, 1307.15, 1196.82, 1164.13. Melting point: 227 °C

FD-MS: [M] 210.6

Synthesis of intermediate I8:

In the same manner as that described for the preparation of **2**, starting from intermediate **I6** (90 mg, 0.3 mmol) and intermediate **I7** (71 mg,0.33 mmol), intermediate **I8** was obtained after precipitation and chromatography as solid (150 mg), which was used directly in the next synthesis step without purification (Supplementary Figure S2).

Synthesis of 6:

6 (14 mg, 0.031mmol, 15%, as a yellow solid) was obtained from intermediate **I8** (101 mg) and boron tribromide (1M in dichloromethane, 1.7 ml, 1.7 mmol) as described for the synthesis of **5** (Supplementary Figure S1 and Figure S2). Melting point: 285 °C

FD-MS: [M] 444.0

¹H-NMR (300 MHz, DMSO-d₆) δ [ppm] = 12.21 (s, 1H), 9.73 (s, 2H), 9.18 (s, 2H), 7.77 (d, J=8.9 Hz, 2H), 7.71 (d, J=8.8 Hz, 1H), 7.50 (s, 2H), 7.33-7.20 (m, 3H), 7.15 (s, 1H), 7.10 (d, J=7.7 Hz, 2H), 6.89 (d, J=8.3 Hz, 1H)

¹³C-NMR (75 MHz, DMSO-d₆) δ [ppm] = 164.22, 155.31, 155.16, 154.94, 152.61, 150.68, 145.63, 144.05, 141.88, 132.98, 131.91, 130.30, 128.76, 128.24, 128.14, 124.83, 122.94, 122.00, 120.60, 119.44, 117.52, 116.02, 108.86, 106.32.

FT-IR: \tilde{v} [cm⁻¹] = 3533, 3277, 3072, 2355, 1643, 1602, 1538, 1299.

Synthesis of intermediate I9:

A solution of 1.0 eq. (498.5 mg, 2.010 mmol) of 2-iodobenzoic acid in 50 ml of ethyl acetate was cooled down to 0 °C in an ice water bath. 1.0 eq. (764.9 mg, 2.017 mmol) of (HBTU) and 2.0 eq. (0.7 ml, 4.236 mmol) of diisopropyl ethyl amine (DIPEA) were added and the reaction mixture was stirred at 0 °C for approximately one hour. Finally, 1.0 eq. (423.5 mg, 2.014 mmol) of compound **I7** was added and the reaction mixture was stirred at room temperature for several days. The organic layer was washed with saturated sodium hydrogen carbonate solution (3x), water (1x), an aqueous solution of 10% citric acid (3x), water (1x) and saturated sodium chloride solution (3x). The organic layer was dried over sodium sulfate, filtered and the solvent removed *in vacuo* ⁵. The crude product was purified via column chromatography (silica gel) with a gradient of 100% dichloromethane to dichloromethane/methanol (39:1) and gave 786 mg (1.785 mmol, 89%) of the desired product **I9** as a light brown powder (Supplementary Figure S2).

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 3.77 (s, 3 H), 3.96 (s, 3 H), 6.56 (s, 1 H), 7.04 (td, 1 H, J = 7.7, 1.6 Hz), 7.18-7.25 (m, 2 H), 7.48 (dd, 1 H, J = 7.6, 1.5 Hz), 7.77 (d, 1 H, J = 7.9 Hz). ¹³C-NMR (75 MHz, DMSO-*d*₆): δ (ppm) = 55.74, 55.97, 93.75, 103.62, 123.04, 128.08, 128.65,

131.79, 139.17, 140.53, 142.55, 147.14, 148.98, 156.18, 167.61.

IR (neat): \tilde{v} [cm⁻¹] = 3145.97, 3076.50, 2929.40, 2904.88, 2827.24, 2157.09, 1670.83, 1548.24, 1482.86, 1466.52, 1429.74, 1409.31, 1282.63, 1221.34, 1200.91, 1155.96, 1127.36.

Melting point: 184-185 °C

ESI-MS: [M+H]⁺ 440.96, [M+Na]⁺ 462.96, [M+K]⁺, 478.95, [2M+Na]⁺ 902.94

Synthesis of 7:

In a microwave reaction vessel (10 ml) containing a stirrer, 1.0 eq. (440.1 mg, 1.000 mmol) of **I9**, 1.0 eq. (0.14 ml, 1.022 mmol) of *p*-trifluoromethyl thiophenol and 2.0 eq. (276.8 mg, 2.002 mmol) of potassium carbonate were dissolved or suspended in isopropanol. After the addition of 2.0 eq. (0.12 ml, 2.152 mmol) of ethylene glycol and 0.1 eq. (19.6 mg, 0.103 mmol) copper(I) iodide the reaction mixture was irradiated in a synthesis microwave for up to three hours (method: closed vessel, power: 100-150 Watts, temperature: 80 °C). The reaction mixture was then poured into saturated sodium hydrogen carbonate solution and extracted with dichloromethane (3x). The combined organic layers were dried over sodium sulfate, filtered and the solvent was removed *in vacuo*. The crude product was purified via column chromatography (silica gel) with a gradient of 100% dichloromethane to dichloromethane/methanol (39:1) and gave 460 mg (0.938 mmol, 94%) of the desired product **7** as a dark brown solid (Supplementary Figure S2) ³.

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 3.75 (s, 3 H), 3.95 (s, 3 H), 6.83 (s, 1 H), 7.21 (dt, 2 H, *J* = 7.6, 3.0 Hz), 7.34 (qd, 4 H, *J* = 7.5, 1.3 Hz), 7.47 (d, 2 H, *J* = 8.5 Hz), 7.85 (dd, 1 H, *J* = 7.6, 1.5 Hz).

