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Supporting Material 
 

Image analysis 

 PAR-2 levels were determined between late prophase (centration/rotation) and 

metaphase either on fixed specimen by immunofluorescence or on live embryos 

expressing GFP::PAR-2 (Fig. S1 E-F). Two regions of interest per embryo (posterior 

membrane PM and posterior background PB) were manually defined using a circular 

selection tool 9 pixels in diameter (Fig. S1 D) with the ImageJ software (1) and their 

pixel intensity analyzed with Matlab 2012b. Camera white noise and its standard 

deviation  were automatically estimated (2) and averaged for each genotype. Posterior 

cortical signal was defined in a signal-to-noise ratio approach as (PM – PB) /  to 

compensate for the out-of-focus illumination visible in the posterior cytoplasm and 

normalized by setting the average of the wild-type measurements to 100% and the 

average of the par-2(RNAi) to 0%. 

 All recordings were automatically segmented and analyzed by ASSET (3) and the 

quantifications implemented either in Matlab 2012b or in C (all code used in this work is 

available upon request). To capture precisely the signal from the cortex, we developed a 

model of the image that consists of the background (both from the cytoplasm and the 

camera), the autofluorescence of the eggshell and the signal per se (Fig. S1 H-M).  We 

approximated the cortical signal with a succession of 2D Gaussian functions 
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 , where A is the amplitude of the signal, μ the position of its center and σ its 

width. Spatial correlation between the values of the parameters of the model was 

imposed; in particular, we consider a constant thickness of the membrane by imposing σ 

to be constant throughout a recording. The background was taken as the smoothed 

projected image from which the cortex was deleted by replacing the portion between μ − 

5σ and μ + 5σ with a linear interpolation of pixel intensity values at the border of this 

domain. The remaining parameters of the signal were then determined using a 

Levenberg-Marquardt optimization procedure developed by Manolis Lourakis. The 

autofluorescence of the eggshell is estimated from the GFP::PAR-2 channel on portions 

of the eggshell far enough from the cortex (> 3σ) using the same model as for the cortical 

signal, but constrained to a single set of parameters for each frame, and subtracted from 
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the cortical signal as a Gaussian function of the distance between the cortex and the 

eggshell. The different kymographs utilized to compute the temperature averages (Fig. 2 

A and 5 A-C) were aligned such as to minimize their residuals. 

 We compensated for posteriorization, i.e. the process that re-centers the growing 

posterior domain to the closest pole (4, 5), by segmenting the center of the GFP::PAR-2 

expression kymographs using dynamic programming (DP, 6), minimizing a cost function 

that mirrored the characteristics of the posterior domain. This function posited that the 

posterior domain is symmetric, relatively bright, centered at the posterior pole during 

maintenance and devoid of invaginations. Similarly, the position of the front of the 

posterior domain was determined using DP with a scoring function that favored pixels on 

the edge of a bright domain whose intensity value resembles the one observed during the 

maintenance phase. The parameters used in the different scoring functions were manually 

optimized through visual inspection and incorporated into a configuration file for 

ASSET. The duration of polarity maintenance was defined as the time between the 

moment the front of the domain, as identified by the automatic segmentation, has reached 

77.5 % of its final length and the end of the recording (i.e. cytokinesis onset). This 

percentage was chosen as it corresponds to the portion of lowest variability (as defined by 

the mean of the squared residuals), taking steps of 2.5 %, when comparing the 

segmentation of the kymographs aligned for averaging. Note that this percentage also 

outperforms alignments based on the manual registration of cell cycle events (pronuclear 

meeting, pseudo-cleavage or cytokinesis onset). 

 

Mathematical modeling and simulations 

 The model M1 (Eq. 2-3, 7) consists of a one-dimensional (assuming rotational 

symmetry along the longitudinal axis of the embryo) two-species (modeling the anterior 

and the posterior complexes at the plasma membrane) partial differential equation (as the 

model depends both on time and space). The model is composed of the following 

mathematical terms (Eq. 2): 

 (i) Rate of change in the concentration of the complexes at the plasma membrane. 

 (ii) Diffusion: the complex can freely diffuse when bound to the plasma 

membrane.  
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 (iii) Mutual inhibition: one complex is excluded from the plasma membrane by 

the other complex. Each inhibition term contains a cooperativity factor (i.e. the exponents 

α and β) representing the degree of cooperative binding one complex exhibits when 

excluding the other complex from the membrane. Importantly, if either α or β is greater 

than one, the system can exhibit local bistability, which is necessary to achieve both a 

stable uniform unpolarized state at the onset of the process and a stable polarized state 

during the maintenance stage (7). 

 (iv) Binding: the complex binds from the cytoplasmic pool (Eq. 2) to the 

membrane. 

 (v) Unbinding: the complex detaches from the membrane to the cytoplasmic pool 

at a given rate.  

 (vi) Cortical flows: the complexes are displaced toward the anterior pole through 

an advection process. The resulting depletion of anterior complexes A near the posterior 

pole is the perturbation that permits the complex P to access the membrane to initiate 

polarity establishment. Note that cortical flows  vary over space and time. 

 This model assumes a constant total amount of proteins and a homogeneous 

cytoplasm; thus, the cytoplasmic pool is the difference between the membrane bound and 

the total amount of proteins (Eq. 3, 7), where ρA and ρP are the total amount of A and P 

respectively, L is the length of the cell membrane and φ is the surface to volume ratio 

relating the cortical and the cytoplasmic pools. φ is defined for a 3D ellipsoid with 

semiaxes a  b  c as the ratio between the surface area S (Eq. 4, 8), where F(,k), E(,k) 

are incomplete elliptic integrals of the first and second kind respectively, cos() = c/a, 

and the ellipsoid volume is 
3

4
V abc . Note that the semi-axis c is inferred from b using 

the result of a linear regression on the data extracted from differential interference 

contrast (DIC) 3D stacks of twenty embryos with a z resolution of 0.5 µm. The result of 

the regression is 18.81 0.31c b   (R2=0.99). The assumption that the cytoplasmic pool is 

well mixed is supported by the fast diffusion rates measured in the cytoplasm and the 

absence of cytoplasmic GFP gradient (9). Goehring and co-workers have experimentally 

determined the diffusion constants DA and DP, the on binding rates kA+ and kP+, the off 

binding rates kA- and kP-, as well as the relative concentrations ρA and ρP (7, 9). We 
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utilized the geometric properties of each cell in the experimental dataset to define the 

surface to volume ratio φ as well as the membrane length L in the mathematical model in 

conjunction with the published parameter values (Table S1) and our flow measurements 

(Fig. 2 C).  

