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1 Systems of Ordinary Differential Equations

1.1 2-Kinase/1-Phosphatase Loop with 2 Substrates

In order to characterize the effects of phosphatase saturation and competition on
phosphatase-mediated crosstalk we used the 2-Kinase/1-Phosphatase Loop with 2 Substrates
model that we have previously characterized [1]. The equations described below were derived and
analyzed in our previous work; we include them here for completeness. The set of enzymatic
reactions for the 2-Kinase/1-Phosphatase Loop with 2 Substrates model are:

K1 + S1
k+,K,1−−−−⇀↽−−−−
k−,K,1

K1S1
kcat,K,1−−−−−⇀K1 + S∗1

K2 + S2
k+,K,2−−−−⇀↽−−−−
k−,K,2

K2S2
kcat,K,2−−−−−⇀K2 + S∗2

P + S∗1
k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗1
kcat,P,1−−−−⇀ P + S1

P + S∗2
k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗2
kcat,P,2−−−−⇀ P + S2

Each contain three rates: the complex formation (k+), the rate of complex dissociation (k−), and
catalytic rate (kcat). These reactions are diagrammed in Fig. 2A of the main text. The set of
ODEs describing the free enzymes are:

d[K1]

dt
= [K1S1]k−,K,1 + [K1S1]kcat,K,1 − [K1][S1]k+,K,1

d[K2]

dt
= [K2S2]k−,K,2 + [K2S2]kcat,K,2 − [K2][S2]k+,K,2

d[P ]

dt
= [PS∗1 ]k−,P,1 + [PS∗2 ]k−,P,2 + [PS∗1 ]kcat,P,1 + [PS∗2 ]kcat,P,2 − [P ][S∗1 ]k+,P,1 − [P ][S∗2 ]k+,P,2

The set of ODEs describing the free unphosphorylated substrates are:

d[S1]

dt
= [K1S1]k−,K,1 + [PS∗1 ]kcat,P,1 − [K1][S1]k+,K,1

d[S2]

dt
= [K2S2]k−,K,2 + [PS∗2 ]kcat,P,2 − [K2][S2]k+,K,2

The set of ODEs describing the free phosphorylated substrates are:

d[S∗1 ]

dt
= [PS∗1 ]k−,P,1 + [K1S1]kcat,K,1 − [P ][S∗1 ]k+,P,1

d[S∗2 ]

dt
= [PS∗2 ]k−,P,2 + [K2S2]kcat,K,2 − [P ][S∗2 ]k+,P,2
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The set of ODEs describing the enzyme-substrate complexes are:

d[K1S1]

dt
= [K1][S1]k+,K,1 − [K1S1]k−,K,1 − [K1S1]kcat,K,1

d[K2S2]

dt
= [K2][S2]k+,K,2 − [K2S2]k−,K,2 − [K2S2]kcat,K,2

d[PS∗1 ]

dt
= [P ][S∗1 ]k+,P,1 − [PS∗1 ]k−,P,1 − [PS∗1 ]kcat,P,1

d[PS∗2 ]

dt
= [P ][S∗2 ]k+,P,2 − [PS∗2 ]k−,P,2 − [PS∗2 ]kcat,P,2

For purposes of display we used the following rate parameters:

Parameter Value

k+,K,i 0.001 nM−1s−1

k−,K,i 0.1-999.1 s−1

kcat,K,i 0.9 s−1

k+,P,i 0.001 nM−1s−1

k−,P,i 0.1-999.1 s−1

kcat,P,i 0.9 s−1

where i = 1 or 2. The ranges listed for the dissociation rates (i.e. k−,K,i) are used to set the KM ’s
of the enzymes in different simulations. Note that, while the values of these parameters are not
meant to describe any specific enzyme, they are within the range of values obtained for kinases
and phosphatases experimentally [2–4].

We used the following initial conditions for all of our simulations:

Molecular Species Initial Concentration

K1 0-20 nM
K2 0-20 nM
P 10 nM-1mM
S1 10 µM
S2 0,10 µM

with the remaining molecular species having initial concentrations of 0. The ranges of
concentrations of K1 and K2 are used to vary the values of r1 and r2.

This model was used to generate Fig. 1B and C of the main text. The concentration of K2 was
set to 0 for r2 = 0 and to 20 nM for r2 = 2. The concentration of K1 was set between 0-20 nM to
vary r1 between 0 and 2. Both substrates are present at a concentration of 10µM. The values of
k−,K,1 and k−,P,1 were both set to 999.1 s−1 so that KM,K,1 = KM,P,1 = 100× [S1]0, while k−,K,2

and k−,P,2 were set to 0.1 s−1 so that KM,P,2 = KM,K,2 = 100× [S2]0.

We also used this model to generate Fig. 2 of the main text. In Fig. 2A, KM,P,i was set by
changing the values of k−,P,1 and k−,P,2 between 0.1-999.1 s−1. The value of r1 was set in Fig. 2B
by setting the concentration of K1 between 0-20 nM, and the concentration of K2 was set to 0 for
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r2 = 0 and to 20 nM for r2 = 2. For Fig. 2C, we first ran the model with K2 = S2 = 0 to steady
state with the initial concentration of K1 at 20 nM (r1 = 2). We then removed all K1 molecules
from the system. The bound S1 was added back to the concentration of unphosphorylated S1.
The simulations were then resumed to obtain the time courses visualized in Fig. 2C. KM,P was
set by using values of k−,P,2,1 = 0.1 s−1, 9.1 s−1, and 99.1 s−1. The fraction of phosphorylated S∗1
was normalized so that Ŝ∗1(t) = (max(S∗1)− S∗1(t))/(max(S∗1)−min(S∗1)). Fig. 2D was obtained
using the same procedures as in Fig. 3C, setting KM,P by using values of k−,P,2,1 = 0.1-999.1 s−1.

