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Protein 
Relative intensity 

(lower/upper layer) 
Dpp:GFP 2.9±1.16 
pMAD 2.1±0.351 
dad-LacZ 2.1±0.115 
put-LacZ 1.13±0.117 
tkv-LacZ 0.54±0.075 

 
Table S1. Relative levels of Dpp and Dpp signaling in the layers of ASP.  Intensities were 
measured using Image J, in a rectangle in the mid region of ASP that included 11-12 cells with 
the highest levels of Dpp or Dpp signaling; numbers represent ratio of lower/upper. The size and 
relative position of the rectangle was the same for both the upper and lower level optical sections.  
Five specimens were measured and the average relative values are presented. 
	  





Condition Dad>GFP Dad>LacZ pMAD 

Tr
ac

he
al

 e
xp

re
ss

io
n 

Dad -2.2 -4 N 

putRNAi -4 -4.5 N 

TkvDN -2 -3.6 -1.5 

TkvDN,Dad -6 N N 

diaRNAi -2.4 N -1.3 

nrgRNAi -2.8 N -2.2 

CapsDN -2 -3.6 N 

capsDN, capsC28fs, trnD17 -4 N N 

capsRNAi, capsC28fs, trnD17 -3 N N 

 

D
isc

 
ex

pr
es

sio
n 

 

ap>dppRNAi -2.3 N -1.6 

dpp>nrgRNAi -1.5 N N 

    

 

Table S3.  Levels of Dpp signaling in ASP.  Dad-driven GFP and LacZ expression and pMAD 
staining were measured in the mutant genotypes indicated, and fold changes were calculated 
based on appropriate control.  Five samples were examined for each genotype. Heterozygous 
mutant constructs (as in Table S2) were examined in the following genetic backgrounds: for 
tracheal expression, btl-Gal4, UAS-CD8:Cherry, Dad-GFP, tub-Gal80ts, or btl-Gal4, UAS-
CD8:GFP, Dad-LacZ, tub-Gal80ts; for disc expression, ap-Gal4 or dpp-Gal4, Dad-GFP, tub-
Gal80ts; for pMAD staining, btl-CD8:GFP; tub-Gal80ts. Controls lacked mutant constructs.   
N, not performed.  
	  



  
Induction (hr) 

# cytonemes/µm perimeter ASP pMAD / wing disc pMAD 
<25µm >25µm Upper layer Lower layer 

0  0.438±0.084 0.122±0.056 0.73±0.062 0.88±0.026 

1/2  0.318±0.054 0.012±0.011 0.71±0.05 0.83±0.06 

1  0.2426±0.056 0.0048±0.004 0.49±0.05 0.54±0.07 

2  0.1546±0.022 0.003±0.004 0.375±0.04 0.41±0.07 

3  0.0896±0.013 0.0024±0.005 0.33±0.02 0.37±0.02 
 
 
Table S4.  Dependence of cytoneme number and Dpp signaling on Shi function.  Third instar 
larvae that expressed shits1 in trachea (btl>Gal4 UAS-Shits1) and that had been raised at 18°C were 
transferred to 30°C for the indicated times.  Cytoneme numbers and levels of pMAD were 
measured and calculated as described in SOM. Based on ANOVA followed by Tukey HSD test, 
the numbers of cytonemes that were <25 µm or>25 µm significantly declined (compared to 0 hr) 
within ½ hr after shift to 30°C (p<0.01 for all changes to cytoneme numbers, except for <25 µm 
cytonemes at ½ hr, p<0.05).  In contrast, pMAD levels did not change significantly between 0 
and ½ hr in either upper or lower layers, but longer incubations reduced pMAD levels 
significantly compared to 0 hr (p<0.01) in both layers.  
	  



 

 

 

 

 

 

 

Table S5. Dependence of cytoneme number on neuroglian and diaphanous function. Counts 
were made of cytonemes in 10 ASP preparations from control (btl-Gal4, UAS-CD8:GFP/+; 
Gal80ts/+) and nrgRNAi-expressing (btl-Gal4, UAS-CD8:GFP/UAS-nrgRNAi; Gal80ts/+) 
animals.  Larvae were reared at 18°C and shifted to 29°C 12 hours prior to dissection.  
Cytonemes on the circumference of the ASP were counted and categorized into two size groups 
(<25 µm and >25 µm).  Flies expressing nrgRNAi (p < 0.0001 for both types of cytonemes) or 
diaRNAi (p=0.0339 for <25 µm and p<0.0001 for >25 µm) significantly reduced number of 
cytonemes compared to the control. 