 All simulations of the model were performed using custom software developed in 

C, using finite-differences methods to solve the partial differential equations (PDE). For 

the spatial discretization, the diffusion is solved using a five-point central difference 

approximation, the advection using a second-order upwind scheme and the integral using 

the trapezoidal rule. Null derivative (Neumann) boundary condition was used for the 

protein concentration. The temporal discretization uses a Runge-Kutta-Fehlberg 

algorithm implemented by John Burkardt. While the time stepping is adaptive, 

simulations were carried out with 256 meshpoints, thus resulting in a spatial resolution of 

�0.25 μm, depending on the proportions of the simulated embryo. The initial 

concentrations used for the simulations were taken as the numerically identified value of 

the fixed point, in the absence of diffusion and advection, corresponding to the anterior 

complex being enriched at the membrane (7). 

 

Model optimization 

 To quantitatively compare the results of the simulation of the mathematical model 

(Eq. 2-3, 7) with the data acquired in this work, the kymographs need to be synchronized 

to relate experimentally determined timing of one embryo with that of others, as well as 

to the timing of a simulation. To do so, we introduced for each embryo a shift factor I 

for a given simulation S with respect to the experimental kymograph I, which is 

optimized together with the other parameters of the model. In addition, every kymograph 

is rescaled by setting the 0.1 % of the outer pixels, as defined by the segmentation of the 

posterior domain, to zero, and the 99.9 % of the inner pixels to one. Finally, to permit a 

meaningful comparison between the simulation and the experimental data, we adapted 

the spatial size of the simulation, L and φ, to match the dimensions of each embryo. We 

measure the length of the plasma membrane in the midplane of the embryo using the 

segmentation produced by ASSET to set L and we calibrate the surface to volume ratio of 

the embryo φ accordingly. 
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 To quantify the resemblance between experiments and simulations, we defined 

the negative log-likelihood of a parameter set θ, given the set of experimental data  (Eq. 

1), where I is a MI by NI pixels kymograph, S the corresponding simulated kymograph, D 

and B the positions of the domain boundary for I and S, respectively. The difference in 

pixel value (i.e. the right term) is rescaled by /NI to have a weight comparable to that of 

the difference in boundary position (i.e. the left term) in the final score, given that 

typically NI ≫ MI, where  is a factor used to balance the influence of the pixel intensity 

with respect to the position of the boundary that was set to 0.25. In addition, a sigmoid 

function is applied to the boundary term to prevent the likelihood from being too 

sensitive to very minor changes in the segmentation of the posterior boundary. The 

boundary position term was added to the likelihood function to compensate for the lower 

sensitivity during the initiation stage (e.g. Fig. S2 E), which is due to a lower pixel 

intensity value at that time compared to the maintenance stage. 

 The optimization procedure was carried out in alternation by an evolution strategy 

with covariance matrix adaptation (CMA-ES, 10) and a Nelder-Mead simplex method 

(fminsearch, 11), both implemented in Matlab. Initial parameter values were generated by 

adding Gaussian noise first to the published values (7), then to the best values identified, 

finally to the average of the best value per embryo (Fig. 3). The best value among all 

these independent optimization runs was utilized in this work. In the optimization of the 

temperature adaptation models (Fig. S11), the four unmeasured parameters as well as the 

required shift factors I were optimized together with the parameters of the various 

models. 

 Because our experimental setup does not provide information on the dynamics of 

the anterior domain, whereas the optimization procedure infers parameter values for this 

domain, we performed a set of 80 simulation experiments to assess the precision of such 

inferences (Fig. S7). In each experiment, a kymograph is simulated with the published 

values (7) for the four unmeasured parameters of the model (i.e. kAP, α, kPA and β), 

Gaussian white noise is added and the optimization procedure utilized to find back these 

values. Half of the optimization procedures were initialized at the correct values (kAP = 

0.19, α = 1, kPA = 2 and β = 2), the other half further away from these values, at position 

where polarity could still be established (kAP = 0.026, α = 1.97, kPA = 0.014 and β = 2.42). 
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In addition, as described above, the shift factor I was optimized as a fifth parameter, 

with the value of 0 being utilized for the simulated kymograph. Finally, different amounts 

of noise (10%, 25%, 50% and 100% of the parameter value) were added to the initial 

parameter value to study the convergence of the optimization procedure. With the 

exception of four optimizations that did not converge properly (i.e. that were detected as 

outliers based on their log-likelihood score using the algorithm detailed in the next 

paragraph), all 76 remaining simulation experiments converged properly towards the 

parameter value used in the simulation (Fig. S7). Importantly, the precision of the 

optimization procedure is maximal for the two cooperativity exponents α and β (Fig. S7 

H, K). 

 To identify sets of parameters as outliers (i.e. {kAP, α, kPA, β, } in Fig. 3), we 

followed a principal component based approach that has been designed for multi-

dimensional data (12). Given the amount of noise present in our data, we increased 

empirically the tolerance of this detection method, utilizing a larger c parameter by taking 

25 times the median absolute deviation (MAD) of the distance, instead of 2.5, in the first 

biweight function (i.e. w1i). We utilized the same algorithm for outliers identification in 

the convergence analysis (Fig. S7) but multiplying the MAD by 5. 

 

Estimating cortical flows 

 To obtain a spatial and temporal map of the dynamics of cortical flows, we 

followed an indirect approach that utilizes the displacement of sub-cortical cytoplasmic 

yolk granules as a proxy for the movements of the contracting cortex. Importantly, while 

GFP::NMY-2 foci are best observed using cortical imaging (13), VIT-2::GFP permits 

midplane imaging, and thus the monitoring of movements both close to the male 

pronucleus during the early onset of flows as well as at the poles after posteriorization. 

