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ABSTRACT Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to
affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor
(A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted
to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures
of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding
site on helix 8, next to themembrane. The biologicalmeaning of the interaction aswell as its calciumdependence, thermodynamic
parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-ter-
minus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel
filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is
disordered and flexible, and it binds with high affinity (Kd ¼ 98 nM) to calmodulin without major conformational changes in the
domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid
vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors.
INTRODUCTION
G-protein-coupled receptors (GPCRs), also known as seven
transmembrane (TM) receptors, are the largest family of
membrane proteins in the human genome, with ~800 mem-
bers. GPCRs are of great interest to the pharmaceutical in-
dustry, as they regulate many physiological processes and
their dysfunction is related to different diseases. They all
share a common organization of seven TM a-helices, an
extracellular N-terminus, and an intracellular C-terminus.
Although the TM regions of GPCRs are fairly homologous,
both N- and C-termini are highly variable, ranging in size
from 1 to 2348 amino acids for the N-terminus, and from
2 to 397 amino acids for the C-terminus. GPCR ligands
also vary considerably, ranging from photons and ions to
small organic molecules, peptides, and proteins, depending
on the receptor (1).

During GPCR signaling, extracellular ligand binding in-
duces a conformational change that activates the receptor.
The activated receptor catalyzes a GDP-to-GTP exchange
in an intracellular heterotrimeric G-protein, resulting in the
dissociation of the GaGTP subunit from the Gbg subunit.
The GaGTP and Gbg subunits then either activate or inhibit
different effector molecules and pathways, depending on
the type of ligand. In recent years, it has become clear that
GPCRs can also signal through a G-protein-independent
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manner by binding to different TM or intracellular GPCR-in-
teracting proteins. These interactions are known to regulate
the receptor ligand specificity, cell surface expression, endo-
cytosis, recycling, and other cellular processes (2). In vivo,
the functional form of the GPCR is oligomeric rather than
monomeric, through either homo- or heteromers (3,4).
The human adenosine A2A receptor

The human adenosine A2A receptor (A2AR) is a 44.7 kDa
GPCR with an intracellular C-terminus that bears two inter-
esting differences to the C-termini of the closely related
adenosine A1, A2B, and A3 receptors. One difference is
in length—the C-terminus of A2AR (A2A-ct) is 122 amino
acids long, whereas the other receptors are 38, 40, and 34
amino acids, respectively. A second key difference is that
A2A-ct lacks a canonical cysteine residue at the end of helix
8 that is perpendicular to the membrane, adjacent to the TM
helix 7. A majority of the other members of the rhodopsin
class of GPCRs have one or two cysteines at this position,
which are putative palmitoylation sites (5). Because palmi-
toylation is known to anchor peripheral membrane proteins
or protein segments to the membrane (6), it has been spec-
ulated that the lack of palmitoylation and the exceptional
length of A2A-ct make it more flexible and accessible for
interacting with other proteins.

A2A-ct has a number of putative and demonstrated phos-
phorylation sites that may impact function. Threonine 298
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phosphorylation was reported to mediate the short-term, but
not long-term, desensitization of the A2AR after agonist
stimulation (7). Serine 374 phosphorylation has been shown
to be required in the A2AR-mediated inhibition of the dopa-
mine D2 receptor agonist binding and signaling (8,9).

The A2A-ct is predicted to be mostly disordered, but
experimental data concerning its structure are not available.
So far, 12 A2AR structures have been published, but all of
these structures are based on engineered A2AR proteins
that lack the C-terminus (10–16). The most comprehensive
A2AR structure ends at residue 317 (12).

A2A-ct interacts with a number of proteins, including
G-protein-coupled receptor kinases (GRKs), b-arrestins,
a-actinins, calmodulin (CaM), neuronal calcium-binding
protein 2 (NECAB2), translin-associated protein X
(TRAX), Arf nucleotide-binding site opener (ARNO/cyto-
hesin-2), ubiquitin-specific protease 4 (USP4), and
neuronal calcium sensor protein 1 (NCS-1) (17–24). These
interactions have been studied using yeast two-hybrid
screens, colocalization, coimmunoprecipitation, pulldown,
immunoelectron microscopy, mass spectrometry, and
bioluminescence and fluorescence resonance energy trans-
fer approaches using either crude brain membrane extracts
containing A2AR, A2AR-transfected cell cultures, or small
synthetic A2AR peptides. As far as we know, interactions
of A2AR with other proteins have not been studied with
the purified A2AR protein or its individual domains. The
knowledge about binding thermodynamics and kinetics is
very limited, and the meaning of these interactions is
poorly understood.
Calmodulin and A2AR

CaM is a 16.7 kDa highly conserved, soluble, acidic, intra-
cellular calcium-binding protein that is a key player in cal-
cium-mediated signaling in mammalian cells. CaM has a
dumbbell-like structure, in which two globular domains
are connected by a helical linker. The globular domains
contain two helix-loop-helix (EF-hand) motifs each and
are capable of binding two calcium ions per domain (25).
Typically, the helical linker region of CaM is cut into two
shorter helices during complex formation, allowing the
globular domains to wrap around the binding partner
(26–28). CaM target domains are contiguous sequences of
~20 amino acids, which have a tendency to form basic
amphipathic helices. There is little sequence similarity be-
tween CaM targets, yet many of them have very similar
nanomolar binding affinities (29,30). Of the GPCRs, CaM
has been reported to bind to adenosine A2A, dopamine
D2, m- and d-opioid, metabotrobic glutamate 5 and 7
(mGlu5/mGlu7), muscarinic, serotonin 5-hydroxytrypta-
mine 1A, 2A, and 2C (5HT1A, 5HT2A, and 5HT2C),
parathyroid hormone 1 and 2 (PTH1/PTH2), vasoactive in-
testinal peptide, pituitary adenylate cyclase activating
peptide, corticotrophin releasing hormone, calcitonin,
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glucagon-like peptide 1 and 2, vasopressin 2 (V2), cal-
cium-sensing (CaS), and melanocortin 1 (MC1) receptors
(19,31–41).

Woods et al. (19) were the first ones to report CaM inter-
action with the human A2AR. They used mass spectrometry
to study CaM binding to dopamine D2 and adenosine A2A
synthetic peptides. Thereafter, interactions between these
receptors and CaM have been studied using different reso-
nance energy transfer -based techniques, immunoprecipita-
tion and transinfected cell cultures, for example. These
studies have confirmed the interaction and provided some
information about the role of CaM as a calcium-dependent
modulator of A2A and D2 receptors both alone and as a
heteromer (42,43). Calmodulin has very acidic epitopes

80DSEEEI85, 117TDEEVDEM124, and 137NYEEFV142 that
have been suggested to interact with positively charged epi-
topes on A2A and D2 receptors (19). Such an epitope on the
A2AR is the arginine-rich sequence 291RIREFRQTFR300 on
the proximal part of the C-terminus. It has been reported to
bind CaM independently of calcium (19,42). Despite all
these studies, very little is known about the strength and
stoichiometry of the A2AR-CaM interaction, or the com-
plex structure, at the protein level.