The half-time of S∗1 phosphorylation was obtained by finding the time t1/2 = t where Ŝ∗1(t) = 0.5.
The total concentration of the phosphatase was set to either 10 nM (magenta curve), or 1 µM
(purple curve).

To test the effectiveness of an increased phosphatase concentration in insulating substrates
against phosphatase crosstalk while maintaining strong KM,P,i values, we set KM,P,i = 1µM,
r1 = 0.05, r2 = 2 and varied the concentration of the phosphatase from 10 nM to 1 mM (Fig. S1).
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Figure S1: The effects of increased phosphatase concentration on substrate crosstalk with strong KM,P,is
(A) The fraction S∗

1 as a function of the concentration of the phosphatase. The concentration of the kinase is
increased in order to maintain the values of r1 and r2 with constant catalytic rates for different concentrations
of the phosphatase. At low concentrations of P , S1 phosphorylation is increased by activation of the S2

pathway, moving from r2 = 0 (black) to r2 = 2 (red). As P is expressed in concentrations greater than
the substrates, the difference between the curves is removed. However, the fraction S∗

1 is greatly increased.
Additionally, the fraction of unbound S∗

1 decreases with [P ]0, indicating that the increase in total fraction
S∗
1 is likely due to it being bound to the phosphatase. (B) The fold increase in S∗

1 as a function of the
concentration of the phosphatase. As stated above, the crosstalk between S1 and S2 is removed when the
phosphatase is present in concentrations larger than those of the substrates.

1.2 2-Kinase/1-Phosphatase Loop with 2 Substrates and 2 Reservoir Proteins

In order to characterize the effects of reservoir proteins that bind to and shield phosphorylated
substrates from dephosphorylated on phosphatase-mediated crosstalk we expanded the
2-Kinase/1-Phosphatase Loop with 2 Substrates model to include two substrate-specific reservoir
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proteins, R1 and R2. The set of enzymatic reactions for the model are:

K1 + S1
k+,K,1−−−−⇀↽−−−−
k−,K,1

K1S1
kcat,K,1−−−−−⇀K1 + S∗1

K2 + S2
k+,K,2−−−−⇀↽−−−−
k−,K,2

K2S2
kcat,K,2−−−−−⇀K2 + S∗2

P + S∗1
k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗1
kcat,P,1−−−−⇀ P + S1

P + S∗2
k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗2
kcat,P,2−−−−⇀ P + S2

R1 + S∗1
k+,R,1−−−−⇀↽−−−−
k−,R,1

R1S
∗
1

R2 + S∗2
k+,R,2−−−−⇀↽−−−−
k−,R,2

R2S
∗
2

The set of ODEs describing the free enzymes are:

d[K1]

dt
= [K1S1]k−,K,1 + [K1S1]kcat,K,1 − [K1][S1]k+,K,1

d[K2]

dt
= [K2S2]k−,K,2 + [K2S2]kcat,K,2 − [K2][S2]k+,K,2

d[P ]

dt
= [PS∗1 ]k−,P,1 + [PS∗2 ]k−,P,2 + [PS∗1 ]kcat,P,1 + [PS∗2 ]kcat,P,2 − [P ][S∗1 ]k+,P,1 − [P ][S∗2 ]k+,P,2

The set of ODEs describing the free unphosphorylated substrates are:

d[S1]

dt
= [K1S1]k−,K,1 + [PS∗1 ]kcat,P,1 − [K1][S1]k+,K,1

d[S2]

dt
= [K2S2]k−,K,2 + [PS∗2 ]kcat,P,2 − [K2][S2]k+,K,2

The set of ODEs describing the free phosphorylated substrates are:

d[S∗1 ]

dt
= [PS∗1 ]k−,P,1 + [K1S1]kcat,K,1 + [R1S

∗
1 ]k−,R,1 − [P ][S∗1 ]k+,P,1 − [R1][S

∗
1 ]k+,R,1

d[S∗2 ]

dt
= [PS∗2 ]k−,P,2 + [K2S2]kcat,K,2 + [R2S

∗
2 ]k−,R,2 − [P ][S∗2 ]k+,P,2 − [R2][S

∗
2 ]k+,R,2

5



The set of ODEs describing the enzyme-substrate complexes are:

d[K1S1]

dt
= [K1][S1]k+,K,1 − [K1S1]k−,K,1 − [K1S1]kcat,K,1

d[K2S2]

dt
= [K2][S2]k+,K,2 − [K2S2]k−,K,2 − [K2S2]kcat,K,2

d[PS∗1 ]

dt
= [P ][S∗1 ]k+,P,1 − [PS∗1 ]k−,P,1 − [PS∗1 ]kcat,P,1

d[PS∗2 ]

dt
= [P ][S∗2 ]k+,P,2 − [PS∗2 ]k−,P,2 − [PS∗2 ]kcat,P,2

The set of ODEs describing the free reservoir proteins are:

d[R1]

dt
= [R1S

∗
1 ]k−,R,1 − [R1][S

∗
1 ]k+,R,1

d[R2]

dt
= [R2S

∗
2 ]k−,R,2 − [R2][S

∗
2 ]k+,R,2

The set of ODEs describing the reservoir-substrate complexes are:

d[R1S
∗
1 ]

dt
= [R1][S

∗
1 ]k+,R,1 − [R1S

∗
1 ]k−,R,1

d[R2S
∗
2 ]

dt
= [R2][S

∗
2 ]k+,R,2 − [R2S

∗
2 ]k−,R,2
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For purposes of display we used the following rate parameters:

Parameter Value

k+,K,i 0.001 nM−1s−1

k−,K,i 0.1-999.1 s−1

kcat,K,i 0.9 s−1

k+,P,i 0.001 nM−1s−1

k−,P,i 0.1-999.1 s−1

kcat,P,i 0.9 s−1

k+,R,i 0.001 nM−1s−1

k−,R,i 0.01 s−1

where i = 1 or 2. The ranges listed for the dissociation rates (i.e. k−,K,i) are used to set the KM ’s
of the enzymes in different simulations. Note that, while the values of these parameters are not
meant to describe any specific enzyme, they are within the range of values obtained for kinases
and phosphatases experimentally [2–4].

We used the following initial conditions for all of our simulations:

Molecular Species Initial Concentration

K1 0-20 nM
K2 0-20 nM
P 10 nM, 1µM
S1 10 µM
S2 0,10 µM
R1 0-100 µM
R2 0-100 µM

with the remaining molecular species having initial concentrations of 0. The ranges of
concentrations of K1 and K2 are used to vary the values of r1 and r2.
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Figure S2: The effects of reservoir proteins on substrate crosstalk (A) The fraction S∗
1 as a function of r1.

Without the reservoir proteins, S1 responds to signals from S2 (red versus black curves). The crosstalk
is removed with the addition of the reservoir proteins (orange versus blue curves). Note, however, that
the response becomes hyperbolic in r1. (B) The fold increase in S∗

1 as a function of reservoir protein
concentration. As the concentrations of the reservoir proteins increases, the crosstalk between the substrates
is gradually removed. (C ) The half-life of S1 phosphorylation as a function of the concentration of reservoir
proteins. Note that when the reservoir proteins are at stoichiometric or greater concentrations, the time
required to completely dephosphorylate the substrates greatly increases.

1.3 2-Kinase/1-Phosphatase Loop with Many Substrates

The expression for the fraction of phosphorylation S∗1 in a 2K1P loop in which kinase K2 and P
act upon N substrates is similar to the expression for a 2K1P loop with 2 substrates we have
previously derived (equation 1 in the main text) [1]. The only difference in this case is the value
of αP,1, the inhibitory term that captures the effects of the competing substrates on the
phosphatase. In a model with N substrates, this term becomes:

αP,1 = 1 +
∑
i 6=1

[S∗i ]

KM,P,i
(1.1)

Note that the value of αP,1, and thus the inhibition of the phosphatase, depends on the total
saturation of the phosphatase across all its substrates. A set of substrates that all respond to the
same signal can thus cause phosphatase crosstalk with other proteins in the network, even if none
of those substrates is at high enough concentration to saturate the phosphatase individually.

1.4 1-Kinase/1-Substrate Model with Synthesis and Degradation

In order to characterize the effectiveness of synthesis and degradation of a substrate as a
replacement for the phosphatase, we created the 1-Kinase/1-Substrate model with Synthesis and
Degradation. The set of enzymatic reactions for this system are:

K + S
k+−−⇀↽−−
k−

KS
kcat−−⇀ K + S∗
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S
kdeg,U−−−−⇀ ∅

KS
kdeg,U−−−−⇀ K

S∗
kdeg,P−−−−⇀ ∅

∅
ksynth−−−−⇀ S

where kdeg,U and kdeg,P are the degradation rates of unphosphorylated and phosphorylated S.
This model includes separate degradation rates for the unphosphorylated and phosphorylated
substrate (kdeg,U and kdeg,P ), since phosphorylation of the substrate might either increase or
decrease the stability of the protein. The ODE describing the free kinase is:

d[K]

dt
= [KS]k− + [KS]kcat + [KS]kdeg,U − [K][S]k+

The ODE describing the free unphosphorylated substrate is:

d[S]

dt
= [KS]k− + ksynth − [K][S]k+ − [S]kdeg,U (1.2)

The ODE describing the free phosphorylated substrate is:

d[S∗]

dt
= [KS]kcat − [S∗]kdeg,P

The ODE describing the concentration of kinase-substrate complex is:

d[KS]

dt
= [K][S]k+ − [KS]k− − [KS]kcat − [KS]kdeg,U

In order to understand the effects of degradation at steady state, note that the total substrate
concentration is defined as:

[S]T = [S] + [S∗] + [KS]

and the change in total substrate concentration can thus be written:

d[S]T
dt

=
d[S]

dt
+
d[S∗]

dt
+
d[KS]

dt

At steady state, d[S]T /dt = 0. By substituting the above ODEs and simplifying, we get:

d[S]T
dt

= ksynth − ([S] + [KS])kdeg,U − [S∗]kdeg,P = 0

We can then solve for ksynth:

ksynth = ([S] + [KS])kdeg,U + [S∗]kdeg,P
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We can substitute this equation into the original differential equation for [S] (equation 1.2):

d[S]

dt
= [KS]k− − [K][S]k+ + [KS]kdeg,U + [S∗]kdeg,P (1.3)