Because measuring cortical flows obviously requires localizing the cortex, we inferred 

the position of the cell membrane in these frames (Fig. S4 A) using DP with a cost 

function based on VIT-2::GFP intensity. To infer the center of the forthcoming posterior 

domain, we detected the position of the male pronucleus by identifying the areas devoid 

of granules using two different intensity thresholds (Fig. S4 B), fitting the largest 

inscribed circle in each of these areas (Fig. S4 C) and tracking them over time until 
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pronuclear meeting using a custom implementation of a published algorithm (14). All the 

code utilized for measuring cortical flows was implemented using Matlab 2012b. 

 We detected the position of the fluorescent VIT-2::GFP granules (Fig. S4 D) by 

utilizing the "à trous" wavelet transform (Fig. S4 E, 19) to obtain an initial estimate, 

combined with an approach developed for super-resolution microscopy (16) to refine our 

detection (Fig. S4 F). A custom merging algorithm then discarded faint spots and 

computed the weighted average of overlapping particles (Fig. S4 G). The detected spots 

were then used as initial estimates for a second iteration of our detection pipeline (Fig. S4 

H). The granules were then tracked using a custom implementation of an algorithm that 

performs this task by global optimization of the set of particle trajectories (Fig. S4 I, 18) 

without the gap closing, merging and splitting steps that were too computationally 

intensive for being implemented in this context. All the short tracks (< 5 frames) were 

then discarded; the directed speed of each remaining granule was then computed. 

 To determine the speed of the cortical flow at a particular location along the 

plasma membrane, we utilized a weighted average of the directed speeds using a spatial 

Gaussian kernel to favor exponentially more granules closest to the cortical actomyosin 

network. Such an approach should provide a more robust quantification than considering 

merely the closest granules. To quantify the precision of this approach, as well as to 

identify the most suitable kernel size, we carried out a set of simulation experiments 

using published velocity distributions of VIT-2::GFP granules (Fig. S5 A, (17)). We 

fitted cubic smoothing splines (csaps in Matlab) on the published values for the average 

posterior speed of the granules, as well as on the corresponding standard deviation, to 

infer a smooth speed distribution over the 14 µm range measured experimentally by those 

authors. This permits us to simulate sets of velocities for a given number of granules and 

with a distribution matching that of the experimental data, thus comparing the precision 

of different approaches for inferring the cortical speed (Fig. S5 B). We computed the 

error of the estimated cortical speed over 5000 realizations (i.e. the absolute difference 

with the true value), as well as its standard deviation, for a number of kernel sizes and 

particle number (Fig. S5 C, D). As anticipated, Gaussian weighting outperforms standard 

average for a wide range of kernel sizes, in particular for lower number of granules (Fig. 

S5 C). Interestingly, while larger kernels provide the less variable estimates (Fig. S5 D), 
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their inferred value is less precise on average because they take into account lower speeds 

further away from the cortex, hence underestimating the actual value at the cortex (Fig. 

S5 C).  In the context of this trade-off between robustness and precision, we define the 

most adequate kernel size as the one minimizing the average error plus standard deviation 

between 10 and 450 granules (with a step size of 20 granules). Optimization was carried 

out using an evolution strategy with covariance matrix adaptation (CMA-ES, 10) and the 

best identified value found to be 0.895 µm (Fig. S5 E). Finally, to identify a potential bias 

in the inferred cortical speed, we computed the average estimated speed over the 

aforementioned range of granule number, and found it to be 92.8 % of the true value (Fig. 

S5 F). We thus compensate all cortical flow measurements for the 7.2 % underestimate 

inherent to a kernel of size 0.895 µm 

 A running average with a temporal window of 10 frames was applied to reduce 

the noise in the estimated velocities. The component of the velocity parallel to the 

segmentation of the cortex was kept (17). Finally, we compensated for posteriorization by 

performing this analysis relative to the position of the male pronucleus, which we tracked 

using the same algorithm (14). We quantified the cortical flows in recordings acquired in 

six embryos, tracking the movements of 1’729’820 particles in total, and aligned the 

embryos temporally to minimize the sum of flow map residuals. Note that because of the 

assumed rotational symmetry of polarity establishment, the two sides of the embryo were 

combined and thus flows are perfectly symmetric (Fig. 2 C). These 2D flows were 

utilized in all simulations except the original models (M1 and M1*), for which the 

original 2D flows were utilized (7). The flow values provided in Tables S1 and S2 were 

computed by averaging the pixels brighter than the mean plus two standard deviation of 

the respective 2D flow profiles. 

 In addition, we repeated this quantification by substituting the particle tracking 

step by particle image velocimetry (PIV, Fig. S6). PIV is a widespread flow 

quantification technique that has been used notably to quantify cortical flows in C. 

elegans (7, 17). Here, we utilized an ImageJ plugin to perform iterative PIV analysis (18). 

This comparison confirmed that the quantified flow profiles agreed between the two 

methods, both for individual recordings (Fig. S6 A-C), for the average flow profiles (Fig. 
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2 C and S6 D) and for the measured cortical speeds (Table S2), although a lower spatial 

resolution was obtained using PIV. 

 

Cortical flows dependence on cell size 

 Assuming that the strength of the cortical flows depends on the fraction of bound 

myosin motors on actin filaments (19), it follows that these forces should depend on the 

inverse of the surface to volume ratio . For simplicity, we define the binding of myosin 

(M) on actin filaments (F) as a reversible three steps process (Eq. 5), where Mc and Mm 

are the fractions of cytoplasmic and membrane-bound myosin motors respectively, Fc 

and Fm the fraction of cytoplasmic and membrane-bound actin filaments and FM the 

force generating complex. We then write the law of mass action corresponding to the 

defined concentrations (Eq. 6) with symmetric equations for Fc and Fm. In addition, we 

hypothesize that the total pools of both myosin motors and actin filaments are fixed  (Eq. 

7), where MT and FT are the two total concentrations and  is the surface to volume ratio. 

Moreover, because we want to determine the relation between FM and the proportions of 

the cell, we assume steady state for all the reactions. Finally, for simplicity, we 

approximate the cortical concentration of actin Fm as being constant (assuming the 

concentration of myosin motors is limiting, B m BFk F k ); however, the relation between 

FM and  computed without this hypothesis leads to the similar conclusion. Under these 

hypotheses, one can then compute the relation between FM and MT. 