In this work, we show CaM binding to the A2A-ct and
present the thermodynamic parameters of the interaction.
In addition, we shed light on the A2A-ct-CaM complex
structure in solution. In these biophysical experiments, we
have used recombinant proteins instead of short synthetic
peptides or cell-based approaches. In addition to in vitro ex-
periments, we present CaM-binding site predictions for a
group of proteins mainly belonging to class A GPCRs.
Based on the location of the binding sites, we divide the pro-
teins into different classes and speculate on the physiolog-
ical relevance of this classification.
MATERIALS AND METHODS

Constructs and protein production

Human A2AR C-terminal amino acids 293–412 and 321–412 were cloned

into the pQE-T7-1 and pQE-T7-2 vectors (Qiagen, Hilden, Germany), us-

ing NdeI/XhoI cloning sites. This generated A2A-ct constructs with a

His10-tag in either the N-terminal or C-terminal end. Human CaM in the

pET-14b vector (Merck KGaA, Darmstadt, Germany) was kindly provided

by Dr. Nobuhiro Hayashi. All constructs were verified by sequencing and

then transformed into Escherichia coli BL21(DE3) cells.

Expression of A2A-ct constructs was tested in small scale, and based on

the higher expression level, A2A-ct 293–412 (A2A-ctL) with a C-terminal

and A2A-ct 321-412 (A2A-ctS) with an N-terminal 10� His-tag were

selected for further studies. For protein production, BL21(DE3) cells

with either the A2A-ctL or the A2A-ctS plasmid were cultured in Luria-

Bertani medium (LB-medium) containing 50 mg ml�1 kanamycin at

37�C, shaking the culture at 220 rpm until the OD at 600 nm was 0.6.

Expression was then induced by adding 0.4 mM isopropyl b-D-1-thiogalac-

topyranoside (IPTG), and culturing was continued at 22�C, shaking the cul-
ture at 220 rpm. After 2 h, the cells were harvested.

10 ml of LB-medium containing 100 mg ml�1 ampicillin were inoculated

with BL21(DE3) cells containing the CaM plasmid, and the cells were
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cultured at 37�C with shaking (220 rpm). After 7 h, the culture was trans-

ferred to a shake flask containing 1 l LB-medium with 100 mg ml�1 ampi-

cillin. Culturing was continued for 5 h, and then, protein production was

induced by adding 0.8 mM IPTG. After overnight (~11 h) expression, the

cells were harvested.
Protein purification

BL21(DE3) cells with either A2A-ctL or A2A-ctS were suspended in

xTractor Buffer (Takara Bio Europe/Clontech, Saint-Germain-en-Laye,

France), containing complete EDTA-free protease inhibitors (Roche, Basel,

Switzerland). After a 10-min incubation on ice, the lysate was clarified by

centrifugation. The soluble fraction was supplemented with 60 mM imid-

azole, and mixed with HisPur Ni-NTA Resin (Thermo Fisher Scientific,

Waltham, MA), equilibrated beforehand with wash buffer (50 mM HEPES,

500 mM NaCl, 10% glycerol, 60 mM imidazole, 10 mM TCEP-HCl,

0.1 mM PMSF pH 7.4). After 1 h of binding, the mixture was transferred

into an empty column, and unbound proteins were washed away using

the wash buffer. Bound proteins were eluted with elution buffer (50 mM

HEPES, 500 mM NaCl, 10% glycerol, 500 mM imidazole pH 7.4), and

eluates were analyzed by sodium dodecyl sulfate polyacrylamide gel elec-

trophoresis (SDS-PAGE). The buffer in the A2A-ct eluates was exchanged

to cation exchange buffer (50 mM MES, 250 mM NaCl pH 5.8) using PD-

10 columns (GE Healthcare, Little Chalfont, UK), and cation exchange was

performed using a HiTrap CM FF column (GE Healthcare). The protein

was eluted with a linear 250–1000 mM NaCl gradient in 50 mM MES,

pH 5.8. The fractions were analyzed by SDS-PAGE, and A2A-ct-containing

fractions were pooled. A2A-ct concentration was determined spectrophoto-

metrically (1 mg ml�1 A280 ¼ 0.490 or ε280 ¼ 7090 M-1cm�1 for A2A-ctL,

and 1 mg ml�1 A280¼ 0.640 or ε280¼ 7090M-1cm�1 for A2A-ctS), and the

protein was concentrated to 1-2 mg ml�1 by centrifugal ultrafiltration. All

purification steps were done at 4�C.
The CaM purification protocol was modified from earlier studies (44,45).

CaM-expressing BL21(DE3) cells were suspended in lysis buffer (10 mM

HEPES, 1 mM EDTA, 10 mM DTT, 10 mg ml�1 DNase I pH 7.4) and lysed

by sonication. After centrifugation, the soluble fraction was incubated for

10 min at 80�C and then centrifuged. 5 mM CaCl2 was added to the super-

natant and the centrifugation was repeated. The supernatant containing

CaM was applied onto a HiTrap Phenyl FF (High Sub) column (GE Health-

care) equilibrated with wash buffer (10 mM HEPES, 4 mM CaCl2 pH 7.4).

The column was washed sequentially with wash buffer, wash buffer

supplemented with 500 mM NaCl, and wash buffer again. CaM was then

eluted with elution buffer (10 mM HEPES, 5 mM EGTA pH 7.4). The frac-

tions were analyzed by SDS-PAGE, and CaM-containing fractions were

pooled. The protein concentration was determined spectrophotometrically

(1 mg ml�1 A280 ¼ 0.178 or ε280 ¼ 2980 M�1cm�1), and the protein was

concentrated to 10 mg ml�1 by centrifugal ultrafiltration. All purification

steps were done at 4�C unless stated otherwise.

Protein homogeneity and monodispersity were checked by SDS-PAGE,

native PAGE, and analytical size exclusion chromatography. Based on elec-

trospray ionization time-of-flight mass spectrometry, A2A-ctL, A2A-ctS,

and CaM showed expected molecular masses of 14,467 Da (14,465 Da),

11,113 Da (11,113 Da), and 16,705 Da (16,706 Da), respectively. Theoret-

ical molecular masses are indicated in parenthesis.
Synchrotron radiation far-UV circular dichroism
spectropolarimetry

Synchrotron radiation circular dichroism (SRCD) spectra were measured

on the CD1 beamline at the ASTRID storage ring, ISA, Århus, Denmark.

A quartz cuvette with a path length of 100 mm was used, and the protein

concentrations were in the range 0.5–1.0 mg ml�1. The protein was in a

buffer containing 50 mM HEPES, 250 mM NaCl, and 1 mM TCEP-HCl

pH 7.4, and the measurements were carried out at 25�C. In addition to
the protein alone, spectra were collected in the presence of 30% TFE (tri-

fluoroethanol), 0.1% DPC (n-dodecylphosphocholine), 0.1% DDM (n-do-

decyl-b-D-maltopyranoside), 0.1% SDS, and 1 mg ml�1 DMPC/DMPG

(1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2 dimyristoyl-sn-glycero-

3-phospho-rac-(1-glycerol)) (1:1) vesicles (Larodan Fine Chemicals,

Malmö, Sweden). Three scans were taken for each sample and the corre-

sponding buffer, and after averaging, the buffer contribution was subtracted.
Fluorescence spectrometry

A2A-ctL fluorescence spectra were measured at 25�C in 50 mM HEPES,

250 mM NaCl, 1 mM TCEP-HCl pH 7.4 with the FluoroMax-4 spectroflu-

orometer (Horiba Scientific, Kyoto, Japan). 0.15 mg ml�1 protein in a 3 mm

cuvette was used in the measurements. The excitation wavelength was

295 nm, and emission spectra were recorded from 300 to 450 nm. Measure-

ments were repeated in the presence of 30% TFE, 0.1% DPC, 0.1% DDM,

0.1% SDS, and 1 mg ml�1 DMPC/DMPG (1:1) vesicles. Samples were

measured in triplicate, buffer background was subtracted, and an average

spectrum was calculated for each sample. Finally, the fluorescence inten-

sities were normalized to allow comparison of peak maximumwavelengths.
NMR spectroscopy

NMR experiments required labeling of A2A-ctL with 15N and 13C.