¹³C-NMR (75 MHz, CDCl₃): ō (ppm) = 56.09, 56.49, 102.65, 102.88, 123.51, 126.31, 126.36, 128.02, 129.90, 131.35, 132.43, 133.00, 134.52, 134.72, 139.56, 141.80, 147.80, 149.36, 158.15, 165.46.

IR (neat): \tilde{v} [cm⁻¹] = 3072.42, 2945.74, 2904.88, 2827.24, 1728.04, 1662.66, 1597.28, 1544.15, 1482.86, 1433.83, 1397.05, 1364.36, 1319.41, 1282.63, 1217.25, 1155.96, 1119.18. Melting point: 194 °C

ESI-MS: [M+H]⁺ 491.11, [M+Na]⁺ 513.11, [M+K]⁺ 529.09, [2M+Na]⁺ 1003.24 Purity: 96%

Wu et al.

Synthesis of 8:

8 (170mg, 0.368 mmol, 46%, as a yellow powder) was obtained from **7** (396 mg, 0.807 mmol) and boron tribromide (1M in dichloromethane, 2.8 ml, 2.8 mmol) as described for the synthesis of **5**.

¹H-NMR (300 MHz, DMSO-*d*₆): δ (ppm) = 7.11 (s, 1 H), 7.23 (s, 1 H), 7.36-7.49 (m, 3 H), 7.54 (dd, 2 H, *J* = 12.0, 6.7 Hz), 7.68 (d, 2 H, *J* = 8.2 Hz), 7.77 (d, 1 H, *J* = 7.8 Hz), 9.19 (d, 2 H, *J* = 4.1 Hz), 12.63 (s, 1 H).

¹³C-NMR (75 MHz, DMSO-d₆): δ (ppm) = 106.38, 122.33, 125.93, 126.18 (2C), 127.08, 127.51,
128.30, 129.01, 130.30, 131.80, 133.28, 137.40, 141.52, 144.11, 145.69.

IR (neat): \tilde{v} [cm⁻¹] = 3297.16, 3207.26, 3195.01, 3047.90, 2974.35, 2929.40, 2161.18, 1977.30, 1736.21, 1670.83, 1546.82, 1470.60, 1433.83, 1397.05, 1360.27, 1327.58, 1303.06, 1282.63, 1221.34, 1209.08, 1172.30, 1143.70, 1111.01.

Melting point: 223-224 °C

FD-MS: [M] 463.0

Purity: 97%

Wu et al.

Quantum mechanics computations

The geometry optimizations of compound **3** resulted in two minima. Conformer 1 is energetically lower by 5.3 kcal/mol and is stabilized through intra-molecular π - π -interaction (Supplementary Figure S3A). Conformer 2 is also non-planar and features significantly twisted phenyl ring (Supplementary Figure S3B). Frequency calculations confirmed that both conformations are minima on the potential energy surface.

In order to evaluate whether the conformations obtained in the docking process are reasonable single point energy computations, as well as full and constrained geometry optimizations were performed. Single point energies cannot be compared to the energy of the minima obtained by the density functional (DFT) calculation directly, since the bond lengths and angles are too different. They can however be used to compare relative energies of the docking conformations. The lowest energy conformation is pose 3, while pose 2 and 1 are 1.5 and 5.3 kcal /mol, higher in energy (Supplementary Figure S3C).

The result of fully unconstrained optimizations of the docking poses as well as the docking conformations itself are shown as an overlay picture in (Supplementary Figure S3C). Optimizations of pose 1 lead to a very different structure and can thus not be used to judge the quality of pose 1. The optimized structures of pose 2 and 3 are however reasonably close to the original structures and are 7.4 and 1.2 kcal/mol higher in energy than conformer 1. These energy differences are so small that it can easily be surmounted by the interactions between inhibitor and enzyme.

In order to obtain estimations for pose 1 several constrained optimizations were performed, in which some dihedral angles were kept fixed, while all the other degrees of freedom were optimized. Constraining the dihedral angle between atoms 1-4 (Supplementary Figure S3) leads to structure that is 6.0 kcal/mol higher in energy than conformer 1. However, the plane of the amide group is rotated, so that it is in conjugation with the benzodiazole (Supplementary Figure 3D),

contrary to the structure of pose 1. The conjugation with the phenyl ring is also increased, although it stays twisted. Additionally constraining of the angles between atoms 5-4-6-7, 4-6-7-8 and 6-7-8-9 leads to a structure that is 18.3 kcal/mol above conformer 1 (Supplementary Figures S3D and S3E). Thus it can be concluded, that pose 1 is less favorable, which can be attributed to the fact, that the amid group is not in conjugation with the other aromatic rings.

Constrained optimizations with the same fixed dihedral angles of pose 2 and 3 lead to structures 15.8 and 4.6 kcal/mol higher in energy than the global minimum conformer 1. The higher energy of pose 2 can also be attributed to insufficient conjugation of the amid group, with the other aromatic rings.