 

Temperature dependence models 

 To adapt the model to variations in temperature, we considered three different 

equations for the diffusion constants (Di, Dii, Diii), three for the biochemical reaction rates 

(ki, kii, kiii) and three for the flows (i, ii, iii). For all three mechanisms, the model i 

assumes a constant value for all the temperatures, thus being supposedly the worst model, 

and is used for comparison with more elaborate models. On the contrary, all models iii 

utilize independent values for each temperature. Note that, with the exception of kAP, kPA 

and , which were not measured experimentally at 20 °C (9), all other parameters of the 

model have the published value (Tables S1, S2) imposed at 20 °C (i.e. all the temperature 

dependence models equal one at this temperature). 
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 For the dependence to temperature of the reaction rates and flows, we utilized the 

Arrhenius equation 
k

B

E

k T
Tk ke



 , where k represents the so-called prefactor, Ek the 

activation energy of the reaction, T the absolute temperature in Kelvin and kB the 

Boltzmann constant. This approach has been applied to a wide variety of biological 

processes, ranging from isolated biochemical reactions (20) to entire organisms (21). For 

the flows, we hypothesized that these are proportional to the fraction of active motors 

bound to actin filaments while the force of each motor remains constant (19), hence 

converting them to a motor binding reaction rate.  For the adaptation of the diffusion 

coefficients to changes in temperature, we utilized the Stokes-Einstein equation 

B
T

T

k T
D


 , where ηT is the viscosity of the fluid and  the drag coefficient of the 

diffusing particle. Importantly, ηT itself depends on temperature through an unknown 

function. However, we approximate this relation using a thermally activated Arrhenius 

equation 
D

B

E

k T
T e  , which is valid for colloidal gels (22). 

 Because the experimental measurements of the different reactions rates were 

performed at 20 °C on average (9), we set out to compute the conversion factors fkT and 

fDT that define the value of the different parameters at a temperature T such that 

20 20,
T TT k T Dk f k D f D  . We thus obtained two equations (Eq. 8-9) that depend only on 

the temperature T, their respective activation energy Ek and ED as well as the Boltzmann 

constant kB. In addition, we also optimized scaling parameters for kAP, kPA and  because 

their value was not measured experimentally at 20 °C. All parameter values are provided 

in Table S4.  
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Supporting Tables 
 
 - Table S1. Published parameters of the model (Eq. 2-3). All the values are taken from 

published results (7, 9). Parameters determined empirically are highlighted with a gray 

background. ν was computed by averaging the pixels brighter than the mean plus two 

standard deviation of the published 2D flow profile. φ and L were computed assuming a 

54×30×30 μm embryo. 

 

  Meaning Value Std Units 

A
nt

er
io

r 
do

m
ai

n 

DA Diffusion coefficient 0.28 0.05 µm2/s 

kAP Inhibition rate 0.19 - µm2/s 

α Cooperativity exponent 1 - - 

kA+ Binding rate 0.00858 0.0017 µm/s 

kA- Unbinding rate 0.0054 0.005 1/s 

ρA Total protein concentration 1.56 0.33 1/µm3 

P
os

te
ri

or
 d

om
ai

n 

DP Diffusion coefficient 0.15 0.03 µm2/s 

kPA Inhibition rate 2 - µm4/s 

β Cooperativity exponent 2 - - 

kP+ Binding rate 0.0474 0.012 µm/s 

kP- Unbinding rate 0.0073 0.0057 1/s 

ρP Total protein concentration 1 - 1/µm3 

 ν Cortical flows 0.1 a) 0.015 a) µm/s 

 φ Surface to volume ratio 0.174 - 1/µm 
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 L Membrane length 134.6 - µm 

 
 - Table S2. Published cortical flow speeds. Note that N corresponds to the number of 

particle tracked in the first two references, while it corresponds to the number of embryo 

analyzed in the other references. a) The value was computed by averaging the pixels 

brighter than the mean plus two standard deviation of the corresponding 2D flow profile. 
b) The value was computed by integrating the portion of the smoothed curve (as described 

in SM: Estimating cortical flows) above the mean plus one standard deviation of the 

corresponding 1D flow profile. 

 

Reference Speed (µm/s) N Technique 

(23) 0.067 ± 0.013 17 Manual tracking of microinjected fluorescein-

phalloidin aggregates 

(24) 0.067 ± 0.008 ≥48 Slope of DIC granules kymograph 

This work  0.071 ± 0.008 a) 6 VIT-2::GFP particle tracking 

This work 0.075 ± 0.011 a) 6 VIT-2::GFP particle image velocimetry 

(17) 0.080 ± 0.007 b) 6 VIT-2::GFP particle image velocimetry 

(25) 0.090 ± 0.007 b) 75 NMY-2::GFP particle image velocimetry 

(7) 0.11 ± 0.015 a) 4 NMY-2::GFP particle image velocimetry 

(13) 0.128 ± 0.017 6 Slope of NMY-2::GFP kymograph 

 

 - Table S3. Calibrated values for the unmeasured parameters. The two first models 

utilize the published empirical values (7). Note that lower values for the mutual inhibition 

rates (kAP and kPA) are required to account for the low GFP::PAR-2 signal on the anterior 

half of the embryo (Fig. S2). Units are as in Table 1. 

 

 kAP α kPA β 

M1 (7) 0.19 1 2 2 

M1* (optimized values) 0.001 4.81 0.075 3.15 

M2 (new flows) 0.19 1 2 2 

Average of all best values 0.043 ± 0.12 1.97 ± 1.26 0.34 ± 1.39 2.14 ± 0.78 
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Average without outliers 0.008 ± 0.017 2.17 ± 1.28 0.030 ± 0.035 2.30 ± 0.74 

M3 (size calibrated) 0.002 2.09 0.014 2.36 

M4 (temperature model) 0.002 ± 0.001 2.09 ± 0.16 0.014 ± 0.001 2.36 ± 0.09 

 
 - Table S4. Parameters of the various temperature models (Fig. S11, see Materials and 

Methods). Note that for the models iii, the two values correspond to the direct impact of 

temperature on the rates at 13 °C and 24 °C respectively (i.e. instead of an activation 

energy as written in the header). Note also that ν represents the scaling applied to the 

cortical flows (Fig. 2 C) at 20 °C. Units are as in Table S1. 