BL21(DE3) cells containing the A2A-ctL plasmid were cultured at 37�C
in LB-medium to an OD of 0.6 at 600 nm. The cells were harvested and

washed with unlabeled minimal medium. The cells were then suspended

to the same density in minimal medium containing U-13C6 D-glucose,
15NH4Cl, (both from Cambridge Isotope Laboratories, Tewksbury, MA)

and 0.1 mg ml�1 kanamycin, supplemented with 1� MEM Vitamin Solu-

tion (Sigma-Aldrich, St. Louis, MO). After 1 h growth recovery at 22�C,
A2A-ctL expression was induced by adding 0.4 mM IPTG. Culturing

was continued at 22�C for 2 h, and the cells were harvested by centrifuga-

tion. A2A-ctL was purified as described previously. All A2A-ctL NMR

spectra were measured in 95%/5% 50 mM HEPES, 250 mM NaCl,

1 mM TCEP-HCl, 5 mM CaCl2 pH 7.2/D2O at 25�C at 800 MHz 1H fre-

quency using a Varian UNITY INOVA 800 NMR spectrometer (Agilent,

Santa Clara, California), equipped with a cryogenically cooled 1H, 13C,
15N probehead. The backbone assignment of A2A-ctL was carried out using

a plethora of three-dimensional (3D) NH-detected experiments including

experiments specially tailored for intrinsically disordered proteins (46,47)

as well as the conventional HNCO, HNCACB, and CBCA(CO)NH (48).

Proton chemical shifts were referenced with respect to residual solvent

signal (4.79 ppm at 25�C and pH 7.2). The 13C and 15N chemical shifts

were indirectly referenced. Secondary structure propensities were calcu-

lated with the secondary structure propensities (SSP) algorithm (49) that

uses the relative difference of 13Ca and 13Cb chemical shifts between a-

and b-structures i.e., SSP is not sensitive toward potential referencing errors

in 13C chemical shifts. The reference database of SSP is based on the

random coil chemical shifts (50). To map the CaM binding epitope in

A2A-ctL, unlabeled CaM was added in a stepwise manner to 100 mM
15N-labeled A2A-ctL (molar ratios 0.5:1, 1:1, 2:1 and 4:1 CaM/A2A-ctL).
Native polyacrylamide gel electrophoresis

A2A-ctL, A2A-ctS, and CaM were dialyzed against 50 mM HEPES,

250 mM NaCl, 1 mM TCEP-HCl pH 7.4. Samples containing 300 pmol

of A2A-ctL or A2A-ctS alone or together with 300 pmol of CaM, and

5 mM CaCl2 or EDTA were analyzed on 16% native polyacrylamide gel

electrophoresis (native PAGE) gel to test for CaM binding to the A2A-ct

and the calcium dependence of the interaction. The synthetic peptides

RIREFRQTFRKIIRSHVLRQQ and YAYAIAEFAQTFAKIIASHVLAQQ

(JPT Peptide Technologies, Berlin, Germany), corresponding to the wild-

type (WT) A2AR amino acids 291–311 and amino acids 288–311 with
Biophysical Journal 108(4) 903–917
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arginine to alanine mutations at positions 291, 293, 296, 300, 304, and 309,

respectively, were used in the binding competition assay. 300 pmol A2A-

ctL, 300 pmol CaM, and 3.7–24,300 pmol of peptide were mixed in the

presence of 5 mM CaCl2 and analyzed on 16% native PAGE.
Isothermal titration calorimetry

A2A-ctL, A2A-ctS, and CaM were dialyzed against 50 mM HEPES,

250 mM NaCl, 1 mM TCEP-HCl pH 7.4 containing either 5 mM CaCl2
or EDTA. Isothermal titration calorimetry (ITC) was carried out using

the VP-ITC instrument (MicroCal, Northampton, MA) at 25�C. All samples

were degassed before the experiment. 200 mM CaM was placed in the sy-

ringe and 18 mMA2A-ctL or A2A-ctS in the cell. CaM was titrated into the

A2A-ct solution at 4-min intervals so that the first injection was 2 ml, and

the remaining 19 injections were 15 ml. Each CaM-A2A-ct titration was

done twice. The heat of dilution and mixing was determined by titrating

CaM into the buffer. Data were analyzed using Origin (MicroCal). For

each titration, the first 2-ml injection was ignored, the heat of dilution and

mixing was subtracted, and fitting was done with the single binding site

model. This provided information about stoichiometry (n), association con-

stant (Ka), entropy (DS), and enthalpy change (DH).
Analytical gel filtration

The ITC sampleswere recovered from themeasurement cell, concentrated to

120 ml, and subjected to gel filtration using a Superdex 200 10/300 GL col-

umn (GE Healthcare) in 50 mM HEPES, 250 mM NaCl pH 7.4 with either

5mMCaCl2 or EDTA.Gel filtration standard proteins (Sigma-Aldrich) were

b-amylase (molecular mass 200 kDa, Stokes radius 5.30 nm), alcohol dehy-

drogenase (150 kDa, 4.55 nm), albumin (66 kDa, 3.60 nm), carbonic anhy-

drase (29 kDa, 2.14 nm), and cytochrome c (12 kDa, 1.75 nm). The standards

were run in the sameway as the samples in the presence of calcium or EDTA,

and their Stokes radii (rs) were plotted against their elutionvolumes to obtain

a standard curve. Stokes radii for the samples were calculated on the basis of

their elution volumes using the standard curve.
Surface plasmon resonance (SPR)

SPR was carried out using the Biacore T100 system (GE Healthcare) at

25�C. DMPC/DMPG vesicles (1:1 ratio) were immobilized on a Sensor

Chip L1 (GE Healthcare) according to the manufacturer’s instructions,

and the surface was further blocked by injecting bovine serum albumin at

0.1 mg ml�1. The running buffer in the experiment contained 10 mM

HEPES pH 7.4 and 150 mM NaCl. To follow possible detachment of

A2A-ctL from the membrane by CaM, either 0.2 or 1.0 mg ml�1 A2A-

ctL was injected over the surface for 120 s, followed by a dissociation phase

of 360 s. Immediately after the dissociation phase, 20 mg ml�1 Ca2þ-CaM
was injected for 180 s in a similar manner. A flow rate of 30 ml min�1 was

used throughout the run. For kinetic analysis of A2A-ctL binding to mem-

branes, a titration experiment using 0.2–30 mg ml�1 A2A-ctL was carried

out using the same settings, with regeneration using 100 mM NaOH be-

tween the injections. In another experiment to follow the effect of prior

CaM complex formation on membrane binding, A2A-ctL (5 mg ml�1)

and Ca2þ-CaM (25 mg ml�1) were injected either separately or together,

intervened by regeneration injections with 100 mM NaOH. All injections

were 120 s in duration in the latter experiment.
Small-angle x-ray scattering (SAXS)

A2A-ctL and CaM were dialyzed against 50 mM HEPES, 250 mM NaCl,

5 mM CaCl2, 1 mM TCEP-HCl pH 7.4. SAXS measurements were carried

out on the European Synchrotron Radiation Facility (ESRF) Bio-SAXS

beamline ID14-3, Grenoble, France (51). Samples were measured at 4�C
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using an x-ray wavelength of 0.0931 nm and an exposure time of 10 s.