Equation 1.3 is useful for two reasons. For one, there is a positive term in the equation
corresponding to the degradation of phosphorylated substrate ([S∗]kdeg,P ). This term reflects the
fact that, in order for [S]T to remain constant at steady state, new, unphosphorylated substrate
molecules must be synthesized to replace S∗ molecules that are degraded. There is thus an
“effective” dephosphorylation rate in this system where S∗ molecules are converted to S, which
corresponds mathematically to an unsaturateable first-order phosphatase. Secondly, we used
equation 1.3 instead of 1.2 in our numerical integration, so [S]T = [S]0 for all time; in other
words, while the concentration of unphosphorylated and phosphorylated substrate might change
in our simulations, the total concentration of substrate remains constant. This allows us to
control total substrate levels by setting the initial substrate concentration, as we do in our other
models. One could of course simulate equation 1.2 with a constant ksynth that allows total
substrate concentration to vary with time; while such transients might have interesting effects on
the system, we leave consideration of those effects to future work.

For purposes of display we used the following rate parameters:

Parameter Value

k+ 0.001 nM−1s−1

k− 0.1 s−1

kcat 0.9 s−1

kdeg,U 1x10−7 - 1x10−4 s−1

kdeg,P 1x10−7 - 1x10−4 s−1

The ranges of kdeg,U and kdeg,P were used to vary the degradation rate of the substrate across
simulations. The simulations started with the following initial concentrations:

Molecular Species Initial Concentration

K 0 - 1 nM
S 10 µM
KS 0

The range of K was used to set the value of rdeg across simulations.

This model was used to generate Fig. 3B and C of the main text. In Fig. 3B we used
kdeg,U = kdeg,P = log 2/t1/2 for t1/2 = 10, 31, and 187 hrs. The value of rdeg was set between 0
and 2 by changing the initial concentration of K so that [K] = (rdeg[S]0kdeg,P )/kcat (where rdeg
was set to the desired value, see Section 3 for the derivation of rdeg), which ends up giving a value
between 0-0.186 nM. In Fig. 3C we first ran the model to steady state with an initial
concentration of K at 0.186 nM (rdeg = 2). All kinase molecules were then removed from the
system, and the simulation continued in order to obtain the time courses shown in Fig. 3C.
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1.5 2-Kinase/1-Phosphatase Loop with “Ordered” Phosphatase Adaptors

In order to characterize the effectiveness of phosphatase adaptors in insulating pathways from
phosphatase crosstalk, we first developed the 2-Kinase/1-Phosphatase Loop with Ordered
Phosphatase Adaptors. The set of enzymatic reactions for this model are:

K1 + S1
k+,K,1−−−−⇀↽−−−−
k−,K,1

K1S1
kcat,K,1−−−−−⇀ K1 + S∗1

K2 + S2
k+,K,2−−−−⇀↽−−−−
k−,K,2

K2S2
kcat,K,2−−−−−⇀ K2 + S∗2

PA1 + S∗1
k+,P,1−−−−⇀↽−−−−
k−,P,1

PA1S
∗
1

kcat,P,1−−−−⇀ PA1 + S1

PA2 + S∗2
k+,P,2−−−−⇀↽−−−−
k−,P,2

PA2S
∗
2

kcat,P,2−−−−⇀ PA2 + S2

P +A1

k+,A,1−−−−⇀↽−−−−
k−,A,1

PA1

P +A2

k+,A,2−−−−⇀↽−−−−
k−,A,2

PA2

where k−,A,i represents the dissociation rate of the phosphatase-adaptor complex and k+,A,i

represents the association rate. The reactions that include a phosphatase molecule are
diagrammed in the inset of Fig. 4A of the main text. The set of ODEs describing the
concentration of free enzymes are:

d[K1]

dt
= [K1S1]k−,K,1 + [K1S1]kcat,K,1 − [K1][S1]k+,K,1

d[K2]

dt
= [K2S2]k−,K,2 + [K2S2]kcat,K,2 − [K2][S2]k+,K,2

d[P ]

dt
= [PA1]k−,A,1 + [PA2]k−,A,2 − [P ][A1]k+,A,1 − [P ][A2]k+,A,2

The set of ODEs describing the concentration of free unphosphorylated substrates are:

d[S1]

dt
= [K1S1]k−,K,1 + [PA1S

∗
1 ]kcat,P,1 − [K1][S1]k+,K,1

d[S2]

dt
= [K2S2]k−,K,2 + [PA2S

∗
2 ]kcat,P,2 − [K2][S2]k+,K,2

The set of ODEs describing the concentration of free phosphorylated substrates are:

d[S∗1 ]

dt
= [PA1S

∗
1 ]k−,P,1 + [K1S1]kcat,K,1 − [PA1][S

∗
1 ]k+,P,1

d[S∗2 ]

dt
= [PA2S

∗
2 ]k−,P,2 + [K2S2]kcat,K,2 − [PA2][S

∗
2 ]k+,P,2
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The set of ODEs describing the concentration of adaptor-bound phosphatase are:

d[PA1]

dt
= [P ][A1]k+,A,1 + [PA1S

∗
1 ]k−,P,1 + [PA1S

∗
1 ]kcat,P,1 − [PA1]k−,A,1 − [PA1][S

∗
1 ]k+,P,1

d[PA2]

dt
= [P ][A2]k+,A,2 + [PA2S

∗
2 ]k−,P,2 + [PA2S

∗
2 ]kcat,P,2 − [PA2]k−,A,2 − [PA2][S

∗
2 ]k+,P,2

The set of ODEs describing the concentration of enzyme-substrate complexes are:

d[K1S1]

dt
= [K1][S1]k+,K,1 − [K1S1]k−,K,1 − [K1S1]kcat,K,1

d[K2S2]

dt
= [K2][S2]k+,K,2 − [K2S2]k−,K,2 − [K2S2]kcat,K,2

d[PA1S
∗
1 ]

dt
= [PA1][S

∗
1 ]k+,P,1 − [PA1S

∗
1 ]k−,P,1 − [PA1S

∗
1 ]kcat,P,1

d[PA2S
∗
2 ]

dt
= [PA2][S

∗
2 ]k+,P,2 − [PA2S

∗
2 ]k−,P,2 − [PA2S

∗
2 ]kcat,P,2

For purposes of display we used the following rate parameters:

Parameter Value

k+,K,i 0.001 nM−1s−1

k−,K,i 0.1 s−1

kcat,K,i 0.9 s−1

k+,P,i 0.001 nM−1s−1

k−,P,i 0.1 s−1

kcat,P,i 0.9 s−1

k+,A,i 0.001 nM−1s−1

k−,A,i 0.1 s−1

where i = 1 or 2. Our simulations started with the following initial concentrations:

Molecular Species Initial Concentration

K1 0-20 nM
K2 0-20 nM
P 10 nM
S1 10 µM
S2 10 µM
A1 10−1-104 nM
A2 10−1-104 nM

This model is used to generate Fig. 4 of the main text. In Fig. 4A, r1 is set to 0.1 by having an
initial concentration of K1 of 1 nM and r2 is set to 2 by having an initial concentration of K2 of
20 nM. The initial concentration of the adaptors A1 and A2 were then concurrently varied
between 10−1 to 104 nM. In Fig. 4B, A1 and A2 were initialized with total concentration of 10
nM each. The values of r1 and r2 were set between 0 and 2 by setting the initial concentrations of
K1 and K2 between 0 and 20 nM.
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1.6 2-Kinase/1-Phosphatase Loop with “Unordered” Phosphatase Adaptors

We also developed a model of a 2-Kinase/1-Phosphatase Loop with Unordered Phosphatase
Adaptors. The set of enzymatic reactions for this model are:

K1 + S1
k+,K,1−−−−⇀↽−−−−
k−,K,1

K1S1
kcat,K,1−−−−−⇀K1 + S∗1

K2 + S2
k+,K,2−−−−⇀↽−−−−
k−,K,2

K2S2
kcat,K,2−−−−−⇀K2 + S∗2

PA1 + S∗1
k+,P,1−−−−⇀↽−−−−
k−,P,1

PA1S
∗
1

PA2 + S∗2
k+,P,2−−−−⇀↽−−−−
k−,P,2

PA2S
∗
2

P +A1S
∗
1

k+,A,1−−−−⇀↽−−−−
k−,A,1

PA1S
∗
1

P +A2S
∗
2

k+,A,2−−−−⇀↽−−−−
k−,A,2

PA2S
∗
2

PA1S
∗
1

kcat,P,1−−−−⇀↽−−−−PA1 + S∗1

PA2S
∗
2

kcat,P,2−−−−⇀↽−−−−PA2 + S∗2

P +A1

k+,A,1−−−−⇀↽−−−−
k−,A,1

PA1

P +A2

k+,A,2−−−−⇀↽−−−−
k−,A,2

PA2

A1 + S∗1
k+,P,1−−−−⇀↽−−−−
k−,P,1

A1S
∗
1

A2 + S∗2
k+,P,2−−−−⇀↽−−−−
k−,P,2

A2S
∗
2

(1.4)

This model differs from the “ordered” model in that the adaptors can first bind the
phosphorylated substrate without needing to be bound to a phosphatase catalytic core. These
reactions are diagrammed in the inset of Fig. 4A of the main text. The set of ODEs describing
the concentration of free enzymes are:

d[K1]

dt
= [K1S1]k−,K,1 + [K1S1]kcat,K,1 − [K1][S1]k+,K,1

d[K2]

dt
= [K2S2]k−,K,2 + [K2S2]kcat,K,2 − [K2][S2]k+,K,2

13



d[P ]

dt
= [PA1]k−,A,1 + [PA2]k−,A,2 + [PA1S

∗
1 ]k−,A,1 + [PA2S

∗
2 ]k−,A,2

− [P ][A1]k+,A,1 − [P ][A2]k+,A,2 − [P ][A1S
∗
1 ]k+,A,1 − [P ][A2S

∗
2 ]k+,A,2

The set of ODEs describing the concentration of free unphosphorylated substrates are:

d[S1]

dt
= [K1S1]k−,K,1 + [PA1S

∗
1 ]kcat,P,1 − [K1][S1]k+,K,1

d[S2]