 

Fig. S11 Model kAP kPA ν ED Ek Eν 

A Dii, kii, i 0.0027 0.0144 0.81 0.85 0.32 0 

B Di, ki, i 0.0028 0.0146 0.79 0 0 0 

C Dii, kii, ii 0.0025 0.0136 0.87 0.88 0.36 0.0001 

D Diii, kiii, iii 0.0025 0.0138 0.87 1.34;1.69 1.02;1.20 1.08;0.75 

E Di, kii, i 0.0025 0.0135 0.79 0 0.0001 0 

F Di, ki, ii 0.0026 0.0140 0.78 0 0 0.0007 

G Di, kii, ii 0.0025 0.0136 0.76 0 0.0014 0.0014 

H Dii, ki, i 0.0025 0.0137 0.90 0.32 0 0 

I Diii, ki, i 0.0026 0.0142 0.84 0.85;1.36 0 0 

J Diii, kii, ii 0.0025 0.0136 0.75 0.48;1.53 0.36 0.0003 

M4 Dii, kii, i 0.0023 0.0132 0.86 0.80 0.23 0 

 
Supporting Movie  
 

 - Movie S1. Representative triple channel time-lapse recording of a wild type 

GFP::PAR-2; par-2(ok1723); mCherry::PH embryo. The recorded channels are (top) 

DIC, (middle) mCherry::PH, (bottom) GFP::PAR-2; the raw data is displayed in each 

case. This recording corresponds to the frames used in Fig. 1 and S1 and has been 

accelerated 60 times. See also Fig. S1D. 
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Supporting Figures 

 

 

 - Figure S1. Monitoring polarity establishment. (A-C) Frame from representative triple 

channel time-lapse recording (A DIC, B mCherry::PH, C GFP::PAR-2). Numbers in C 

and H denote corresponding locations. Scale bar: 10 µm. (D) Sample 

immunofluorescence image from the strain used in this study, overlaid with the two 

manually defined regions of interest (color-coded) utilized for signal quantification (see 
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Supporting Material). AB represents what we considered as the anterior background, by 

opposition to the quantified posterior background (PB). (E) Comparison of PAR-2 

protein levels in strains of indicated genotype. The means of the RNAi and of the wild 

type are defined as 0% and 100%, respectively. The strain used in this study is JH2951, 

the one used by Goehring et al. TH129. For each boxplot, the horizontal red line 

represents the median, the box ranges from the 25th to the 75th percentile and the 

whiskers extend to the entire distribution of data points with the exception of outliers 

depicted by red crosses. Note that in all figures, statistical significance (here using a 

Student’s two-tailed t-test) is indicated by: * p < 0.05, ** p < 0.01, *** p < 0.001. (F) 

Comparison of the expression level of the GFP::PAR-2 transgene in strains of indicated 

genotype. n=5 for every genotype. (G) Distribution of embryo lengths in different 

recording conditions: ani-2(RNAi) (n=16), C27D9.1(RNAi) (n=11), 24 °C (n=47), 13 °C 

(n=25), 20 °C  (n=41). The 24 °C is represented twice for comparison with both datasets. 

(H) Raw perpendicular quantification of the image in C based on the segmentation 

performed by ASSET. (I) Perpendicular quantification of image in C smoothed using a 

Gaussian filter. The background signal (J) is separated from the cortical signal (K) as 

described in the Supporting Material. (L) Signal reconstructed using the described 

quantification procedure. (M) Difference between H and L indicate that only little 

information is lost below the posterior domain (arrow). 
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 - Figure S2. Prediction of the model with new cortical flow measurements is 

quantitatively improved with respect to experimental data. (A) Standard deviation of the 

average corresponding to B (n.i.: normalized intensity, i.e. the same scale as B). Note that 

the highest variation is located along the boundary of the domain towards the end of 

polarity maintenance. (B) Average protein expression during polarity establishment at 24 

°C, overlaid with segmentation of the center of the domain (dashed black line) and of the 

domain expansion (dark gray). (C) Simulation of the mathematical model from Goehring 

et al. (Eq. 2-3) using the published parameter values and cortical flows (Table S1). The 

kymograph is overlaid with the segmentation of the domain (light gray). (D) Residuals 

between the experimental data in B and the simulation in C, overlaid with both 

segmentations and the negative log-likelihood score. (E) Same as in C but using 

optimized parameter values. (F) Residuals between the simulation in B and the 

experimental data in E, overlaid with both segmentations, using the same color map as D. 

(G-H) Same as in C-D but as predicted using the flows quantified using VIT-2::GFP 

particle tracking. The absence of leading edge enrichment is reflected in the reduction of 

the log-likelihood. (I-J) Same as in C-D but as predicted using model M3 (i.e. after 

calibration with the median kymographs). (K-L) Same as in C-D but for model M4 (i.e. 

implementing in addition the most likely temperature dependence model calibrated on the 

median kymographs, Fig. 6). 
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 - Figure S3. Varying published parameter values does not attenuate leading edge 

enrichment. (A-C) Varying the relative level of posterior proteins. Simulation of the 

mathematical model from (7) using the published parameter values and cortical flows 
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(M1) with the indicated relative level of posterior proteins (above). The kymograph is 

overlaid with the segmentation of the experimental domain at 24 °C (dark gray) and the 

center of the domain (dashed black line). The relative concentration of the anterior versus 

posterior proteins (ρA/ρP) has been measured experimentally, using the ratio between the 

fluorescence expression of GFP::PAR-6 and GFP::PAR-2, to be 1.56 (i.e. B, (7)). Black 

arrowheads indicate the salient leading front enrichment not observed experimentally (see 

Fig. 2 A), gray arrowheads the concomitant domain overshooting and white arrowheads 

point at the extent of the posterior domain. (D-E) Same as A and C but varying the 

anterior diffusion coefficient DA. Note that the reference kymograph for this variation is 

still B. (F-G) Same as D-E but varying the posterior diffusion coefficient DP. (H-K) 

Same as D-G but varying the binding rates kA+ and kP+. (L-O) Varying the unbinding 

rates kA- and kP-. (P-S) Varying the mutual inhibition rates kAP and kPA. (T-W) Varying 

the cooperativity coefficients  and . Note that in H and T, polarity is not established 

because of the high uniform level of the posterior proteins throughout the simulation. 