The data were recorded using a PILATUS 1M detector at a sample-detector

distance of 2.5 m, covering a momentum transfer range, s (4pSinq/l) of

0.05–5.8 nm�1. 10 frames were collected for each sample in total. A2A-

ctL and CaM were measured alone and in a 1:1 complex. Concentrations

varied between 0.2 and 2.2 mg ml�1 for A2A-ctL, 0.75–6.0 mg ml�1 for

CaM, and 1.55–3.1 mg ml�1 for the complex. No radiation damage was

observed when comparing the 10 time frames with 10 s exposures. Solvent

scattering was measured from the buffer before and after each sample, and

the average background scattering was subtracted with PRIMUS (52). For

data analysis and modeling, the data from different concentrations of the

same sample were merged, such that the low-angle data were taken from

the lowest concentration and the high-angle data from the highest concen-

tration. This corrects possible minor concentration-dependent effects at low

angles, while keeping high-angle data accurate. The maximum dimension

Dmax and the distance distribution function p(r) were calculated using

GNOM (53). Because A2A-ctL behaved like an intrinsically disordered

protein, its radius of gyration was also determined using the Debye

formalism (54). Furthermore, the expected dimensions based on a random

conformation were calculated as described (55,56).

Molecular models were built using several approaches. Overall shapes of

the samples were built using DAMMIF (57), and chain-like models of the

individual proteins using GASBOR (58). The GASBOR models of A2A-

ctL and CaM were further used to model the complex with rigid-body

refinement in SASREF (59). In addition, two-phase models for the complex

were made using MONSA (60). The ensemble optimization method (EOM)

was used to detect possible populations of different conformations in

A2A-ctL (61).
Calmodulin-binding site prediction

Ninety-eight proteins belonging to GPCR class A and eight proteins

belonging to either class B or C and shown experimentally to bind CaM

were selected for the prediction. Protein sequences were analyzed using

the CaM target database (62) that scores the amino acids from 0–9 based

on their predicted ability to interact with CaM. Continuous amino acid seg-

ments containing at least six amino acids with a score of 8 or 9 were consid-

ered as a putative binding site. Eleven sites located in nonsensical domains,

like an extracellular loop, were omitted from the analysis. The predicted

binding sites were classified as either C-terminus binders or other site

binders. For each binding site, a binding score was calculated by dividing

the sum of the CaM target database scores by 28, which was the number

of amino acids in the longest continuous putative binding site. Finally,

the sites were sorted in descending order based on the calculated score.
RESULTS

The carboxyl terminal domain of the adenosine
A2A receptor is intrinsically disordered

A2A-ct is predicted to contain large unstructured and/or
flexible portions by several protein disorder servers, includ-
ing DisEMBL, FoldIndex, DISOPRED2, and XtalPred-RF
(63–66). Experimental data on the A2A-ct structure are
missing, because this domain was almost completely trun-
cated from the antagonist and agonist occupied crystal
structures (Fig. 1, A and B) (10–16). We decided to experi-
mentally characterize the disordered regions of this domain
by various complementary techniques before conducting
interaction studies with CaM. Because the CaM-binding
motif is most likely in the proximal part of A2A-ct (19),
we designed two different C-terminal constructs of the



FIGURE 1 Helix 8 conformation of agonist

versus antagonist bound A2AR and organization

of the A2A-ct. (A) Agonist NECA bound A2AR

(Protein Data Bank (PDB) ID 2YDV). (B) Antago-

nist ZM241385 bound to A2AR (PDB ID 3EML).

Helix 8 is embedded in the membrane in both struc-

tures. (C) Helix 8 has many positively charged

arginine residues that might be required for pro-

tein-protein interactions. R291 is fully embedded

in the membrane and is probably unable to interact

with other proteins. R293, R296, R300, R304, and

R309 form a positively charged surface next to the

membrane that might mediate interactions with

negatively charged proteins or other molecules.
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A2AR—the full-length domain (A2A-ctL) and the null-
binding domain (A2A-ctS) (Fig. 1 C). Of these, only
A2A-ctL has a predicted CaM-binding domain, and this
construct was used in the secondary structure studies.
Synchrotron radiation far-UV CD
spectropolarimetry and intrinsic tryptophan
fluorescence spectrometry

The far-UV CD spectrum of A2A-ctL is typical for a protein
without a globular conformation or secondary structure
(Fig. 2 A) (67). It has a small negative shoulder around
222 nm, a strong negative minimum around 200 nm, and
no positive signals in the far-UV range. Because deconvolu-
tion analysis methods are based on the usage of crystal
structure-derived reference data sets, they are not able to
predict the secondary structure reliably for such a flexible
protein. Hence, helical content was simply estimated based
on the CD signal at 222 nm (68). Interestingly, in the pres-
ence of the a-helix stabilizing TFE (16% helical), the nega-
tive minimum shifted from 200 to 208 nm. An addition of
DDM or lipid vesicles did not have a significant effect on
the spectra, suggesting that any interactions these com-
pounds have with A2A-ctL do not cause conformational
changes. On the other hand, DPC (7% helical) and SDS
(14% helical) caused spectral changes that resembled the
ones observed with TFE. This suggests the capability of
A2A-ctL to adopt a more a-helical conformation in the
presence of certain membrane-mimicking compounds. The
head group of the detergent or lipid seems to be important,
since SDS and DPC, unlike DDM, both have a negatively
charged sulfate or phosphate group, respectively.
Biophysical Journal 108(4) 903–917



FIGURE 2 Characterization of secondary structure and folding of the

A2A-ctL by SRCD spectropolarimetry and fluorescence spectrometry.

(A) SRCD and (B) fluorescence spectra of A2A-ctL are shown without

additives and with DDM, lipid vesicles, DPC, SDS, and TFE.