Cartesian coordinates of compound 3

Conformer 1

0	0.881574	1.275439	-2.453903
С	1.597411	0.512018	-1.831164
N	1.096870	-0.609151	-1.182726
C	-0.241095	-0.886095	-0.972304
N C	-0.590198 -1.966635	-1.886278	-0.125561 -0.042524
C	-1.900035	-0.980172	-0.042524
C	-2.074003	-0.960172	-0.873951
C	-4.733594	-1.791957	-0.017027
N	-6.208841	-1.749513	0.014690
0	-6.771158	-0.941892	-0.719281
õ	-6.784262	-2.523557	0.772342
č	-4.064272	-2.702687	0.817967
č	-2.677476	-2.752407	0.806010
S	-1.535608	0.003779	-1.796921
Č	3.086435	0.669302	-1.686034
С	3.919428	-0.330595	-2.208732
С	5.309672	-0.195710	-2.177067
С	5.876427	0.940131	-1.594265
С	5.058055	1.922592	-1.030293
С	3.660499	1.804944	-1.072892
S C	2.704745	3.149794	-0.353586
	1.449536	2.269120	0.588109
С	1.793617	1.262347	1.506617
С	0.795603	0.593939	2.213101
С	-0.547539	0.947467	2.029339
С	-1.621267	0.244328	2.816988
F	-2.805831	0.237850	2.163312
F	-1.837632	0.838633	4.014331
F	-1.292944	-1.044246	3.076694
С	-0.890568	1.961799	1.132604

С	0.104843	2.614962	0.402505
Н	1.721143	-1.142630	-0.583604
Н	-4.633738	-0.227840	-1.496100
Н	-4.654127	-3.349083	1.465483
Н	-2.126680	-3.432017	1.456307
Н	3.466191	-1.209924	-2.673622
Н	5.943745	-0.974331	-2.605664
Н	6.961931	1.056409	-1.556440
Н	5.502724	2.788880	-0.536191
Н	2.842388	0.995926	1.651595
Н	1.053750	-0.207882	2.906204
Н	-1.939686	2.212943	0.973620
Н	-0.163010	3.365242	-0.342168

Conformer 2

0 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	-0.208144	0.207078	-0.439457
	0.547412	-0.745552	-0.555494
	0.078330	-2.048134	-0.579408
	-1.245689	-2.439288	-0.483106
	-1.556395	-3.704134	-0.507125
	-2.924830	-3.857957	-0.400624
	-3.666107	-2.650826	-0.292048
	-5.054710	-2.651004	-0.179655
	-5.686920	-3.894275	-0.179900
	-7.158767	-3.931703	-0.064307
	-7.749163	-2.860471	0.033983
	-7.701598	-5.031590	-0.074188
	-4.985074	-5.107179	-0.285895
	-3.600791	-5.091451	-0.396073
	-2.569707	-1.268070	-0.323387
	2.032793	-0.621451	-0.748193
	2.597475	-1.147124	-1.923084
	3.950506	-0.957954	-2.208469
	4.756315	-0.253540	-1.308932
	4.210496	0.244327	-0.123751
	2.849339	0.072798	0.166517
	2.219576	0.628135	1.767394
C	2.118147	2.408544	1.494442
C	2.763262	3.262846	2.400205
C	2.666366	4.646723	2.241287
C	1.938930	5.175157	1.170530
C	1.807845	6.667121	1.019310
F	1.638484	7.033534	-0.272265
F	0.742186	7.148939	1.704191
F	2.897311	7.321282	1.486962
С	1.300035	4.321282	0.263084
C	1.375671	2.938698	0.427855
H	0.740553	-2.818137	-0.621706
Н	-5.646542	-1.741016	-0.094376
H	-5.547705	-6.039253	-0.279063
H	-3.027000	-6.015404	-0.479481
Н	1.959810	-1.679430	-2.633394
Н	4.372807	-1.357046	-3.133044
H	5.816824	-0.102043	-1.522480
H	4.840376	0.769031	0.596755
H	4.840376	0.769031	0.596755
	3.348764	2.843907	3.220757

Н	3.172504	5.317085	2.937597
Н	0.734732	4.741911	-0.569944
Н	0.852294	2.265632	-0.252019

Pose 1 (docking structure)

ΝΖΧΟΟΟΟΟΥΕΕΕ	36.139999 34.222000 30.906000 37.445000 35.070000 33.313000 33.442001 32.678001 31.690001 31.495001 31.495001 38.431000 38.859001 39.786999 40.287998 39.860001 38.931999 39.930000 39.918999 41.111000 42.299000 43.605000 41.115002 37.873001 29.875999 31.287001 44.231998 44.514000 43.432999 34.723999	-10.125000 -11.845000 -13.340000 -10.551000 -10.938000 -12.342000 -12.342000 -11.789000 -13.028000 -13.028000 -13.632000 -13.632000 -13.632000 -3.803000 -7.772000 -7.393000 -7.393000 -7.393000 -10.555000 -11.295000 -11.295000 -11.580000 -11.580000 -12.142000 -10.321000 -12.676000 -14.264000 -14.264000 -12.428000 -13.301000 -10.674000	11.315000 11.354000 7.176000 11.226000 10.925000 10.457000 9.201000 8.086000 8.286000 9.524000 10.601000 11.321000 10.260000 11.321000 10.265000 12.651000 12.651000 12.652000 14.638000 15.816000 16.313999 15.628000 16.165001 14.450000 13.949000 11.057000 6.992000 6.443000 17.017000 15.191000 16.860001 9.281000
c			
Č			
С			
С			
С			
С			
C			
C			
C			
õ			
-			
F			
F	44.514000		
S	34.723999	-10.674000	9.281000
S	38.397999	-9.894000	14.002000
Н	35.904999	-9.208000	11.674000
Н	32.828999	-11.638000	7.201000
H H	30.771999 32.159000	-14.313000 -13.724000	9.639000 11.489000
Н	38.498001	-9.075000	9.278000
н	40.095001	-7.302000	9.432000
н	40.955002	-6.651000	11.565000
Н	40.221001	-7.773000	13.543000
Н	39.060001	-11.456000	16.302000
Н	41.113998	-12.345000	17.160000
Н	43.164001	-10.679000	13.964000
Н	41.112000	-9.788000	13.103000
_			

Pose 2 (docking structure)