Note also that none of these variations corrects both the enrichment and the overshooting. 
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- Figure S4. Detection and tracking of VIT-2::GFP granules. (A) Raw GFP image 

utilized to detect the yolk granules overlaid with the segmented cortex (orange). The 

scale bar represents 10 µm and the white box delimits the area magnified in panels D-I. 

The white dashed lines in A-C delimit the boundary of the raw image. (B) Segmentation 

of the GFP image using two different intensity thresholds. The lower one delimits the 

entire embryo (white) while the higher one retains the area in which granules can be 

located (red). (C) Identification of candidate positions for the pronuclei. The areas devoid 

of granules (red) are overlaid with the largest inscribed circles (gray) representing 

candidate pronuclei. (D) Magnification of the area delimited in A. (E) Localization using 

the "à trous" wavelet transform. (F) Result of the spot detection optimization procedure 

(see Supporting Material). (G) Fusion of the overlapping detections in F. (H) Final 

estimation after a second round of optimization and fusion. The arrow indicates a missed 

granule, the arrowheads detection mistakes, typically discarded by the tracking algorithm 

(see Supporting Material). (I) Tracking of the detected yolk granules (black circle) linked 

with their position in the previous frame (gray circle) and the resulting displacement 

(black arrow). The averaged displacement (red) and the component parallel to the cell 

cortex (i.e. cortical flow, orange) are depicted on the cell membrane. 
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- Figure S5. Precision of cortical flow measurements using particle tracking. (A) 

Published in vivo speed distribution of VIT-2::GFP granules (from 17). (B) Simulation 

experiment of 100 granule speeds following the distribution in A (black circles). Overlaid 

are the averages and standard deviations extracted from A (black), their polynomial 

interpolation (gray), the extrapolated cortical speed (black cross), the weight distribution 

for the optimal Gaussian kernel size of 0.895 µm (pink, see SM), the corresponding 

cortical speed estimation (turquoise cross) and the estimation obtained by averaging the 

15 closest granules from the cortex (brown cross). (C) Comparison of the average 

precision of the estimated cortical flow for a wide range of granule number and kernel 

sizes, color-coded as indicated. (D) Standard deviation of the corresponding estimates in 

C, color-coded as in B. (E) Error function used by the optimization algorithm to identify 
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the most adequate kernel size (average plus standard deviation), color-coded as in B. (F) 

Average estimated cortical speed for the kernel sizes color-coded as in B. Overlaid in 

gray is the range of granule numbers, the average of which was used to compensate the 

underestimation resulting from a kernel size of 0.895 µm. 
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- Figure S6. Cortical flow quantification using particle image velocimetry (PIV). (A) The 

cortical flow profile of a single VIT-2::GFP recording using the particle tracking 

approach (see Fig. S4 and S5). The black area in the center of the flow profile 

corresponds to the portion of the cortex masked by the male pronucleus. (B) The cortical 

flow profile of the same recording as in A but using PIV instead of particle tracking. The 

color code is identical between A and B. Note that except for the lower resolution 

obtained in B, the two profiles appear almost identical. (C) Comparison of the 

distribution of speed magnitudes between the particle tracking approach and PIV. All six 

flow profiles were pooled for these violin plots where the normalized histogram of speed 

magnitudes is depicted in black and the corresponding mean value as a red cross. Note 

that mean value for PIV (0.045 µm/s) is slightly lower than for particle tracking (0.051 

µm/s). Note also that a long tail in both distributions was cut at 0.25 µm/s. (D) The 

average 2D flow profile obtained using PIV. Note that, except for a stronger initial pulse 

(arrowheads), the PIV approach leads to similar results than the presented particle 

tracking method (compare with Fig. 2 C). 
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 - Figure S7. The maximum-likelihood optimization procedure converges in simulation 

experiments. (A-F) Time traces for the optimization procedure of the indicated model 

parameters in 80 simulations experiments. Half of the optimization procedures were 

initialized around the correct values (depicted by the dashed gray line) while the other 

half were initialized around the values represented by the solid black line, with the 

corresponding value inscribed above it. Different shades of red indicate different amounts 



  27

of noise (10%-lightest, 25%, 50% and 100%-darkest) added to the initial value of the 

parameters while the gray lines indicate the four optimizations that did not converge 

properly (i.e. that were detected as being outliers based on their log-likelihood score). 

Note that no shift was introduced in the reference kymographs, hence the optimal value 

for the shift factor  (see SM) is 0. (G-L) Distribution of the identified most-likely 

parameter value after convergence. All four unmeasured parameters, as well as the shift 

factor  (see SM), are correctly identified by the optimization procedure. Note that the 

cooperativity exponents α and β are more tightly defined than the two inhibition rates kAP 

and kPA. Note also that these simulation experiments were performed using 

uncompensated cortical flows (i.e. 92.8 % of the actual speeds, see SM: Estimating 

cortical flows). However, because the convergence of these simulation experiments 

depends on the smoothness of the parameter space rather than on the cortical flow 

value, using such reduced speeds does not affect these results. 
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 - Figure S8. Distribution of the most likely parameters for each embryo. (A-D) 

Distribution of the best value for the unmeasured inhibition parameters identified for each 

embryo independently. (E) Distribution of the inhibition rate kAP per condition, color-

coded as indicated. Statistical significance between all five different recording conditions 

was tested using Student’s two-tailed t-test. Correlation between kAP and (F) the anterior 

cooperativity exponent α, indicated is the corresponding Pearson's correlation coefficient 

 and the corresponding p-value (Student's t-distribution for a transformation of the 
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correlation), (G) the posterior inhibition term kPA and (H) the posterior cooperativity term 

β respectively. (I) Distribution per condition of α. Correlation between α and (J) kPA and 

(K) β respectively. (L) Distribution per condition of kPA and (M) its correlation with β. 