908 Piirainen et al.
A2A-ct has a single tryptophan residue at position 346.
According to fluorescence measurements, Trp-346 is
exposed to an aqueous environment (Fig. 2 B). The addition
of 0.1% DPC had no effect on the fluorescence maximum,
and 0.1% DDM decreased the 356-nm peak maximum
only to 355 nm. On the other hand, either of the 30% TFE
and 0.1 mg ml�1 DMPC/DMPG vesicles shifted the fluores-
cence maximum from 356 to 353 nm, and 0.1% SDS even
further to 349 nm, indicating a very slight decrease in the
solvent accessibility of the tryptophan. Despite these small
changes, Trp-346 remained mainly in an aqueous environ-
ment, and most probably, its surroundings do not take part
in the helix formation detected by SRCD.
NMR spectroscopy

NMR spectroscopy can be employed to study structural fea-
tures of disordered proteins at single-residue resolution (69).
To confirm the disordered nature of A2A-ctL in solution, we
measured a two-dimensional 1H, 15N-HSQC spectrum of
A2A-ctL at 800 MHz 1H frequency (Fig. 3 A). The spectrum
shows poorly dispersed crosspeaks, with the proton chemi-
cal shifts ranging from 7.5 to 8.5 1H ppm, indicating that
Biophysical Journal 108(4) 903–917
A2A-ct undergoes fast conformational dynamics in solu-
tion, which is typical for highly disordered proteins (69).
The conformational heterogeneity of intrinsically disor-
dered proteins calls for special means for the NMR signal
assignment. Indeed, to accomplish backbone assignment
of A2A-ctL, we employed a panoply of novel NH-detected
triple-resonance experiments that correlate 1HN, 13C’,
and 15N frequencies and simultaneously link amino acid
stretches flanking single proline residues (46,47). These
data were supplemented with 13Ca and 13Cb chemical shifts
available from HNCACB/CBCA(CO)NH experiments
(H. Tossavainen, M. Hellman, H. Piirainen, V.P. Jaakola,
and P. Permi, unpublished). In this way a nearly complete
backbone assignment of A2A-ctL was obtained.

Next, to obtain a more quantitative description of confor-
mational space sampling in A2A-ctL, we conducted an anal-
ysis of SSP present in A2A-ctL. Fig. 3 B displays the SSP
score of A2A-ctL, as determined by comparing experi-
mental 13Ca-13Cb chemical shifts to random coil chemical
shifts using the software package SSP (49). These data high-
light a tendency of A2A-ctL toward extended conformation
in the N-terminal CaM-binding site, where residues 293–
303 and 310–317 populate bs/bp conformations 13.0%
and 20.0%, respectively. NMR secondary chemical shift
data reveal significant propensity of A2A-ctL to a-helical
conformation in residues 329–340 (9.2%) and 382–389
(15.3%). Therefore, according to the NMR data, A2A-ctL
transiently populates b-structures in the N-terminal part of
the polypeptide chain, whereas the remainder of the A2A-
ctL is partially in a-helical conformation.

We sought to understand the role of membrane
mimicking detergents in conformational propensities of
A2A-ctL by gradual addition of TFE to the NMR sample.
Indeed, in accordance with far-UV CD spectral data,
increasing TFE concentration induced significant chemical
shift perturbations to the 1H, 15N-HSQC-spectrum of
A2A-ctL (Fig. S1 in the Supporting Material). However,
in most cases chemical shift perturbations were too large
for crosspeaks to be identified reliably in the crowded spec-
trum and hence would have required crosspeak reassign-
ment, which was not conducted in this study due to the
limited lifetime of the NMR sample.
Biophysical characterization of the ACA-ct–CaM
complex

After characterizing A2A-ct as an intrinsically disordered
protein, we studied the binding of CaM to A2A-ct and the
structural properties of the complex, using both A2A-ctL
and the shorter A2A-ctS construct.
Native PAGE

CaM was mixed with either A2A-ctL or A2A-ctS in the
presence of calcium or EDTA, and analyzed by native



FIGURE 3 A2A-ctL characterization by NMR

spectroscopy. (A) 1H, 15N-HSQC spectrum of

A2A-ctL measured at 800 MHz 1H frequency.

(B) Secondary structure propensities of A2A-ctL.

Positive and negative numbers are indicative of

a- and b-conformations, respectively. The N-termi-

nal residues 293–321 that comprise the CaM bind-

ing epitope of A2A-ctL according to NMR titration

studies are highlighted with boxes.
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PAGE (Fig. 4 A). Both A2A-ct constructs behaved similarly
in the presence and absence of calcium. The well-known
calcium-induced conformational change of CaM (70) was
clearly visible on the gel. When A2A-ctL and CaM were
mixed in the presence of calcium, an extra band appeared,
most likely corresponding to an A2A-ctL-CaM complex.
This band was absent in the EDTA-containing sample, sug-
gesting that the binding is calcium-dependent. Although
A2A-ctL bound to CaM, no extra bands were detected in
either of the samples containing A2A-ctS and CaM. This
suggests that the CaM-binding site on A2A-ct locates be-
tween amino acids 293 and 320. This region on A2A-ct con-
tains many positively charged arginine residues that are
thought to be involved in CaM binding (19). The observed
calcium dependence of the binding was surprising, because
in previous studies, calcium was not thought to be involved
in the interaction (42).

To confirm the CaM-binding site on A2A-ctL and the
importance of arginine residues for binding, we carried
out binding competition experiments using a peptide corre-
sponding to WTA2AR amino acids 291–311 and a peptide
corresponding to A2AR amino acids 288–311, with six
arginine to alanine mutations (Fig. 4, B and C, respec-
tively). The WT peptide bound calmodulin as expected,
because an extra protein band appeared on a native gel.
This band was missing from the mutated peptide-CaM
sample, demonstrating the importance of the mutated argi-
nine residues for the interaction. When the amount of WT
A2A peptide was increased from 3.7 pmol to 24.3 nmol,
the peptide clearly displaced A2A-ctL from CaM. On the
other hand, the mutated A2A peptide did not affect A2A-
ctL-CaM binding, although some unbound CaM was pre-
sent in samples containing the highest amount of the
mutated peptide. We did not quantitatively analyze the re-
sults for a number of reasons, including the lack of quan-
titativeness of PAGE; the presence of a small amount of
protein remaining in the wells, potentially due to aggrega-
tion; and the presence of multiple faint protein bands
visible on the gels. For more quantitative analyses, other
methods were used.
Biophysical Journal 108(4) 903–917



FIGURE 4 Binding of CaM to the C-terminal constructs of A2AR and

competitive binding by A2A-ct-mimicking WT (A2Awt) and mutated

(A2Amut) peptides on native PAGE. (A) A2A-ctL forms a complex with

CaM in a calcium-dependent manner. The complex is not detected in the

presence of EDTA or magnesium. A2A-ctS does not bind CaM on native

PAGE. (B) A2Awt displaces A2A-ctL on CaM. (C) A2Amut does not form

a complex with CaM and is unable to displace A2A-ctL bound to CaM.
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Isothermal titration calorimetry

As previous studies have not provided information about
stoichiometry and affinity of the A2AR-calmodulin interac-
tion, we performed ITC experiments for CaM binding to
A2A-ctL in the presence of calcium and EDTA (Fig. 5, A
and B). The A2A-ctL-CaM interaction is a calcium-depen-
dent exothermic binding reaction with a favorable enthalpy
(�12.93 5 0.13 kcal mol�1), but an unfavorable entropy
Biophysical Journal 108(4) 903–917
(3.4 kcal mol�1). The dissociation constant (Kd) for the com-
plex is 97.9 5 9.3 nM and the stoichiometry 0.92 5 0.04,
indicating 1:1 complex formation (Table 1). In the presence
of EDTA, no binding was observed. To confirm the CaM-
binding site on A2A-ctL, we also titrated A2A-ctS with
CaM in the presence of calcium (Fig. 5 C). In this case,
much smaller exothermic peaks were observed. Conse-
quently, the removal of amino acids 293–320 from A2A-ct
clearly abolished high-affinity binding to CaM. The remain-
ing exothermic peaks were probably caused by unspecific or
low affinity interactions between A2A-ctS and calmodulin.
Analytical gel filtration

