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ABSTRACT The persistence vector a is defined as the
configurational average of the chain vector r connecting
the ends of the molecule and expressed in a reference frame
fixed with respect to the first two skeletal bonds. Moments
of second and higher orders in the components of r may
readily be calculated for real chains in the rotational iso-
meric state approximation, and from them the corre-
sponding moments of the vector p = r - a measured from
the terminus of a. Development of the density distribu-
tion of p about a is proposed as an alternative to the cus-
tomary treatment of the density distribution of r about r
= 0 on the assumption that this latter distribution should
be (approximately) symmetric. Past difficulties in the
analysis of cyclization equilibria involving rings of mod-
erate size, such as occur in single strands of polynucleo-
tide chains, conceivably may be overcome by adoption of
this alternative.

This paper is concerned with statistical mechanical averages
of components of the vector r connecting the ends of a chain
molecule and with averages of products of these components.
If the vector r is expressed in a reference frame attached to the
molecule, moments involving odd as well as even powers of the
vector components may take on non-zero values, averaging
being performed over all internal configurations of the chain.
These moments present a much fuller array of information on
the character of the chain configuration than is offered by the
even moments (r2), (r4), etc. of the magnitude of r. Attention
heretofore has been devoted almost exclusively to these latter
quantities (1-4). The moments here treated are especially
important for the analysis of characteristics of chains of short
or intermediate lengths.
Averages of the components of r when expressed in a

coordinate system affixed to the first two bonds of the chain
define a persistence vector a. This vector for a real chain is the
analog of the persistence length of the familiar Porod-Kratky
model chain (5). Its direction and magnitude depend on the
geometry and configurational characteristics peculiar to the
given chain. Unlike the Porod-Kratky persistence length, it
will not, in general, be directed along the initial bond, or ele-
ment, of the chain. The components of the persistance vector
a (i.e., the first moments of the components of r) in conjunc-
tion with the matrix of second moments specify the density dis-
tribution function of the vector r in Gaussian approximation
relative to the mean displacement a from the beginning of the
sequence of units, which we designate as the chain. Higher
moments serve to define this distribution in higher approxima-
tion.
The various moments may be evaluated readily by adapta-
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tion of matrix multiplication methods developed in recent
years (3, 6-8).

MOMENTS OF FIRST ORDER;
THE PERSISTENCE VECTOR

Let a Cartesian coordinate system be defined in the customary
manner for each bond of the chain backbone, its axes being
fixed in relation to the bond in question and the preceding
bond (3). The axis xi of the coordinate system for bond i is
assigned the direction of the i-th bond; the yi axis is in the
plane defined by bonds i-l and i, its direction being chosen to
make an acute angle with bond i-1; and axis Zi, perpendicular
to the plane of the bond pair, is assigned the direction that
completes a right-handed coordinate system. In order to de-
fine a coordinate system for the first bond of the chain, let a
hypothetical zeroth bond be introduced to provide a prede-
cessor in the chain. This bond is placed in the plane of bonds 1
and 2 with its direction parallel to the latter, i.e., the zeroth
bond is trans to the second bond, as shown in Fig. 1. Co-
ordinate axes yi and z1 may then be defined according to the
foregoing conventions. It will be observed that this first co-
ordinate system is in fact fixed with reference to bonds 1 and
2, the zeroth bond having been added merely for the purpose of
defining this coordinate system in a manner equivalent to the
definition of all of the succeeding ones.

FIG. 1. Coordinate systems for the first and second bonds of
the chain.
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Let x, y, and z be the components of the chain vector r ex-
pressed in the reference frame for the first bond. In column
form

x
r = Y = col (x, y, z) [1]

The vector r is, of course, the sum of the individual bond
vectors 4i. Expressed in their respective reference frames, each
takes the form AI = col (Us, 0, 0). For formation of the sum it
is required to transform each bond vector to the first reference
frame. Let T1 be the operator that, by premultiplication,
transforms a vector in reference frame i + 1 to its representa-
tion in reference frame i. We observe that Ti = Ti(0i, sal),
where 0i is the angle between bond vectors i and i + 1 and soi
is the angle of torsion about bond i. If all Oi and soi are speci-
fied, then r is determined. The required sum for a chain of n
bonds may then be obtained, by adaptation of methods elab-
orated previously (3, 6-8), as the serial product

n
r = II As [2]

i= 1

where the Ai are matrices defined by

As <01 li< n [31

A, = [T 4]' [3']

An= [3"]
1n

Serial subscripts appended to the supermatrices apply to
quantities T and f within the brackets. It will be under-
stood that the T1 are expressed as 3 X 3 matrices and the
bond vectors fi as columns. Using a previous convention (3),
we express a serial product of factors such as the Ai by append-
ing a subscript to denote the index of the first factor and a
superscript in parentheses to denote the number of factors.
Then

r =A,() [4]
replaces Eq. [2 ].