(N) Distribution per condition of β. Note the high positive correlation between kAP and 

kPA, indicating that the value of these two parameters needs to be carefully balanced for 

polarity to establish properly. Note also the lower correlation observed between the 

inhibition rates kAP and kPA, and the cooperativity exponents α and β.  This implies that a 

potential underestimation of the inhibition rates would lead to a reduction of the 

cooperativity exponents. Consequently, maximum care was taken in quantifying the 

signal on the anterior domain (see SM: Image Analysis) to ensure that kAP or kPA bear 

their proper values. Note also that, as in the simulation experiments (Fig. S7), the 

cooperativity exponents α and β are more tightly defined than the two inhibition rates kAP 

and kPA (compare B and D with A and C). (O) Correlation matrix for model M4. Each 

entry in the matrix represents the correlation, as indicated by the color code, between the 

corresponding column/row pair of parameters of the model. Positive correlation (green) 

highlights parameters whose joint variation has a minor influence on the likelihood score. 

On the contrary, negative correlation (red) points at parameters whose mutual 

compensation influences little the likelihood score. By contrast, black indicates 

parameters that cannot compensate for each other. The matrix was computed using a 

numerical approximation of the Hessian matrix (26). 
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 - Figure S9. Adaptations of the posterior domain size to variations in embryo size. (A) 

Correlation between membrane length and the length of the posterior domain in embryos 

from the color-coded recording condition, overlaid with the linear regression (dark gray 

line), the 95% confidence interval for the estimated regression coefficients (light gray 
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area), the correlation coefficient R2, the slope of the correlation m and the p-value 

(Student’s two-tailed t-test for the coefficient m). Note that in this representation of the 

data, the slope m corresponds to the average length of the posterior domain. (B) 

Correlation between embryo size and the relative fraction of membrane occupied by the 

posterior domain as observed experimentally, overlaid with the same information as in A. 

The darker circles indicate the location of the median recordings depicted in Fig. 4. Note 

that A and B are redundant. However, the imprecision in the domain scaling is more 

apparent in B while A is a more intuitive representation of the scaling process. (C) 

Correlation between membrane length and the length of the posterior domain as predicted 

when the most likely set of parameter values {kAP, α, kPA, β} of each embryo (see Fig. 3) 

is utilized. Thin lines represent the linear regression (similar to the thick black line in A) 

obtained from the domain length predicted by a set of parameter value, color-coded as the 

recording condition the corresponding embryo belongs to (i.e. similar to Fig. 3). Dashed 

lines correspond to the regression from parameter values identified as outliers in Fig. 3. 

Overlaid are the average of the regression slopes (black line), the corresponding standard 

deviation (whiskers) and the slope of the average correlation m. (D) Same as C but 

between embryo size and the relative fraction of membrane occupied by the posterior 

domain. (E) Absence of correlation between embryo length and cortical flow speed. The 

color code is the same as in A. Note that velocities are slightly higher than in Table S2 

because here we display the average of the absolute speeds. (F) Same as in E but between 

the surface to volume ratio of the embryo and cortical flow speed. (G-H) Same as in A 

and B but as predicted by model M3 (i.e. using the values calibrated with the median 

recordings). Note also that panels B and H are the same as Fig. 4 G and H and are 

depicted here for comparison with D. 
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 - Figure S10. Diffusion is the only process in the model whose variation reproduces the 

trends observed in vivo upon variation of the recording temperature. (A-C) Monitoring 

polarity establishment at three different temperatures (color-coded) exhibits (A) a 

flattening of the domain gradient, (B) an increase in the pace of polarization and (C) a 

slight contraction in the relative length of the posterior domain. (D-F) Variations in the 

diffusion coefficients (DA and DP jointly) by the nondimensional scaling parameter  to 

mimic the impact of temperature in the absence of a temperature dependence model. 

Upon increasing values of  (i.e. at increasing temperatures), the model predicts all three 

trends observed in vivo: (D) a flattening of the domain gradient (arrowheads), (E) an 

increase in the pace of polarization and (F) a slight contraction in the relative length of 

the posterior domain. Note that because of the absence of a temperature dependence 

model, the relation between the value of  and temperature is unknown and thus the y-

axis in D, the x-axis in E and the y-axis in F are not directly comparable to those in A-C. 

(G-I) Changes in profile, timing and relative domain size when the on rates (kA+ and kP+) 

are varied. (J-R) Similar to D-F but when the off rates (kA- and kP-), the mutual inhibition 

rates (kAP and kPA) or the flow speeds () are varied, respectively. Note that no other 

parameter besides the diffusion coefficients (D-F) recapitulates all three trends observed 

experimentally (A-C). Note also that some of these rates could potentially be reduced 

upon increasing temperature. However, no parameter exhibits an inversion in all three 

trends with increasing . In addition, note that panels A, B, D and E are the same as Fig. 

5 D-G and H and are depicted here for comparison with the other panels. 
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 - Figure S11. Diffusion and biochemical reaction rates have Arrhenius-like kinetics 

while flows are temperature invariant. Relative value of the coefficients at the different 

temperatures, for diffusion (D, circles and dark ochre line), reaction rates (k, squares and 
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ochre) and cortical flows (, triangles and light ochre) for temperature independent 

models (constant rates, i), Arrhenius temperature dependence models (ii) or independent 

values for each temperature (iii). Indicated are the performance of each model using the 

Akaike Information Criterion (AICc) with a correction with the described log-likelihood 

function (Eq. 1) and the relative likelihood with respect to the highest likelihood model 

(A). All models confirm that diffusion is more sensitive to variations in temperature than 

biochemical rates (i.e. the dark ochre curve is steeper than the ochre one). In particular, 

models Di, in which diffusion is invariant to temperature, restrains the temperature 

adaptation of both reaction rates and cortical flow (B, E-G). Note that in all models, 

cortical flows are mostly invariant with respect to temperature. In particular, i (A) 

outperforms ii (C), supporting an apparent compensation mechanism to changes in 

temperature. 
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 - Figure S12. Sensitivity analysis of model M4 with respect to the experimental dataset. 

This analysis was performed using the model corresponding to Fig. S10 J on the three 

temperature average kymographs (see Fig. 5 A-C). Each panel displays the value of the 

negative log-likelihood given a relative change in the value of the indicated parameter.  