dt
= [K2S2]k−,K,2 + [PA2S

∗
2 ]kcat,P,2 − [K2][S2]k+,K,2

The set of ODEs describing the concentration of free phosphorylated substrates are:

d[S∗1 ]

dt
= [PA1S

∗
1 ]k−,P,1 + [A1S

∗
1 ]k−,P,1 + [K1S1]kcat,K,1 − [PA1][S

∗
1 ]k+,P,1 − [A1][S

∗
1 ]k+,P,1

d[S∗2 ]

dt
= [PA2S

∗
2 ]k−,P,2 + [A2S

∗
2 ]k−,P,2 + [K2S2]kcat,K,2 − [PA2][S

∗
2 ]k+,P,2 − [A2][S

∗
2 ]k+,P,2

The set of ODEs describing the concentration of adaptor-bound phosphatase are:

d[PA1]

dt
= [P ][A1]k+,A,1 + [PA1S

∗
1 ]k−,P,1 + [PA1S

∗
1 ]kcat,P,1 − [PA1]k−,A,1 − [PA1][S

∗
1 ]k+,P,1

d[PA2]

dt
= [P ][A2]k+,A,2 + [PA2S

∗
2 ]k−,P,2 + [PA2S

∗
2 ]kcat,P,2 − [PA2]k−,A,2 − [PA2][S

∗
2 ]k+,P,2

The set of ODEs describing the concentration of adaptor-bound phosphorylated substrate are:

d[A1S
∗
1 ]

dt
= [A1][S

∗
1 ]k+,P,1 + [PA1S

∗
1 ]k−,A,1 − [A1S

∗
1 ]k−,P,1 − [P ][A1S

∗
1 ]k+,A,1

d[A2S
∗
2 ]

dt
= [A2][S

∗
2 ]k+,P,2 + [PA2S

∗
2 ]k−,A,2 − [A2S

∗
2 ]k−,P,2 − [P ][A2S

∗
2 ]k+,A,2

The set of ODEs describing the concentration of enzyme-substrate complexes are:

d[K1S1]

dt
= [K1][S1]k+,K,1 − [K1S1]k−,K,1 − [K1S1]kcat,K,1

d[K2S2]

dt
= [K2][S2]k+,K,2 − [K2S2]k−,K,2 − [K2S2]kcat,K,2

d[PA1S
∗
1 ]

dt
= [PA1][S

∗
1 ]k+,P,1 + [P ][A1S

∗
1 ]k+,P,1 − [PA1S

∗
1 ]k−,P,1 − [PA1S

∗
1 ]k−,A,1 − [PA1S

∗
1 ]kcat,P,1

d[PA2S
∗
2 ]

dt
= [PA2][S

∗
2 ]k+,P,2 + [P ][A2S

∗
1 ]k+,P,2 − [PA2S

∗
2 ]k−,P,2 − [PA2S

∗
2 ]k−,A,2 − [PA2S

∗
2 ]kcat,P,2
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For purposes of display we used the following rate parameters:

Parameter Value

k+,K,i 0.001 nM−1s−1

k−,K,i 0.1 s−1

kcat,K,i 0.9 s−1

k+,P,i 0.001 nM−1s−1

k−,P,i 0.1 s−1

kcat,P,i 0.9 s−1

k+,A,i 0.001 nM−1s−1

k−,A,i 0.1 s−1

where i = 1 or 2. We set the KD,A,i = k−,A,i/k+,A,i = 100 nM to represent a reasonably high
affinity of the phosphatase catalytic core P with the adaptor domains Ai. We used the same
affinity for the binding of the adaptor domain to the substrate. Note that, in this model, the
affinity of the phosphatase for the adaptor domain, and the affinity of the adaptor domain for the
substrate, does not depend on wether the adaptor is bound to its other partner. Our simulations
started with the following initial concentrations:

Molecular Species Initial Concentration

K1 0-20 nM
K2 0-20 nM
P 10 nM
S1 10 µM
S2 0-10 µM
A1 10−1-104 nM
A2 0-104 nM

This model is used to generate Fig. 5 of the main text. In Fig. 5A, r1 is set to 0.1 by having an
initial concentration of K1 of 1 nM and r2 is set to 2 by having an initial concentration of K2 of
20 nM. The initial concentration of the adaptors A1 and A2 were then concurrently varied
between 10−1 to 104 nM. In Fig. 5B, A1 and A2 were initialized with total concentration of 10
nM each. The values of r1 and r2 were set between 0 and 2 by setting the initial concentration of
K1 and K2 to between 0 and 20 nM.

2 The responses of the substrates of an unsaturated phosphatase are strictly
hyperbolic in r

We have previously shown [1], following the derivation of Goldbeter and Koshland [5], that the
change in product concentration S∗1 for an enzyme E with multiple substrates can be defined as:

d[S∗1 ]

dt
=

Vmax,E,1[S1]

αE,1KM,E,1 + [S1]
(2.1)
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where αE,1 ≡ 1 +
∑

i 6=1
[Si]

KM,E,i
is an inhibitory constant for substrate competition with S1 for E.