After ITC measurements, we performed gel filtration for the
samples recovered from the measurement cell. We deter-
mined Stokes radii for the peaks corresponding to A2A-
ctL, A2A-ctS, CaM, and A2A-ctL/A2A-ctS-CaM samples,
using proteins with known Stokes radii as standards. In
the presence of calcium, the calculated Stokes radii for
A2A-ctL, CaM, and the A2A-ctL-CaM complex were
2.74, 2.49, and 3.48 nm, respectively (Fig. 5 D). The rela-
tively high Stokes radii values were understandable because
of the elongated shape of calmodulin and the disordered na-
ture of A2A-ct. According to the results, CaM clearly binds
to A2A-ctL in the presence of calcium with relatively high
affinity. Nearly all protein in the mixture elutes in the form
of a complex (Fig. 5 D), indicating the complex is stable and
monodisperse even in the separating conditions of a gel
filtration column; the small amount of CaM in the chromato-
gram relates to its excess in the injected sample, and is un-
likely to represent dissociation of the complex. When the
samples were analyzed in the presence of EDTA, the corre-
sponding Stokes radii for A2A-ctL, CaM, and A2A-ctL-
CaM peaks were 1.71, 2.72, and 2.92 nm (Fig. 5 E). The
radius of A2A-ctL almost doubled in the calcium-contain-
ing buffer. That might be either because of conformational
change or dimer formation. Because the A2A-ct is not
thought to be involved in dimerization, we are likely detect-
ing a calcium-dependent conformational change of A2A-ct.
In turn, the Stokes radii of peaks corresponding A2A-ctS,
CaM, and the A2A-ctS-CaM samples in the presence of cal-
cium were 2.42, 2.32, and 2.87 nm (Fig. 5 F). Although
A2A-ctS did not bind CaM on native PAGE, and only
very weak, if any, binding was visible on ITC, A2A-ctS
seemed to somehow interact with CaM when analyzed by
analytical gel filtration.
NMR spectroscopy

Protein-ligand interactions can be studied at single-residue
resolution using NMR spectroscopy. Given that the calori-
metric and gel filtration data suggested emergence of a rela-
tively stable complex between A2A-ctL and CaM in the
presence of calcium, we conducted NMR titration studies



FIGURE 5 Binding of CaM to the A2A-ct constructs using ITC and size exclusion chromatography. (A) Titration of CaM to A2A-ctL in the presence of

calcium and (B) in the presence of EDTA. (C) Titration of CaM to A2A-ctS in the presence of calcium. Size exclusion chromatography results for A2A-ctL,

CaM, and A2A-ctL-CaM in the presence of (D) calcium or (E) EDTA, and (F) for A2A-ctS, CaM, and A2A-ctS-CaM in the presence of calcium. Hydro-

dynamic radii (nm) of the proteins are given above the peaks.
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by adding unlabeled CaM to 15N, 13C-labeled A2A-ctL.
Most significant chemical shift perturbations, in terms of
disappearance of crosspeaks of the free A2A-ctL form
upon addition of CaM, were observed in the proposed CaM
binding region in the very N-terminal part of A2A-ctL
(Fig. 3 B). This suggests that the CaM binding epitope of
A2A-ctL comprises residues 293–321. Regrettably, because
of the limited lifetime of the A2A-ctL sample and the low
concentration of the A2A-ctL-CaM complex, we were not
able to assign A2A-ctL crosspeaks in the CaM-bound form.
TABLE 1 ITC parameters for A2A-ctL-CaM interaction

DH (kcal mol�1) Kd (nM) �TDS (kcal mol�1) N

�12.93 5 0.13 97.9 5 9.3 3.4 0.92 5 0.04
Surface plasmon resonance

Because A2A-ctL seemed to interact with negatively
charged lipids, we studied the effect of CaM on the ability
of A2A-ctL to bind lipid membranes. For this purpose, we
immobilized a mixture of DMPC/DMPG on an L1 SPR
sensor chip, and injected A2A-ctL over the lipid surface.
A2A-ctL bound immediately to the lipids in a concentra-
tion-dependent manner, and no dissociation was observed
(Fig. 6). CaM injection brought the response back to the
starting level, corresponding to the response of the lipid-
coated surface. A further experiment also demonstrated
that a preformed complex of A2A-ctL and CaM resulted
in much less binding to the membrane, compared to A2A-
ctL alone (Fig. S2). Based on these results, we propose
that Ca2þ/CaM binding to the A2A-ctL disrupts the lipid-
A2A-ctL interaction, releasing the complex from the sur-
face. A titration of the same lipid vesicles with A2A-ctL
in SPR (Fig. S3) allows to estimate a Kd z 1 mM for the
interaction, which is an order of magnitude weaker than
that for the formation of the CaM complex. Hence, CaM
is able to detach the overlapping membrane-binding site
from the membrane surface by means of direct competition.
SAXS

Obtaining crystals of the A2A-ctL-CaM complex seemed
unlikely because of the flexible nature of A2A-ct, we
Biophysical Journal 108(4) 903–917



FIGURE 6 Binding of A2A-ctL to lipid vesicles and CaM-mediated

release measured with SPR. Two different A2A-ctL concentrations (0.2

and 1.0 mg ml�1) are shown. Shown is one injection of A2A-ctL, followed

by an equilibration period and an injection of CaM, which quantitatively re-

leases bound A2A-ctL from the membrane.
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decided to study the solution structures of A2A-ctL alone
and in complex with CaM. Synchrotron SAXS experiments
were used both to provide parameters describing the molec-
ular shapes, as well as to build low-resolution 3D models
representing the free and complexed proteins (Table 2,
Fig. 7). Both A2A-ctL and CaM were monomeric in solu-
tion (Fig. S4), and the molecular mass calculated for their
mixture indicated quantitative complex formation with 1:1
stoichiometry, which is in line with the affinity and stability
of the complex described previously. A2A-ctL alone was
highly elongated, whereas the conformation of CaM was
consistent with its dumbbell-shaped crystal structure. CaM
contains two folded lobes, separated by a flexible linker.
TABLE 2 SAXS parameters for A2A-ctL, CaM, and the A2A-

ctL-CaM complex

Sample Rg (nm) Dmax (nm)

I(0)a

(relative)

MW expected

(kDa) MWb (kDa)

A2A-ctL 3.30 (53)a 13c 16.76 14.5 17.2

3.49c

3.78d

3.78e 10.5e

CaM 2.15 (54)a 7c 16.13 16.7 16.5

2.19c

A2A-ctL-

CaM

3.33 (32)a 14c 28.81 31.2 29.6

3.47c

aAnalyzed using the Guinier plot tool in the Primus software. Number of

data points used in the analysis is indicated in parentheses.
bMolecular masses were estimated by the forward scattering comparison to

a reference protein, bovine serum albumin (66 kDa).
cAnalyzed using the GNOM software.
dCalculated from the Debye function (54).
eCalculated based on random chain assumption (55).
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For a fully random polymer chain, the Rg and Dmax values
can be estimated from amino acid chain length; for A2A-
ctL (134 residues), these values would be 3.78 nm and
10.5 nm, respectively. These results suggest A2A-ctL be-
haves more or less like a random chain in solution, and is
even slightly more elongated than expected for a random
polymer, suggesting intramolecular repulsion.