Evaluation of the configurational average of r expressed in
the coordinate system affixed in the molecule can be carried
out by application of general methods described in detail
elsewhere (3, 7, 8). Dismissing the trivial case in which the
conformations of neighboring bonds are mutually independent,
we take for granted that the configuration integral over vari-
ous conformations may be approximated by summation over
a judiciously chosen set of rotational isomeric states. The
matrix of statistical weights relating the Pi states designated
for bond i to those of the preceding bond, or of a sequence of
several preceding bonds if neighbor interactions extend over a
greater range, is represented by Up. If the range of inter-
dependence does not extent beyond immediate neighbors, a
condition usually met in good approximation, then the order
of Ui is vi_1 X vi for 1 < i < n. In most instances, all bonds of
the chain are of the same character or, at any rate, each is
appropriately represented by the same number v of rotational
states. Then Ui is of square order (i = 1 and n excepted).
The configuration partition function Z is given in any case by
the serial product of statistical weight matrices i.e., (8)

where

Ui= row (1, 0, ... 0)
Uti = col (1, 1, ... 1) [6]

By application of general methods published previously
(3, 6-8),

(r) = Z-Ial(n) [7]

where angle brackets denote configurational averages, the
generator matrix for an internal bond is defined by (7, 8)

ti= (Ui0E4)11A1l!, 1<i< n

where 0 signifies the matrix direct product, E4 is the identity
of the same order (four) as A, and JJAijf is the diagonal array

of the vi matrices Ai for the respective rotational states of
bond i. For the terminal bonds

a1 = U1 A,

en = Un 0) An

[8']

[8" ]

The configurational average of the chain vector in the initial
reference frame of the chain is a quantity of foremost im-
portance. We call it the persistence vector and denote it by a.

That is

a- (r) = [Y)E
-(Z)-

[9]

For a symmetric chain, i.e., one devoid of centers of asym-

metry, (z) = 0. In general, (y), as well as (x), is nonzero.

Their magnitudes may be expected to depend on the structure
and configurational statistics of the given chain in ways that
are difficult to envisage in advance of numerical calcula-
tions.*
The persistence vector may be regarded as the elaboration

of the persistence length a of the Porod-Kratky model chain
(5). Differences should be noted carefully, however..The one

is a vector whose direction is dictated by structure and spatial
configuration; the other is the scalar persistence in the direc-

* The vector rhk connecting atoms h and k located within the
chain (O < h < k < n) may be treated similarly. Thus, in analogy
to Eq. [2],

rhk = tAh+lA(k+h22)Akt

where the initial factor tAh+l for the bond following atom h and
the final factor Akt for the bond preceding atom k are expressly
noted by superscripted daggerst preceding and following the sym-
bols for the matrices which are defined according to Eqs. [3'] and
[3"], respectively. Owing to end effects, moments of this vector
may differ from those of the vector r connecting the ends of a

chain of the same length n = k - h. Such effects usually are

small. They are taken into account through replacement of Eq.
[7] by

(rhk) = Z(U() A E3) tahll(t+ 2)aht l

where the ah+2, etc., are defined according to Eq. [8] and

tah+l = [(U 0 E3) ||ItAH]h+l

dkt = Uk 0 Akt

[7*]

For h = 0 and k = n, Eq. [7*] reduces to Eq. [7]. Second and
higher moments of rhk may be treated in the manner of Eqs.
[10-15].

[8]
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tion of the initial bond, or element of arc, of a hypothetical
model. In the case of real chains, a has been identified (3) with
the average persistence in the direction of the first bond of the
chain. In this sense, a is a particular component of a.
Whereas the persistence length a has been defined as the

persistence in the limit of an infinitely long chain, we define a
as the persistence vector for a chain of specified length n.
Thus, a is a function of n. Reasons for this definition will be
apparent below. Of course, for any chain of finite flexibility, a
reaches a limit with increase in n.