For a futile cycle at steady state we will have d[S∗1 ]/dt = d[S1]/dt. For an unsaturated 2K1P loop,
αP,i = 1 since KM,P,i � [Si]0. Given 2.1, at steady state we have:

Vmax,K,1[S1]

Km,K,1 + [S1]
=

Vmax,P,1[S
∗
1 ]

KM,P,1 + [S∗1 ]
(2.2)

Following the standard Michaelis-Menten approach [1, 5], we assume that [Si]0 � [K]0, [P ]0,
giving us [Si]0 = [Si] + [S∗i ], which can be substituted into 2.2:

Vmax,K,1(1− S∗1)

KK,1 + 1− S∗1
=
Vmax,P,1S

∗
1

KP,1 + S∗1
(2.3)

where S1 ≡ [S1]/[S1]0, S
∗
1 ≡ [S∗1 ]/[S1]0, KK,1 ≡ KM,K,1/[S1]0, and KP,1 ≡ KM,P,1/[S1]0. Dividing

both sides by Vmax,P,1 we obtain:

r1(1− S∗1)

KK,1 + 1− S∗1
=

S∗1
KP,1 + S∗1

(2.4)

where r1 ≡ Vmax,K,1/Vmax,P,1. Since we are assuming the phosphatase to be unsaturated,
KP,1 � S∗1 , and as such 2.4 can be simplified to:

r1(1− S∗1)

KK,1 + 1− S∗1
=

S∗1
KP,1

(2.5)

Expanding 2.5, we get:

r1KP,1 − r1KP,1S
∗
1 = KK,1S

∗
1 + S∗1 − (S∗1)2

(S∗1)2 − (1 +KK,1 + r1KP,1)S
∗
1 + r1KP,1 = 0 (2.6)

Solving for S∗1 , we obtain the expression:

S∗1 =
(1 +KK,1 + r1KP,1)−

√
(1 +KK,1 + r1KP,1)2 − 4r1KP,1

2
(2.7)

where the negative branch of the quadratic solution is chosen to obtain physically realistic values
of S∗1 (i.e. 0 ≤ S∗1 ≤ 1). We can show that S∗1 for a 2K1P with an unsaturated phosphatase is
strictly hyperbolic in r1 by taking the second derivative of 2.7 with respect to r1:

d2S∗1
dr21

= −
2KK,1K

2
P,1

(−4r1KP,1 + (1 +KK,1 + r1KP,1)2)3/2
(2.8)

Note that, for positive real values of both the rate constants and the concentrations, both the
numerator and denominator in the above equation are positive. The second derivative is thus
always negative (i.e. the curvature is concave), and the variation of S∗1 with r1 lacks an inflection
point. As a result, a system with unsaturated phosphatases cannot exhibit the sigmoidal behavior
characteristic of an ultrasensitive, switch-like response.
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3 Analytical solution for 1-Kinase/1-Substrate Model with Synthesis and
Degradation

From the ODEs derived in 1.4, we have at steady state:

d[K]

dt
= [KS]k− + [KS]kcat + [KS]kdeg,U − [K][S]k+ = 0 (3.1)

d[S]

dt
= [KS]k− + ksynth − [K][S]k+ − [S]kdeg,U = 0 (3.2)

d[S∗]

dt
= [KS]kcat − [S∗]kdeg,P = 0 (3.3)

d[KS]

dt
= [K][S]k+ − [KS]k− − [KS]kcat − [KS]kdeg,U = 0 (3.4)

Additionally, we can define the conservation of mass of the kinase K:

[K]0 = [K] + [KS] (3.5)

From 3.4 we can define the concentration of KS as:

[KS] =
[K][S]k+

k− + kcat + kdeg,U
(3.6)

Equation 3.6 can then be substituted into 3.5 to define the concentration of free kinase K:

[K]0 = [K] +
[K][S]k+

k− + kcat + kdeg,U

[K]0 = [K]

(
1 +

[S]k+
k− + kcat + kdeg,U

)
[K] =

[K]0

1 + [S]k+
k−+kcat+kdeg,U

(3.7)

We can then substitute 3.7 into 3.6 to get:

[KS] =
[K]0[S]

k−+kcat+kdeg,U
k+

+ [S]
(3.8)

We can simplify 3.8 by defining:

KM,deg ≡
k− + kcat + kdeg,U

k+

where KM,deg is the analogue of the Michaelis-Menten constant for the kinase K, taking into
account the effects of substrate degradation. Equation 3.8 then can be written:

[KS] =
[K]0[S]

KM,deg + [S]
(3.9)
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From 3.3 we obtain the expression:

[KS]kcat = [S∗]kdeg,P

into which we can substitute 3.9 to get:

[K]0[S]kcat
KM,deg + [S]

= [S∗]kdeg,P (3.10)

We can then multiply both sides of 3.10 by [S]0/[S]0:

[K]0S · kcat
Kdeg + S

= S∗kdeg,P [S0]

where S ≡ [S]/[S]0, S
∗ ≡ [S∗]/[S]0, and Kdeg ≡ KM,deg/[S]0. We can then define

rdeg ≡ [K]0kcat/[S]0kdeg,P , the ratio of the maximum velocity of the kinase to the maximum
velocity of phosphorylated substrate degradation, to get:

rdegS

Kdeg + S
= S∗ (3.11)