The complex was even more elongated than A2A-ctL
alone, suggesting A2A-ctL remains in a disordered confor-
mation also in the complex. Shape restoration suggested
CaM binding to one end of the extended A2A-ctL chain.
The complex is similar to that observed for another intrinsi-
cally disordered protein, the myelin basic protein, in com-
plex with CaM (71).

In addition to bead-based modeling, more detailed
methods were used. In the first approach, separate chain-
like models were first made for both proteins alone, and
thereafter, these were used for rigid-body refinement. The
obtained complex fit the measured data well, and also
showed the binding of CaM to one end of A2A-ctL. As a
complementary approach, two-phase ab initio modeling
for the complex was carried out in MONSA. The results
were again very similar, suggesting CaM binding to one
end of A2A-ct, which remains in an extended conformation.
Because A2A-ct is intrinsically disordered, methods
providing single 3D models are descriptive at best, but
they do give a realistic view into the corresponding molec-
ular dimensions and the nature of protein-protein interac-
tions in complexes. We also used the EOM method to
characterize any conformational subpopulations of A2A-ct
that would fit the measured SAXS data even better. The re-
sults indicate a slightly better fit to the raw data when a
rather broad, somewhat bimodal, conformational ensemble
is chosen. All SAXS fits are shown in Fig. S5 and fitting
c values in Table S1. Taken together, the A2A-ctL is very
flexible and extended and has a high radius of gyration,
which indicates a mostly disordered structure. CaM binds
to one end of A2A-ctL, whereas the unbound end of A2A-
ctL remains in the extended conformation.
Calmodulin binding predictions

Because a number of GPCRs have been shown to bind CaM
at either the intracellular loop 3 or the C-terminus, we
examined CaM binding to a group of GPCRs in silico using
the CaM target database (62). The ones predicted to
bind were further classified into C-terminal and other site
binders (Table S1). To our knowledge, twenty-one GPCRs
have been experimentally shown to bind CaM (19,31–
35,37,38,40,72); some have been reported to have two sepa-
rate binding sites. The CaM target database was able to
correctly predict 18 different known binding sites from 17
different GPCRs. Here, if the residues taking part in CaM
binding were known, the correspondence was checked
based on them, but if not, the site was checked at the level



FIGURE 7 Solution structure determination of

A2A-ctL, CaM, and the A2A-ctL-CaM complex by

SAXS. (A) Raw scattering data, (B) Kratky plots,

and (C) distance distribution functions of A2A-ctL

(orange), CaM (cyan), and the A2A-ctL-CaM 1:1

molar mixture (black). (D) Rg (black), and Dmax

(red) distributions for selected EOM ensembles of

A2A-ctL suggest the presence of a slightly bimodal

conformational distribution, which is anyway highly

elongated. (E) Averaged ab initio dummy atom model

of the complex generated by DAMMIF suggests bind-

ing of CaM to one end of A2A-ctL. (F) SASREF rigid

body modeling using chain-like GASBOR models

separately generated for both components. (G) The

dummy atom multiphase model generated by

MONSA also gives strong indications of the presence

of a folded CaM molecule at one end of the complex,

in which A2A-ctL remains largely disordered. The

CaM crystal structure (yellow) (PDB ID 1CLL) has

been superimposed on the CaM phase of the A2A-

ctL-CaM complex MONSA model (G). In (F) and

(G), CaM and A2A-ctL are colored cyan and orange,

respectively.
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of intracellular loop or C-terminus reported to possess the
CaM binding region. The prediction of seven known binding
sites failed. Almost all proteins in the prediction had one or
more potential CaM-binding sites. Most often, the site was
located in one of the three intracellular loops (20, 14, and
42 sites for the loops 1-3, respectively). A total of 26 binding
sites were predicted in the C-terminus, including two previ-
ously known class A, five class B, and three class C GPCRs.
According to the prediction, the CaM-binding site on the
A2AR locates in the C-terminus, at residues 290–302
(YRIREFRQTFRKI). When the predicted binding sites
were compared to the presence of one or more potentially
palmitoylated cysteines in the proximal part of the receptor
C-terminus, we noticed that a C-terminal binding site was
almost three times more likely (37.3%) than in the case of
palmitoylated receptors (14.3%) (Tables S2 and S3).
DISCUSSION

In this study, our goal was biophysical characterization of
the large cytoplasmic tail of human A2AR and the binding
of CaM to it. Although experimental data related to the
function of A2A-ct is very limited, it has been proposed to
take part in different protein-protein interactions, including
interactions with dopamine D2 receptor, ARNO/cytohe-
sin-2, b-arrestins, and CaM (43,73,74).

Our SRCD, SAXS, and NMR results support the previ-
ously predicted disordered and extended conformation of
the A2A-ct in solution. Interestingly, certain negatively
charged membrane-mimicking compounds induce a confor-
mational change, making the C-terminus more helical
(Fig. 2). NMR revealed transient b-conformations in the
proximal part of the C-terminus (Fig. 3 B). Although the
A2AR lacks a putative palmitoylation site at the end of
helix 8, which anchors to the lipid bilayer in many GPCRs
(Table S2), this region adopts a-helical conformation in
the solved A2A crystal structures and is partially buried in
the membrane (10,12). Furthermore, the CXCR4 receptor
lacks palmitoylation at the corresponding site, but it does
not form helix 8 (75). More precise inspection of the
A2AR crystal structures reveals that on this region the hy-
drophobic residues organize to the membrane side of the
helix, whereas the polar and charged residues point toward
the cytosol. Apart from Glu-294, charged residues in this
helix are positive arginines. Thus, it is consistent that nega-
tive membrane-mimicking compounds affect the folding of
the C-terminus, as the region corresponding to an amphi-
pathic helix is induced to fold. A similar negative charge-
assisted folding was observed in the case of peptides
corresponding to the TM helices of A2AR (76). Conse-
quently, the presence of transient b-conformations in
aqueous environment is not surprising when considering
that both hydrophobic as well as electrostatic interactions
might play a role in folding of the C-terminus. In solution,
these interactions are disturbed and the A2A-ct has more
freedom to adopt different conformations.

A CaM-A2AR interaction has been reported in different
cell-based and mass spectrometry studies (19,42,43), but
nothing is known about its binding affinity or thermody-
namics. In addition, the effect of calcium on binding is
unclear. According to our native PAGE, ITC, and analytical
gel filtration results, the A2A-ct binds CaM in a calcium-
dependent manner (Figs. 4 and 5). When the C-terminal
amino acids 293–320 are deleted or EDTA is added, high-
affinity binding is abolished. The same effect is achieved
by mutating arginines at positions 291, 293, 296, 300,
304, and 309 to alanines, demonstrating the importance of
these positively charged amino acids for the interaction.
Biophysical Journal 108(4) 903–917
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Our SAXS and NMR data indicate that CaM binds to the
proximal end of the A2A-ct tail with no major conforma-
tional changes—such as becoming more compact—occur-
ring upon CaM binding (Fig. 7, Table 2).