SECOND MOMENTS OF r

Consider the dyadic product rrT whose elements comprise all
quadratic terms formed from the components of r. The ele-
ments of this product form a symmetric matrix. Arranged in
column form, they are given identically by r 0 r. If identical
elements are combined, this operation being denoted by an
asterisk, then

(r 0 r) * = col (x2, 2xy, 2xz, y2, 2yz, Z2) [10]

It follows from Eq. [4] and the theorem on direct products
that

r 0 r = Ai(n) 0 Al(n) = (A 0 A)l(n) [11]

or, if the self-direct products A, 0 Ai are condensed according
to established methods (7)

(r 0 r)* = [(A 0 A)*]jl(n)
Application of averaging procedures (7, 8) yields

((r 0 r)*) = Z-l(t*(2))1(n)
where

(a*(2))X = (U 0 E1o)j|1(A 0 A)i*1j, 1 < i < n

(*(2))l = Ul 0 (Al 0 Ai)*

(*(2))n = Un 0 (An 0 An)*

MOMENTS OF r OF HIGHER ORDERS

The foregoing results admit of immediate generalization to
moments of any order p. Thus

((rxP)*) = Z-'(J*(p))l
where the self-direct product of degree p is denoted by the
superscriptx", and

(*(p))j = (U 0 Ey)jI(AjXP)*II, 1 < i < n [15]

Terminal generator matrices are defined in analogy to Eqs.
[14'] and [14"].
The order of the identity to El is

ly = (P +3)[16]

and the order of (ap*)s is vy. If, for example, each bond is
described by v = 3 rotational states and p = 4, then 3-y = 105.
If the chain is symmetric, the order may be reduced by a fac-
tor somewhat smaller than 2/3 (7).

THE VECTOR e AND ITS MOMENTS
Obviously the density distribution function W(r) is not sym-
metric about r = 0 when r is expressed in the reference frame
attached to the molecule. Only if r were expressed in an ex-

ternal coordinate system and all orientations of the molecule
were averaged out would W(r) be spherically symmetric; even
so, the resulting distribution would be acentric if tat is ap-
preciable compared to (r2)'/2. Representation of W(r) by a
Gaussian function centered at r = 0 therefore entails error.
This error should be most evident for short chains and for
chains of intermediate length; it must vanish in importance
asny- c.

These circumstances recommend consideration of the dis-
tribution of the remote end of the chain relative to the ter-
minus of the persistence vector. We therefore introduce the
vector e defined by

Lo = r - a [17]
Let its elements in the coordinate system of the first bond be
u, v, w: i.e.,

~u- -x- (x)~e= [E == Y)

By definition

(e) = 0

The average of its squared magnitude is

(p2) = (LTL) = (r2) -a2

[18]

[19]

[20]

[12] The average of the dyadic product, i.e.,

(eeT) = ((r - a)(r - a)T) [21]

[13] comprises the moments of second order formed from the com-
ponents of e. These moments are related to the corresponding

[14] moments of r according to the familiar relationships

[14']
[14"]

(U2) = (X2) - (X)2

(uV) = (xy) - (x)(y)
etc.

[22]

Higher moments of the components of e are also related to
moments of the components of r, and may be obtained from
the latter; e.g.,

(ul) = (x3) - 3(x2)(x) + 2(x)3
etc.

[23]

Thus, computation of the averaged moments of the compo-
nents of r furnishes the corresponding moments of e.
For chains of very great length, the higher moments

dominate the lower and the need to distinguish second and
higher moments of e from those of r vanishes.
- Since the matrix (eT) of the moments of second degree is
symmetric,

R(OPT)RT = diag ((p,2), (p22)) (p32)) [24]

where R is the appropriate orthogonal transformation. The
subscripts 1, 2, 3 will be used henceforth to denote the prin-
cipal axes of the matrix of second moments of e. Components
of vectors, e.g., r, a, and e, referred to these axes will be sub-
scripted by the respective numerals.
We note in passing that the moments of second order are

given in column form by the self-direct product of e, i.e.,

(eeT)C= Lo e =LX2 [25]

Proc. Nat. Acad. Sci. USA 70 (1978)
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which, of course, can be condensed to 6 X 1 order by com-
bining redundant elements as pointed out above.

THE DENSITY DISTRIBUTION OF e

In Gaussian approximation the density distribution of e is
determined by the matrix (Be); i.e.,

W. (g) = (det )/ T-'' exp(- LTojp) [26]

where

[27]

The subscript a distinguishes the function Wa representing the
density distribution about the terminus of a from the dis-
tribution W of r about the beginning of the sequence of units
comprising the chain. Thus,

Wa(P)= Wa(r -a) = W(r).

Expressed as in Eq. [?6], the distribution function Wa is invar-
iant to axis rotations. One mayregard it as the product of three
one-dimensional Gaussians, wai(pi), Wa,2(P2), wa,3(P3), for each
of the principal axes of the matrix a of the quadratic form in
the exponent in Eq. [26]. These component distributions are
characterized by the variances (p,2), (p22), and (p32), respec-
tively.
For the purpose of assessing departures from the Gaussian

distribution on a uniform basis, we introduce the reduced
vector e defined by

e = (QT)-l/'2L [28]
Its components in the principal axes of the second moments
of e are pi/(pl2)1/2, etc. It follows that

(eeT) - E [29]
or, in column form

(px2) = Ec [29']

where E is the identity of third order and Ec = col (1 0 0 0
1 0 0 0 1). These results are, of course, invariant to axis rota-
tion. This spherical symmetry will not hold for the higher
moments of e in general.