Following the standard Michaelis-Menten assumptions [1, 5], we have [S]0 � [K]0. This gives us
[S]0 = [S] + [S∗], or 1 = S + S∗, which can be substituted into 3.11:

rdeg(1− S∗)
Kdeg + 1− S∗

= S∗

rdeg − rdegS∗ = KdegS
∗ + S∗ − (S∗)2

(S∗)2 − (1+rdeg +Kdeg)S∗ + rdeg = 0 (3.12)

We can then solve 3.12 for S∗:

S∗ =
1 + rdeg +Kdeg −

√
(1 + rdeg +Kdeg)2 − 4rdeg

2
(3.13)

where we have again chosen the negative branch of the solution to ensure 0 ≤ S∗1 ≤ 1. From this
derivation, we can see that degradation has two effects on the fraction of phosphorylated
substrate. The degradation rate of unphosphorylated substrate can change the saturation of the
kinase K by the substrate through altering the Michaelis-Menten-like constant KM,deg, in the
same way as altering the dissociation or catalytic rates. Additionally, the degradation rate of
phosphorylated substrate can modify the magnitude of the fraction of phosphorylated substrate
by changing rdeg.

We can show that S∗ is strictly hyperbolic in rdeg by taking the second derivative of 3.13 with
regard to rdeg:

d2S∗

dr2deg
= −

2Kdeg

(−4rdeg + (1 + rdeg +Kdeg)2)3/2
(3.14)
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As for the response with an unsaturated phosphatase (equation 2.8), both the numerator and
denominator of the above equation are strictly positive, so the second derivative is always
negative. A system that relies on degradation to achieve effective dephosphorylation thus has no
inflection point in rdeg and cannot exhibit a sigmoidal response to signals.

4 UniProt Data

We searched the UniProt database for the number of serine/threonine and tyrosine kinases and
phosphatases found in all complete eukaryotic genomes [6]. For each genome, we searched for
UniProt for reviewed entries that included the enzyme classification numbers for kinases and
phosphatases (see Table 1). We then counted the number of entries for each genome in the search
results. In order to prevent genomes with small numbers of reviewed kinases or phosphatases
from unduly influencing our results, we ignored genomes with less than 5 phosphatases or 5
kinases for any given residue cass (i.e. serine/threonine or tyrosine). This resulted in 16 genomes
for serine/threonine enzymes (See Table 2) and 9 genomes for tyrosine enzymes (See Table 3).

Table 1: Enzyme classification numbers used to search UniProt

Enzyme E.C. Number

Serine/Threonine Phosphatases 3.1.3.3 / 3.1.3.16
Serine/Threonine Kinases 2.7.11.x

Tyrosine Phosphatases 3.1.3.48
Tyrosine Kinases 2.7.10.x

Table 2: The numbers and ratios of serine/threonine kinases and phosphatases from UniProt used in Figure
1 of the main text.

Species Serine/Threonine Phosphatases Serine/Threonine Kinases Ratio

Arabidopsis thaliana 115 559 0.206
Bos taurus 26 81 0.321

Caenohabditis elegans 15 89 0.169
Danio rerio 14 40 0.350

Dictyostelium discoideum 21 222 0.095
Drosophila melanogaster 22 66 0.333

Gallus gallus 9 36 0.250
Homo sapiens 79 372 0.212
Mus musculus 72 374 0.193

Oryctolagus cuniculus 7 23 0.304
Oryza sativa 94 120 0.783
Pongo abelii 10 37 0.270

Rattus norvegivus 40 188 0.213
Saccharomyces cerevisiae 24 124 0.194

Schizosaccharomyces pombe 20 100 0.200
Xenopus laevis 17 72 0.236
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Table 3: The numbers and ratios of tyrosine kinases and phosphatases from UniProt used in Figure 1 of the
main text.

Species Tyrosine Phosphatases Tyrosine Kinases Ratio

Arabidopsis thaliana 9 16 0.563
Bos taurus 13 9 1.444

Caenohabditis elegans 12 11 1.091
Drosophila melanogaster 14 21 0.667

Gallus gallus 11 32 0.344
Homo sapiens 87 95 0.916
Mus musculus 81 95 0.853

Rattus norvegivus 39 49 0.796
Xenopus laevis 11 25 0.440

Additionally, we used UniProt to determine the number of phosphoproteins in complete
eukaryotic genomes. We searched UniProt for reviewed entries with keyword ‘Phosphoprotein’.
We then analyzed the search results and computed the number of entries for each of the 16 species
from the serine/threonine enzyme results and the 9 species from the tyrosine enzyme results. The
phosphatase numbers represent the total number of phosphatases from tables 2 and 3.

Table 4: The numbers and ratios of the total number of phosphatases and substrates from UniProt used in
Figure 1 of the main text.

Species Total Phosphatases Total Substrates Ratio

Arabidopsis thaliana 124 1295 10.444
Bos taurus 39 1759 45.103

Caenohabditis elegans 27 89 3.296
Danio rerio 14 195 13.929

Dictyostelium discoideum 21 160 7.619
Drosophila melanogaster 36 833 23.139

Gallus gallus 20 282 14.100
Homo sapiens 166 5924 35.687
Mus musculus 153 5313 34.725

Oryctolagus cuniculus 7 282 40.286
Oryza sativa 94 150 1.596
Pongo abelii 10 819 81.900

Rattus norvegivus 79 2691 34.063
Saccharomyces cerevisiae 24 2425 101.042

Schizosaccharomyces pombe 20 1067 53.350
Xenopus laevis 28 277 9.893
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