Ν	36.109001	-10.215000	11.569000
Ν	34.500999	-12.203000	11.257000
Ν	30.594999	-12.846000	7.381000
С	37.345001	-10.702000	11.929000

35.102001 33.495998 33.271999 32.333000 31.551001 31.712999 32.681999 38.375000 38.203999 39.174000 40.314999 40.487000 39.515999 38.964001 38.365002 37.765999 37.775002 37.775002 37.765999 37.775002 37.765999 37.775002 37.765999 37.7880000 30.931999 37.688000 29.469000 30.931999 37.688000 37.206001 35.792999 34.375999 34.375999 35.881001 32.224998 31.134001 32.793999 37.382999 39.049999 41.014000	-11.050000 -12.543000 -11.584000 -11.631000 -12.774000 -13.787000 -13.668000 -9.654000 -7.642000 -7.642000 -7.679000 -8.703000 -9.691000 -10.282000 -10.282000 -10.595000 -9.218000 -8.626000 -8.374000 -8.904000 -11.862000 -12.386000 -13.366000 -9.084000 -7.267000 -8.917000 -9.233000 -10.322000 -10.972000 -9.233000 -10.895000 -14.601000 -14.400000 -8.603000 -6.905000 -6.970000	11.073000 10.389000 9.426000 8.413000 8.394000 9.332000 10.323000 12.069000 12.994000 13.125000 12.332000 11.408000 11.276000 8.661000 7.735000 6.599000 6.404000 5.165000 7.332000 8.469000 12.117000 7.616000 6.308000 4.010000 5.081000 9.719000 10.118000 11.657000 7.744000 9.295000 10.996000 13.564000 13.790000 12.427000 12.427000
37.382999	-8.603000	13.564000
		10.837000
		7.886000
		5.928000
		7.182000
39.407001	-8.303000	9.141000
	33.495998 33.271999 32.333000 31.551001 31.712999 32.681999 38.375000 38.203999 39.174000 40.314999 40.487000 39.515999 38.964001 38.365002 37.765999 37.775002 37.72002 37.72002 37.72002 37.765999 37.688000 29.469000 30.931999 37.688000 29.469000 30.931999 37.688000 29.469000 30.931999 37.680000 37.206001 35.792999 34.375999 39.730999 35.881001 32.224998 31.134001 32.793999 37.382999 39.049999 41.014000 41.307999 38.365002 37.333000 38.374001	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Pose 3 (docking structure)

Ν	35.824001	-11.538000	9.976000
Ν	38.276001	-10.866000	10.141000
Ν	41.175999	-9.734000	14.725000
С	34.742001	-11.772000	10.793000
С	37.043999	-11.169000	10.478000
С	39.153000	-10.554000	11.148000
С	38.577000	-10.612000	12.399000
С	39.194000	-10.353000	13.608000
С	40.528999	-10.000000	13.518000
С	41.183998	-9.917000	12.293000
С	40.494999	-10.193000	11.117000
С	33.629002	-12.466000	10.116000
С	33.193001	-13.701000	10.582000
С	32.145000	-14.355000	9.944000

С	31.532000	-13.773000	8.840000
С	31.968000	-12.538000	8.373000
С	33.016998	-11.885000	9.011000
С	34.818001	-10.815000	7.249000
С	36.127998	-10.383000	7.433000
С	37.108002	-10.752000	6.518000
С	36.765999	-11.549000	5.430000
С	37.832001	-11.958000	4.426000
С	35.455002	-11.979000	5.251000
С	34.472000	-11.612000	6.163000
0	34.584999	-11.462000	11.967000
0	42.372002	-9.415000	14.681000
0	40.513000	-9.835000	15.767000
F	38.421001	-10.888000	3.824000
F	37.355000	-12.736000	3.415000
F	38.844002	-12.672000	4.994000
S	36.952000	-11.064000	12.173000
S	33.563000	-10.339000	8.426000
Н	35.759998	-11.639000	8.971000
Н	38.712002	-10.416000	14.482000
Н	42.148998	-9.659000	12.259000
Н	40.971001	-10.132000	10.239000
Н	33.632999	-14.119000	11.377000
Н	31.830999	-15.243000	10.280000
Н	30.778000	-14.243000	8.381000
Н	31.528000	-12.120000	7.578000
Н	36.362999	-9.810000	8.218000
Н	38.051998	-10.447000	6.641000
Н	35.220001	-12.552000	4.466000
Н	33.528000	-11.918000	6.041000

Pose 1 full optimization

Ν	-0.527273	1.903326	-0.676123
Ν	-2.286815	0.519766	-0.035438
Ν	-3.737439	-4.849268	-0.860978
С	0.713954	2.122787	-1.248952
С	-1.244304	0.727214	-0.791785
С	-2.745711	-0.770605	-0.208078
С	-2.015285	-1.556875	-1.139444
С	-2.320442	-2.896466	-1.368668
С	-3.390376	-3.429734	-0.650619
С	-4.142835	-2.678561	0.268997
С	-3.821309	-1.346055	0.493095
С	1.551131	3.213717	-0.643168
С	2.238961	4.024714	-1.560138
С	3.067962	5.060143	-1.131583
С	3.254206	5.269446	0.237637
С	2.627077	4.434150	1.164131
С	1.766409	3.407202	0.742911
С	1.152118	0.743406	1.586509
С	0.131899	-0.132118	1.988043
С	0.180018	-1.476034	1.617962
С	1.237076	-1.944909	0.833873
С	1.227155	-3.357267	0.316122
С	2.270226	-1.079417	0.457148
С	2.238091	0.260424	0.840850