	  

Genotype 
 

# cytonemes/µm perimeter 
<25 µm >25 µm 

btl>Gal4, >CD8:GFP/+; tub-Gal80ts/+ 0.54±0.15 0.129±.9 

btl>Gal4, >CD8:GFP/>nrgRNAi; tub-Gal80ts/+ 0.247±0.07 0.103±0.02 

btl>Gal4, >CD8:Cherry/tub-Gal80ts ; +/+ 0.396 ± 0.054 0.101±0.023 

btl>Gal4, >CD8:Cherry/tub-Gal80ts ; diaRNAi/+ 0.191±0.24 0.0152±0.012 





Figure S1.  Dpp signaling in the ASP.  (A) Transverse section of the medial region of an 
unfixed ASP (btl-CD8:Cherry Dad-nlsGFP) showing GFP fluorescence in cells of lower layer 
and in the disc cells below. (B, B’) tkv expression (red, tkv-lacZ detected by anti-ß-galactosidase 
staining) is higher in the upper (B) than lower (B’) level of the ASP (outlined by dashed white 
line).  (C, C’) Expression of put (red, put-lacZ detected by anti-ß-galactosidase staining) is 
similar in upper (C) and lower (C’) levels of the ASP (green, btl-Gal4 UAS-CD8:GFP).  (D, D’) 
Optical sections showing Dad (D) and pMad (D’) assays of Dpp signaling in medial region of the 
upper and lower layers of ASP: (Dad-lacZ (red), α-pMAD staining (red), α-Dlg (green)).  (E) 
RNA in-situ hybridization detects dpp expression in the disc but not in the trachea. Black dashed 
line marks position of ASP and TC. (F-N) Functional knockdown conditions in the ASP that 
induce morphogenetic malformations in the ASP (bifurcations and abnormal shapes) and tracheal 
duplications (arrows in (G, H).  Genotypes: btl-Gal4, UAS-CD8:GFP; tub-Gal80ts X UAS-PutDN 
(F), X UAS-Dad (G), X UAS-TkvDN (H), X UAS-shits (I), X UAS-diaRNAi (J), X UAS-nrgRNAi 
(K), and X UAS-trnRNAi (N).  shits ASP in (J) was incubated at 30°C for 1 hr followed by 20°C 
for 24 hrs.  (L) Genotype: btl-Gal4 UAS-CD8:GFP / UAS-CapsDN ; UAS-CapsDN and (M) btl-Gal4 
UAS-CD8:GFP / UAS-CapsDN ; capsC28fs trnΔ17 / UAS-CapsDN.  Blue fluorescence in (G) and (H) is 
autofluorescence of lumen at 405 nm. (N) α-Dlg (red). Scale bar, 30 µm. 
	  





Figure S2.  Characterizations of ASP in normal and mutant conditions. (A-D) Expression of 
diaRNAi (A, B) or nrgRNAi (C, D) did not change the number of α-phosphohistone-3 or α-
Caspase-3 staining (red).  (E, F) Expression of caps and trn detected by α-LacZ antibody ((E), 
caps-LacZ (P{PZ}caps02937; green) and GFP fluorescence ((F), trn-GFP).  (G, H) Expression of 
CapsDN did not change the number of α-phosphohistone-3 or α-Caspase-3 staining (red).  (I) 
Number and distribution of ASP cytonemes were not significantly changed by CapsDN over-
expression.  (B, G, H), α-Dlg (white); (A-D, G-I) CD8:GFP. Scale bar, 30 µm. 
	  





Figure S3. Cells with defective cytonemes do not activate signal transduction but are 
signaling competent.  ASPs (outlined by dashed lines) that expressed under btl-Gal4: GFP (A-
D), RNAi directed against dia (A), inactive Shits (B), RNAi directed against nrg (C), or CapsDN 
(D). α-pMad antibody stained ASP cells that also expressed Dpp:Cherry ((driven by btl-Gal4; 
upper panels) but did stain ASP cells that did not express Dpp:Cherry (lower panels). Right 
panels: pMad staining; middle panels Dpp:Cherry fluorescence; left panels: merge with CD8:GFP 
fluorescence.  (E) ASPs that expressed GFP and CapsDN under btl-Gal4 stained for dpERK in the 
presence of ectopic FGF (driven by heat shock; right panel) but not in the absence of ectopic FGF 
(left panel). Scale bar: 30 mm. 

	  



Movie S1. Movement of co-localized Dpp:GFP and Tkv:Cherry puncta in cytonemes.  
Tkv:Cherry was expressed in trachea (btl-Tkv:Cherry); Dpp:GFP was expressed in the dpp 
domain of the wing disc (dpp-Dpp:GFP).  Each frame of the movie is a maximum Z-projection 
that was compiled with ImageJ, and is shown at two frames per second.  Each Z-stack (0.4 µm 
steps) was captured at intervals of two time points per minute at 488 nm and 561 nm using an 
inverted spinning disc confocal microscope.  Scale bar, 40 µm. 
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