Substitution of Eq. [28] in [26] yields

Wa( ) = (2r)-'/2 exp (-1/2 0T') [30]

where Wa(I) is expressed per unit range in the coordinates of Q.
The departures that may occur relative to the simple

Gaussian representation of Wa(Q) according to Eq. [26], or of
Wa(o) according to Eq. [30], obviously are manifold. Hence,
they elude succinct characterization in general. For definite-
ness, therefore, consider the distribution wh(h) with respect
to the single coordinate h along an arbitrary axis defined by
the unit vector n. Thus, let

h = [31]

The distribution wh(h) of h is the integral of the density dis-
tribution WFa() of e over the full ranges of the coordinates
transverse to n. Moments of h are given by

(hp) = ((nTl)p) - (nXV)T(OXP) [32]

where (bXp) = ((eeT)- /2)XP(VxP). According to the defini-
tions of e and e, (h) = 0 and (h2) = 1

Let 61, 62, ... 6., etc., be defined as follows:

51= 62 = 0

68 = (hM) = ((ftTe)3) = (,x3)T(Oxs)
64 = (h4) - 3
65= (hM)
66 = (e) - 3 .5
etc.

[33]

If Wa(p) is Gaussian, 6, =0 for all p. Hence, the distribution
wh(h) referred to any axis n through the terminus of a is
Gaussian.
To complete the analysis we expand wh(h) in the Hermite

polynomials Ho(q) = 1, H,(q) = 2q, H2(q) = (2q)2- 2, etc.
Then

wh(h) = (2r)1/2 exp (-h2/2) E CmHm(h/'4T2) [34]
m=O

The coefficients Cm evaluated in terms of the moments of h
by resort to the familiar orthogonality condition are

Co0=1,0=C2=0
C3 = 63/2'/2-3!
C4 = 64/22.4!
C5 = (65 - 1068)/2"/2 - 5!
C6 = (66- 1564)/28 6!

[35]

Investigations of wh(h) in this manner with n taken along
each of the principal axes of the second moments of e may be
expected to lead to a reliable appraisal of the degree of de-
parture from the Gaussian distribution expressed by Eq.
[26] or [30].

CONCLUDING REMARKS

Often the radial distribution function R(r) will be required,
this being the integral of W(r) = W.(@), with e = r - a, over
all directions for the fixed value r of the magnitude of r. Al-
though R(r) is determined by W.(p), evaluation of the former
from the latter may involve extensive numerical calculations.
Only in the unlikely event that Wa(p) is both symmetric about
a and Gaussian as well, is the conversion expressible in simple
mathematical form. The task may be simplified, however, by
resort to certain approximations that suggest themselves as
expedients. Demonstration of their efficacy must await eval-
uations of the moments of r and of Lo for representative ex-
amples of real polymer chains, followed by examination of the
characteristics of the density distribution function.
The distinction between W(r) about r = 0 [and the asso-

ciated radial distribution function R(r)] on the one hand and
the distribution function W.(p) about r = a on the other
should be important for chains of lengths such that (r2)'/2 does
not greatly exceed the magnitude of a. The acentricity im-
plied in this distinction may account for the discrepancies be-
tween results of Monte Carlo calculations applied to n-alkane
chains by Fixman and Alben (9) and the customary, spheri-
cally symmetric representations (Gaussian) of the density dis-
tributions. Their Monte Carlo densities for chains having
fewer than about 30 bonds fall well below those given by the
latter representations. Similar results have been found by
Beevers and Semlyen (10) for short poly(dimethylsiloxane)
chains.
Marked departures from spherical symmetry of W(r) are

indicated for polynucleotide chains according to Monte Carlo

1822 Chemistry i: Flory
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calculations of DeLisi and Crothers (11, 12). For chains of
fewer than twenty residues (120 skeletal bonds), W(r) was
found to depart drastically from a spherically symmetric
Gaussian. Expansion in a Hermite series of the even moments
of r up to (r4O) was insufficient to overcome the departure (12).
Marked acentricity in the chain vector distribution for short
polynucleotide chains is consistent with the fairly large ex-
tension that is characteristic of these chains in the random-
coil state (13, 14). The matter bears directly on the analysis of
single-strand loops such as occur in t-RNA, i.e., on the loop
weighting functions treated by DeLisi and Crothers (11, 12).
The extent to which these discrepancies between distribu-

tion functions based on moments and those obtained from
Monte Carlo calculations (or from properties of real chains)
can be resolved through development of the distribution about
the terminus of the persistence vector remains to be estab-
lished.
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