000	1.100672	1.474306	-2.209641
	-3.073880	- 5.482882	-1.675319
	-4.669702	- 5.308930	-0.208739
	2.467679	- 3.893059	0.279978
	0.748441	- 3.414271	-0.958038
	0.447492	- 4.170930	1.058904
	-0.718504	- 0.597076	-1.847436
	0.984185	2.468939	2.073902
	-0.801252	2.464051	0.128953
	-1.752104	- 3.526659	-2.049463
	-4.963382	- 3.165194	0.793672
	-4.378892	- 0.739416	1.208121
	2.100167	3.822507	-2.623612
	3.575654	5.692130	-1.862905
	3.911596	6.067208	0.590642
	2.814076	4.564164	2.231856
	-0.726397	0.245048	2.546051
	-0.627277	- 2.150442	1.904446
	3.098247	- 1.452818	-0.147084
	3.038689	0.934337	0.533407
Pos	se 2 full optim	nization	
Z Z C C C C C C C C C C C C C C C C C C	0.086211	0.632606	1.797499
	-1.125303	-1.218100	0.904933
	-5.497597	-1.731118	-2.595605
	1.275869	-0.007405	2.199344
	-0.951129	0.048809	1.095011
	-2.207899	-1.434206	0.076746
	-2.898566	-0.272818	-0.366400
	-3.980494	-0.343877	-1.237454
	-4.364085	-1.617624	-1.657214
	-3.712824	-2.788538	-1.236418
	-2.634375	-2.698402	-0.364888
	2.347130	0.991924	2.556433
	2.097261	1.916325	3.582173
	3.087934	2.807292	4.005279
	4.337540	2.791553	3.379141
	4.585452	1.903646	2.327690
	3.602626	0.992801	1.909079
	2.583218	-0.114903	-0.458178
	2.007234	-1.334306	-0.838281
	0.907872	-1.347600	-1.699550
	0.365539	-0.144866	-2.159273
	-0.784991	-0.156330	-3.129816
	0.921898	1.078000	-1.758623
C O O O F F F S S	2.034935	1.094170	-0.918421
	1.420131	-1.205031	2.240619
	-6.059304	-0.694962	-2.938088
	-5.811226	-2.854103	-2.975865
	-0.354692	-0.091057	-4.411602
	-1.614968	0.901784	-2.948546
	-1.533799	-1.278175	-3.024270
	-2.130899	1.154083	0.313753
	4.048464	0 137860	0.592886

S 4.048464 -0.137860 0.583886 H 0.142882 1.643864 1.739206 H -4.509364 0.531908 -1.608429

Н	-4.068264	-3.747451	-1.610217
Н	-2.101925	-3.586349	-0.021355
Н	1.120784	1.909307	4.074304
Н	2.883456	3.506769	4.818567
Н	5.120188	3.486048	3.693451
Н	5.548234	1.920342	1.812136
Н	2.399831	-2.267143	-0.432610
Н	0.448245	-2.293683	-1.987399
Н	0.484872	2.012212	-2.114889
Н	2.483898	2.042464	-0.615858

Pose 3 full optimization

N 1.206775 0.026458 0.634748 N 5.280815 1.938098 3.999119 C -2.239488 -0.727316 1.468979 C 0.152002 -0.119077 1.386915 C 2.265660 0.494032 1.384509 C 1.989323 0.705011 2.762792 C 2.963687 1.177581 3.638532 C 4.224667 1.435423 3.098801 C 4.529444 1.238632 1.740716 C 3.549088 0.766725 0.877502 C -3.366951 -1.182492 0.577501 C -4.042684 -2.340324 0.988303 C -5.096135 -2.862058 0.235374 C -5.502058 -2.213374 -0.933230 C -4.861167 -1.038446 -1.336303 C -3.793024 -0.512898 -0.593440 C -0.622787 1.566476 -2.383458 C 0.935242 <th>Ν</th> <th>-1.027182</th> <th>-0.564751</th> <th>0.828011</th>	Ν	-1.027182	-0.564751	0.828011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν		0.026458	0.634748
C0.152002-0.1190771.386915C2.2656600.4940321.384509C1.9893230.7050112.762792C2.9636871.1775813.638532C4.2246671.4354233.098801C4.5294441.2386321.740716C3.5490880.7667250.877502C-3.366951-1.1824920.577501C-4.042684-2.3403240.988303C-5.096135-2.8620580.235374C-5.502058-2.213374-0.933230C-4.861167-1.038446-1.336303C-3.793024-0.512898-0.593440C-1.6067460.770063-1.868892C-0.6363571.787233-1.836299C0.6227871.566476-2.383458C0.9352420.326114-2.953551C2.3248910.102070-3.481261C-0.029744-0.680405-3.005663C-1.305959-0.458802-2.477322O-2.365086-0.5883472.675071O6.3856082.1580703.513516O4.9903622.1064195.180073F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4624	Ν	5.280815	1.938098	3.999119
C 2.265660 0.494032 1.384509 C 1.989323 0.705011 2.762792 C 2.963687 1.177581 3.638532 C 4.224667 1.435423 3.098801 C 4.529444 1.238632 1.740716 C 3.549088 0.766725 0.877502 C -3.366951 -1.182492 0.577501 C -4.042684 -2.340324 0.988303 C -5.096135 -2.862058 0.235374 C -5.502058 -2.213374 -0.933230 C -4.861167 -1.038446 -1.336303 C -3.793024 -0.512898 -0.593440 C -1.606746 0.770063 -1.868892 C 0.622787 1.566476 -2.383458 C 0.935242 0.326114 -2.953551 C 2.324891 0.102070 -3.481261 C -0.029744 -0.680405 -3.005663 C -1.305959		-2.239488	-0.727316	1.468979
C0.9352420.326114-2.953551C2.3248910.102070-3.481261C-0.029744-0.680405-3.005663C-1.305959-0.458802-2.477322O-2.365086-0.5883472.675071O6.3856082.1580703.513516O4.9903622.1064195.180073F2.6545461.015137-4.424843F2.480990-1.121680-4.028337F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265		0.152002	-0.119077	1.386915
C0.9352420.326114-2.953551C2.3248910.102070-3.481261C-0.029744-0.680405-3.005663C-1.305959-0.458802-2.477322O-2.365086-0.5883472.675071O6.3856082.1580703.513516O4.9903622.1064195.180073F2.6545461.015137-4.424843F2.480990-1.121680-4.028337F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265	С		0.494032	1.384509
C0.9352420.326114-2.953551C2.3248910.102070-3.481261C-0.029744-0.680405-3.005663C-1.305959-0.458802-2.477322O-2.365086-0.5883472.675071O6.3856082.1580703.513516O4.9903622.1064195.180073F2.6545461.015137-4.424843F2.480990-1.121680-4.028337F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265	С			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
O4.9903622.1064195.180073F2.6545461.015137-4.424843F2.480990-1.121680-4.028337F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
F2.6545461.015137-4.424843F2.480990-1.121680-4.028337F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265	0			
F2.480990-1.121680-4.028337F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265	-			
F3.2591950.221709-2.499272S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
S0.3083250.2836973.108180S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
S-3.1756871.118583-1.068536H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H-0.959651-0.729986-0.174416H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H2.7819721.3489154.698309H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265	-			
H5.5367071.4626461.393353H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H3.7459640.602218-0.182106H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H-3.727098-2.8240361.914729H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H-5.603423-3.7705420.566824H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H-6.328197-2.610437-1.527284H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H-5.195489-0.505946-2.228436H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H-0.8596192.738096-1.348313H1.3806602.350452-2.337131H0.212791-1.641876-3.459265				
H 1.380660 2.350452 -2.337131 H 0.212791 -1.641876 -3.459265				
H 0.212791 -1.641876 -3.459265			2.350452	
	Н	0.212791	-1.641876	-3.459265
	Н	-2.059755	-1.247067	-2.524499