The vertical line indicates the relative default value of the parameter (Tables S1 and S3) 

and the red dot points at the value corresponding to the highest likelihood score. The 

horizontal bar delimits the 95% confidence interval overlaid with the corresponding 

absolute parameter value. The inset shows the full range of variation while the larger 

panel magnifies the area around the confidence interval (shaded in gray). (A-D) 

Optimized unmeasured parameters of the mutual inhibition terms. Note that the best 

value for α (B, red dot) was not reached because a simulation cannot be initialized with 

this value; instead a default initialization value was used in this analysis. (E-L) 



  37

Remaining parameters of the model. (M-O) Parameters of the temperature adaptation 

terms. Note that E is perfectly symmetric because the absolute value of the activation 

energies are used. (P-Q) Dimension parameters of the cell. (R) Scaling factor for the 

cortical flows. 



  38

 

Supporting References 

1.  Abràmoff, M., P. Magalhães, and S. Ram. 2004. Image processing with ImageJ. 
Biophotonics Int. 11: 36–42. 

2.  Amer, A., and E. Dubois. 2005. Fast and reliable structure-oriented video noise 
estimation. IEEE Trans. Circuits Syst. Video Technol. 15: 113–118. 

3.  Blanchoud, S., Y. Budirahardja, F. Naef, and P. Gönczy. 2010. ASSET: a robust 
algorithm for the automated segmentation and standardization of early 
Caenorhabditis elegans embryos. Dev. Dyn. an Off. Publ. Am. Assoc. Anat. 239: 
3285–96. 

4.  Goldstein, B., and S.N. Hird. 1996. Specification of the anteroposterior axis in 
Caenorhabditis elegans. Development. 122: 1467–74. 

5.  Rappleye, C. a, A. Tagawa, R. Lyczak, B. Bowerman, and R. V Aroian. 2002. The 
anaphase-promoting complex and separin are required for embryonic anterior-
posterior axis formation. Dev. Cell. 2: 195–206. 

6.  Bellman, R. 1952. On the theory of dynamic programming. Proc. Natl. Acad. Sci. 
U. S. A. 38: 716–9. 

7.  Goehring, N.W., P.K. Trong, J.S. Bois, D. Chowdhury, E.M. Nicola, et al. 2011. 
Polarization of PAR proteins by advective triggering of a pattern-forming system. 
Science. 334: 1137–41. 

8.  2010. NIST Handbook of mathematical functions. In: Olver FWJ, DW Lozier, RF 
Boisvert, CW Clark, editors. New York, NY: Cambridge University Press. 

9.  Goehring, N.W., C. Hoege, S.W. Grill, and A.A. Hyman. 2011. PAR proteins 
diffuse freely across the anterior-posterior boundary in polarized C. elegans 
embryos. J. Cell Biol. . 

10.  Hansen, N., and A. Ostermeier. 2001. Completely derandomized self-adaptation in 
evolution strategies. Evol. Comput. 9: 159–95. 

11.  Lagarias, J.C., J.A. Reeds, M.H. Wright, and P.E. Wright. 1998. Convergence 
properties of the Nelder--Mead simplex method in low dimensions. SIAM J. 
Optim. 9: 112–147. 

12.  Filzmoser, P., R. Maronna, and M. Werner. 2008. Outlier identification in high 
dimensions. Comput. Stat. Data Anal. 52: 1694–1711. 

13.  Munro, E., J. Nance, and J.R. Priess. 2004. Cortical flows powered by 
asymmetrical contraction transport PAR proteins to establish and maintain 
anterior-posterior polarity in the early C. elegans embryo. Dev. Cell. 7: 413–24. 

14.  Jaqaman, K., D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, et al. 2008. Robust 
single-particle tracking in live-cell time-lapse sequences. Nat. Methods. 5: 695–
702. 

15.  Olivo-Marin, J.-C. 2002. Extraction of spots in biological images using multiscale 
products. Pattern Recognit. 35: 1989–1996. 

16.  Smith, C.S., N. Joseph, B. Rieger, and K. a Lidke. 2010. Fast, single-molecule 
localization that achieves theoretically minimum uncertainty. Nat. Methods. 7. 

17.  Niwayama, R., K. Shinohara, and A. Kimura. 2011. Hydrodynamic property of the 
cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabditis 
elegans embryo. Proc. Natl. Acad. Sci. U. S. A. 108: 11900–5. 



  39

18.  Tseng, Q., E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, et al. 
2012. Spatial organization of the extracellular matrix regulates cell-cell junction 
positioning. Proc. Natl. Acad. Sci. U. S. A. 109: 1506–11. 

19.  Kawai, M., T. Kido, M. Vogel, R.H. a Fink, and S. Ishiwata. 2006. Temperature 
change does not affect force between regulated actin filaments and heavy 
meromyosin in single-molecule experiments. J. Physiol. 574: 877–87. 

20.  Laidler, K.J. 1985. Chemical kinetics and the origins of physical chemistry. Arch. 
Hist. Exact Sci. 32: 43–75. 

21.  Dell, A.I., S. Pawar, and V.M. Savage. 2011. Systematic variation in the 
temperature dependence of physiological and ecological traits. Proc. Natl. Acad. 
Sci. U. S. A. 108: 10591–6. 

22.  Doremus, R.H. 2002. Viscosity of silica. J. Appl. Phys. 92: 7619. 
23.  Hird, S.N. 1996. Cortical actin movements during the first cell cycle of the 

Caenorhabditis elegans embryo. J. Cell Sci. 109: 525. 
24.  Cheeks, R.J., J.C. Canman, W.N. Gabriel, N. Meyer, S. Strome, et al. 2004. C. 

elegans PAR proteins function by mobilizing and stabilizing asymmetrically 
localized protein complexes. Curr. Biol. 14: 851–62. 

25.  Mayer, M., M. Depken, J.S. Bois, F. Jülicher, and S.W. Grill. 2010. Anisotropies 
in cortical tension reveal the physical basis of polarizing cortical flows. Nature. . 

26.  Bieler, J., C. Pozzorini, and F. Naef. 2011. Whole-embryo modeling of early 
segmentation in Drosophila identifies robust and fragile expression domains. 
Biophys. J. 101: 287–96.  

 