Pose 1 optimization with one constrained angle

S C	0.000000 0.000000	0.000000 0.000000	0.000000 1.774821
N	1.154508	0.000000	2.378703
C C	2.174010 1.761210	0.013534 0.018539	1.450034 0.090368
c	2.681820	0.033323	-0.955258
Č	4.032924	0.044236	-0.606546
С	4.476180	0.039842	0.727730
С	3.546552	0.023981	1.759621
Ν	-1.166644	-0.008136	2.515216
С	-2.451560	-0.019566	2.004771
O N	-2.659636 5.035333	-0.087015 0.061079	0.802033
N O	6.219257	0.067079	-1.368969
õ	4.624962	0.067531	-2.845775
č	-3.573539	-0.030335	3.005071
С	-4.632895	-0.904451	2.694932
С	-5.752833	-0.999797	3.516527
С	-5.840439	-0.200676	4.663242
С	-4.810542	0.685722	4.974133
С	-3.675983	0.789005	4.150920
S C	-2.419992 -3.366885	2.005040	4.599973 4.576570
C	-3.366885	3.529309 4.570126	4.576570 5.415964
c	-3.599851	5.796871	5.395382
č	-4.702466	5.984793	4.553849
С	-5.130882	4.947265	3.719169
С	-4.461353	3.723305	3.720632
С	-5.445678	7.291744	4.596063
F	-4.603587	8.345324	4.709993
F	-6.283674	7.351397	5.660148
F H	-6.198821	7.490487	3.491588
н	-1.013831 2.393828	-0.004524 0.038046	3.518974 -2.005392
н	5.547283	0.038640	0.922332
н	3.857502	0.020761	2.805115
Н	-4.554449	-1.499818	1.783999
Н	-6.558302	-1.691452	3.261847
Н	-6.713387	-0.265517	5.316524
Н	-4.883131	1.326079	5.854570
Н	-2.088450	4.418434	6.085965
H H	-3.266467 -5.982081	6.610900 5.102780	6.040949 3.055288
Н	-3.962061	2.921061	3.055266
	4.100000	2.021001	5.000-00

Pose 1 optimization with four constrained angles

S	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.787708
Ν	1.157326	0.000000	2.360423
С	2.171134	0.008795	1.420490
С	1.751551	-0.006621	0.061762
С	2.670302	-0.022704	-0.988052

ΟΟΟΖΟΟΖΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟ	4.018136 4.469364 3.543782 -1.226151 -1.869537 -1.323791 5.018677 6.201354 4.600855 -3.323117 -4.298329 -5.654438 -6.046515 -5.084754 -3.719089 -2.472486 -2.714160 -2.920726 -3.043869 -2.976948 -2.761944 -2.619339 -3.170802 -2.868814 -4.454816 -2.405509 1 808262	-0.015821 0.004517 0.015881 -0.009917 1.165904 2.249616 -0.031074 -0.025911 -0.049104 0.983730 1.100587 1.100014 0.987820 0.861881 0.871523 0.603758 2.059229 1.895169 3.015938 4.298529 4.462511 3.348267 5.509889 5.260662 5.943970 6.550163 0 835751	-0.640004 0.690382 1.724720 2.477341 2.857125 2.852979 -1.729214 -1.410220 -2.881573 3.235779 2.232959 2.560622 3.898950 4.901646 4.579842 5.857505 6.889894 8.265289 9.090406 8.539581 7.164125 6.340320 9.412190 10.706224 9.388413 9.010863 2.368232
F	-2.868814	5.260662	10.706224
Н	-1.808262	-0.835751	2.368232
Н	2.382304	-0.037109	-2.037508
Н	5.541262	0.010598	0.879214
Н	3.856847	0.030815	2.769144
Н	-3.987113	1.212994	1.191592
H H	-6.404663 -7.106374	1.195502 0.987683	1.773073 4.162605
Н	-7.106374	0.967663	4.162605 5.944924
Н	-2.986799	0.754407	5.944924 8.688894
Н	-3.199318	2.891271	10.162598
н	-2.685017	5.465629	6.742130
Н	-2.417951	3.469323	5.274098

Pose 2 optimization with four constrained angles

S	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.793545
Ν	1.154870	0.000000	2.373887
С	2.169132	0.015020	1.436517
С	1.757403	-0.008238	0.074864
С	2.674774	-0.028315	-0.971919
С	4.025030	-0.015367	-0.623040
С	4.469923	0.013509	0.707913
С	3.541296	0.027492	1.740873
Ν	-1.225514	-0.021849	2.448732
С	-1.535573	0.778053	3.574482
0	-0.706137	1.330333	4.252546
Ν	5.025479	-0.032535	-1.707924
0	6.208692	-0.018186	-1.388198
0	4.610862	-0.061904	-2.862046
С	-3.023593	0.837614	3.836480

С	-3.711404	-0.358009	4.096988
С	-5.067327	-0.345067	4.434460
С	-5.753879	0.868311	4.503924
С	-5.083182	2.064079	4.230043
С	-3.723111	2.061826	3.892214
S	-2.906792	3.637222	3.575280
С	-3.105026	3.853084	1.805414
С	-2.368082	4.902278	1.228410
С	-2.469540	5.166955	-0.135150
С	-3.299662	4.383321	-0.945189
С	-4.036535	3.341202	-0.373277
С	-3.944480	3.074994	0.993203
С	-3.376185	4.628161	-2.426486
F	-2.557198	3.798541	-3.119382
F	-3.019199	5.889745	-2.754175
F	-4.624373	4.421658	-2.908682
Н	-2.023015	-0.240119	1.859169
Н	2.388437	-0.049185	-2.021747
Н	5.541129	0.023210	0.900935
Н	3.852272	0.047928	2.785799
Н	-3.168606	-1.305577	4.062984
Н	-5.581660	-1.283539	4.651354
Н	-6.812374	0.889359	4.771456
Н	-5.613154	3.016912	4.273788
Н	-1.709179	5.511065	1.851158
Н	-1.897542	5.985468	-0.573524
Н	-4.697886	2.738256	-0.997834
Н	-4.537159	2.267786	1.424228

Pose 3 optimization with four constrained angles

S	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.774644
Ν	1.155255	0.000000	2.376849
С	2.175572	0.026723	1.448202
С	1.762413	0.035149	0.089384
С	2.682866	0.058684	-0.955612
С	4.033067	0.074009	-0.606810
С	4.476801	0.066456	0.726056
С	3.547967	0.043101	1.757731
Ν	-1.168739	-0.014596	2.511809
С	-2.447638	-0.006011	1.985962
0	-2.646551	-0.089170	0.784372
Ν	5.034195	0.098695	-1.688882
0	4.622657	0.104335	-2.844876
0	6.217791	0.112319	-1.367950
С	-3.562896	0.304075	2.954104
С	-4.335416	1.436648	2.653186
С	-5.406019	1.807078	3.467247
С	-5.737221	1.030769	4.581032
С	-4.991710	-0.111936	4.878196
С	-3.897081	-0.477033	4.079949
S	-3.048201	-2.024682	4.448841
С	-1.674349	-1.521110	5.489237
С	-0.693230	-2.499107	5.739423
С	0.396504	-2.204109	6.550577
С	0.533620	-0.927543	7.115161

С	-0.435293	0.044723	6.867028
С	-1.541470	-0.247907	6.062074
С	1.732490	-0.632443	7.974996
F	2.887165	-0.725256	7.273958
F	1.837798	-1.510686	9.000505
F	1.688392	0.606714	8.510065
Н	-1.024544	0.036267	3.518575
Н	2.396836	0.064877	-2.006019
Н	5.547840	0.079390	0.919803
Н	3.859784	0.036933	2.802871
Н	-4.088954	2.017493	1.762945
Н	-5.990250	2.696450	3.222638
Н	-6.583266	1.306198	5.214079
Н	-5.256051	-0.739704	5.730556
Н	-0.785371	-3.490536	5.291175
Н	1.152172	-2.968187	6.740883
Н	-0.335561	1.036229	7.309369
Н	-2.302543	0.515833	5.896197

Buffers for DENV-2 and DENV-3 purification using HisTrap FF or GSTrap FF columns

DENV-2 lysis buffer: 50mM HEPES, 50mM NaCl, 5% Glycerol, pH 7.5

DENV-3 lysis buffer: 140mM NaCl, 2.7mM KCl, 10mM Na₂HPO₄, 1.8mM KH₂PO₄, 5mM

DTT, pH 7.3

HPLC-based enzyme assay

In order to confirm PI activity for compounds bearing nitro groups (e.g. **2**, **3**), which may lead to false positive results due to quenching of the AMC fluorescence, the peptide cleavage and its inhibition by the compounds was analyzed by HPLC using a Phenomenex HyperClone 5 μ m C18 120A column. PR assays were performed as described above for DENV-2 PR. Reactions with or without inhibitor (final concentration 50 μ M, 200 μ l each) were stopped by the addition of 400 μ l acetonitrile. 100 μ l of the resulting reaction mixtures were loaded onto the HPLC column and eluted with potassium phosphate buffer (25 mM KH₂PO₄/K₂HPO₄, pH 6.1) / methanol. Amounts of AMC (18 min retention time) produced and of residual substrate (10.5 min retention time) were detected and quantified at 347 and 326 nm, respectively. The percentage of inhibition by the compounds was calculated for each experiment comparing the integrals of the substrate

peaks without enzyme, after 30 min incubation of substrate and enzyme or after incubation of

substrate, enzyme and inhibitor. For control also the integrals of the AMC peaks after 30 min

incubation of substrate and enzyme were compared to those obtained after 30 min incubation of

substrate, enzyme and inhibitor. Each experiment was performed in duplicates.

References

1. Moon, J.-K.; Park, J.-W.; Lee, W. S.; Kang, Y.-J.; Chung, H.-A.; Shin, M.-S.; Yoon, Y.-J.; Park, K.-H., Synthesis of some 2-substituted-thioxanthones. *Journal of Heterocyclic Chemistry* **1999**, *36*, 793-798.

2. (a) Punna, S.; Meunier, S.; Finn, M. G., A hierarchy of aryloxide deprotection by boron tribromide. *Organic letters* **2004**, *6* (16), 2777-9; (b) McOmie, J. F. W.; Watts, M. L.; West, D. E., Demethylation of aryl methyl ethers by boron tribromide. *Tetrahedron* **1968**, *24*, 2289-2292.

3. (a) Kwong, F. Y.; Buchwald, S. L., A General, Efficient, and Inexpensive Catalyst System for the Coupling of Aryl Iodides and Thiols. *Org. Letters* **2002**, *4* (20), 3517-3520; (b) Sperotto, E.; van Klink, G. P.; de Vries, J. G.; van Koten, G., Ligand-free copper-catalyzed C-S coupling of aryl iodides and thiols. *The Journal of organic chemistry* **2008**, *73* (14), 5625-8.

4. Stuckwisch, C. G., Derivatives of 2-Amino-6-methoxybenzothiazole. *J. Am. Chem. Soc.* **1949**, *71*, 3417-3417.

5. Kirin, S. I.; Wissenbach, D.; Metzler-Nolte, N., Unsymmetrical 1,n '-disubstituted ferrocenoyl peptides: convenient one pot synthesis and solution structures by CD and NMR spectroscopy. *N. J. Chem.* **2005**, *29*, 1168-1173.

Wu et al.

Supplementary Figures

Supplementary Figure S1. Syntheses of compounds (A) 1, (B) 2, (C) 3, (D) 4 and (E) 5.

Supplementary Figure S2. Syntheses of compounds (A) 6 and (B) 7 and 8.

Supplementary Figure S3. Quantum mechanics computations. (A) Conformer 1 and (B) 2 of compound **3** obtain from a global optimization. (C) Geometries obtained from unconstrained optimizations of Pose 1, 2, and 3. The docking poses are depicted in cyan while the optimized structures are shown in red. (D) Geometrical arrangements obtained from constrained optimizations of Pose 1. The docking poses are shown in cyan while the optimized structures are depicted in red. (E) Numeration of the atoms.

Supplementary Figure S4. Microscale Thermophoresis (MST) of compound 6. (A) Binding of compound 6 to DENV-2 PR in standard treated capillaries: shape of the MST curves (inset) and the resulting binding curve. From the resulting binding curve a K_D of 15.2 ± 0.61 µM was calculated. The fit quality is 0.98. (B) Binding of compound 6 to DENV-3 PR in standard treated capillaries. From the resulting binding curve a K_D of 3.77 ± 0.107 µM was calculated. The fit quality is 0.84.

Supplementary Figure S5. Cellular toxicity. Vero cells were incubated with PIs at the concentrations indicated in independent triplicates. The MTS substrate was added after 3 days. After incubation for 90 min the OD_{400} was measured. The OD_{400} of the DMSO was set to 100%. Compound numbers are indicated below the panel. Error bars represent the standard deviation. The experiment was repeated 3 times. The first bar represents the DMSO control.

Supplementary Figure S6. Inhibition of the DENV PR in cell culture PR assays. HEK 293T cells were transfected with the PR reporter plasmid and a DENV-2 PR expression construct. Decreasing concentrations of the compounds were added and the cells were incubated for 2 d.

Reporter cleavage was monitored by Western blotting using anti-GFP antibodies. Each sample was analysed on three independent Western blots and all experiments were repeated 3 times. Compound numbers are indicated below the panel. The first bar represents the substrate without PR. Bars represent the mean of all experiment. Error bars indicate the standard deviation. Significant differences in comparison to the substrate alone were indicated with one (p-value < 0.05) or two asterisks (p-value < 0.01) above the columns.

Supplementary Figure S7. The DENV PR cleaves GFP. HEK 293T cells were transfected with GFP (lanes 2 and 3), DsRed (lanes 4 and 5) or GFP-CS-DsRed reporter (lanes 6 and 7) construct with (lanes 1, 3, 5, 8) or without the DENV-2 PR (lanes 2, 4, 6). The processing was visualized by Western blotting using a anti-GFP antibody. Processing of GFP leads to a double band. Positions of the size markers are indicated.

Structures	Inhibition at 50 µM
	No inhibition
O ₂ N OMe	20 %
H ₂ N S	10 %
O ₂ N H	27 %

Supplementary Table S1: Synthesized and tested derivatives

D ₂ N H	38 %
C ₂ N H N	21 %
B C C 2N	No inhibition
F ₃ C	No inhibition
	32 %
F ₃ C	No inhibition
F ₃ C	No inhibition
NO2	60 %
F ₃ C H N COOH	16 %
F ₃ C	10 %
CF ₃	10 %

F ₃ C	40 %
F ₃ C H OH	26 %
F ₃ C	59 %

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S7