In 2008, Woods, et al. (19), localized the CaM-binding
site to the proximal portion of A2A-ct, and the A2AR C-ter-
minal peptide always kept the first 291RIR293 residues when
the A2A-ct-CaM complex was exposed to chymotryptic
digestion. On the other hand, from the A2AR crystal struc-
tures, it is obvious that Arg-291 is buried in the membrane,
and most probably unable to take part in the interaction
in vivo. Our NMR results suggest CaM binding to residues
293–321 (Fig. 3 B). Thus, we think that Arg-293 and the
subsequent arginines are involved in CaM binding. Based
on ITC studies, the A2A-ct-CaM interaction has a 1:1 stoi-
chiometry with a Kd of 97.95 9.3 nM (Table 1). The affin-
ity of binding is quite high for a protein-protein interaction,
but CaM is known to bind many of its interaction partners
with nanomolar affinity. For instance, Bofill-Cardona,
et al., reported 80 nM affinity for the binding of CaM to
dopamine D2 receptor peptide (72), and the affinity of
CaM for example toward its protein kinase targets can be
at least an order of magnitude higher (77,78).

A2A-ctL bound to lipid vesicles immobilized on a sensor
surface, and CaM binding to A2A-ct released the whole
A2A-ct-CaM complex from the vesicles. Binding of A2A-ct
to vesicles was expected, as the vesicles contained negatively
charged lipids, but the ability of CaM to release the whole
C-terminus from the vesicles was an interesting finding. A
similar competition between CaM and a lipid membrane sur-
face was previously observed for the myelin basic protein
(79).Most likely, CaMreplaces the negative lipid head groups
while binding to the arginine-rich epitope of the A2A-ct. It
would be interesting to know towhat extent the conformation
of helix 8 has to change to bind CaM. Is CaM alone enough to
disrupt the membrane-helix 8 interaction to an extent that en-
ables A2A-ct-CaM binding, or is something else, like phos-
phorylation of Threonine 298, needed in vivo? One possible
factor could also be a local change in the electrostatic environ-
ment during an action potential. It has been proposed that
direct calcium binding to anionic membrane phospholipids
changes the electrostatic environment surrounding the
immunoreceptor tyrosine-based activation motif (ITAM) of
a T-cell antigen receptor. This electrostatic change disrupts
the ionic interaction between a positively charged ITAM
and negatively charged phospholipids, exposing a tyrosine
to phosphorylation and subsequently triggering an extensive
signaling network (80). A similar mechanism could be
possible in the case of A2AR.

We used the CaM Target Database (62) to examine poten-
tial CaM binding to 116 primarily class A GPCRs in silico.
Seventy-six of the predicted binding sites localized to intra-
cellular loops and 26 to the C-terminus. Of the three
intracellular loops, binding was predicted to occur most
frequently in loop 3. Presence of palmitoylable cysteine in
Biophysical Journal 108(4) 903–917
the proximal part of the receptor C-terminus was observed
to be related with almost three times lower probability of
having a C-terminal CaM-binding site in the prediction
compared to receptors lacking palmitoylable cysteine at
this position. It seems that presence of palmitoylated
cysteine in the proximal part of the GPRC C-terminus might
restrain CaM binding into this domain. Is this a general reg-
ulatory mechanism of CaM binding among GPCRs? This
remains to be answered in the further studies. There might
be large differences in CaM binding among GPCRs
belonging to the same GPCR family, let alone GPCRs
belonging to the different families, and that ultimately,
each GPCR-CaM interaction has to be verified separately.
As discussed earlier, the CaM Target Database predicts
CaM binding to the A2AR residues 290–302, but the first
three amino acids T290, R291, and I292 of the predicted
binding site are buried within the membrane in the crystal
structures and possibly unavailable for direct CaM binding.
Thus, when considering a potential CaM-binding site, it is
important to also take into account such restrictions.

Overall, our study indicates that the carboxyl terminal
domain of A2AR has significant structural flexibility and
ability to adopt different conformations depending on its
surrounding and interaction partners. This feature may
play an important role in non-G-protein signaling. However,
studying ligand-dependent changes and the effect of allos-
terism on these interactions requires full-length receptors.
In the case of A2AR, it would be interesting to know how
agonist/antagonist binding to the extracellular side or phos-
phorylation of threonine 298 affects CaM binding, and vice
versa. Heteromerization of A2AR with D2, mGlu5, and
CB1 receptors, for example, might also change the way
these receptors bind CaM and which pathways they use
for signaling. Comparison of affinities of CaM and other
interaction partners would allow ranking their preference
to bind to A2A-ct. Because most of the interaction partners
of A2A-ct are calcium-binding proteins, finding out the
possible role of calcium in each of these interactions would
help in forming a general view about effects of varying
intracellular calcium concentration on A2AR signaling,
desensitization, and recycling, for example.
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FIGURE S1 Overlay of 1H, 15N-HSQC spectra of A2A-ctL(single red contour) and A2A-ctL in 10 % TFE (blue 

contours). Peaks drawn in magenta and cyan originate from aliased arginine sidechain N-H groups. 



 

FIGURE S2 Binding of A2A-ctL, CaM and the A2A-ctL-CaM complex to lipid vesicles measured with SPR. 

The durations of the protein injections are indicated by the shaded light blue areas. Between protein injections, 

regeneration with NaOH was carried out (arrows). The first and last protein (A2A-ctL) injections were 

identical, showing a specific effect on the amount of membrane-bound protein by CaM.  

  



 

 

FIGURE S3 Titration of A2A-ctL binding onto immobilized lipid vesicles using SPR. A Kd value of 

approximately 1 µM can be estimated for the protein-membrane interaction. All individual data points are 

shown on the graph.   

  



 

 

FIGURE S4 Fitting of the different SAXS models to the raw scattering data. The data for A2A-ctL are in 

orange, for CaM in cyan, and for the complex in gray, and the fitting curve for the latter is in red. The 

corresponding models are shown within the main text, in Figure 7. 

  



 

 

FIGURE S5 Dependence of the radius of gyration on protein concentration. The shown Rg values are obtained 

from Guinier analysis. CaM, cyan; A2A-ctL, orange; complex, black.  

 

 

  



TABLE S1 SAXS modeling Chi-values. 

Program Sample Chi 
EOM A2A-ctL 0.8 

DAMMIF Complex 1.3 
SASREF Complex (using 

models of the 
components built by 

GASBOR) 

1.6 

MONSA A2A-ctL 1.4 
 CaM 1.1 
 complex 1.1 

 



TABLE S2 GPCR classification based on calmodulin binding predictions. 

  Name UniProtKB ID Sequence Contiguous scores of 8 or 9  Score CT Other Site Ref. (bind.) S-p Cys Ref. (S-p Cys) Class 

A) GRM5 P41594 VVRMHVGDGKSSSAASRSSSLVNLWKRR 9999999999999999999999999999 9,00 x   CT (1) C 

  HTR1A P08908 LVLYGRIFRAARFRIRKTVKKVEKTG 99999999999999999999999999 8,36   x ICL3 (2) A 

  HTR1A P08908 EAKRKMALARERKTVKTLGIIMG 99999999999999999999999 7,39   x ICL3 (2) A 

  EDG2 Q92633 QLHTRMSNRRVVVVIVVIWT 99999999999999999999 6,43   x ICL2 327 similarity A 

  OR10H3 O60404 FLSPIIFSLRNKELKNAINK 99999999999999999999 6,43 x x CT A 

  HTR1B P28222 LEKKKLMAARERKATKTLGI 89999999999999999998 6,36   x ICL3 388 sequence A 

  MC1R Q01726 YISIFYALRYHSIVTLPRA 9999999999999999999 6,11   x ICL2 315 sequence A 

  GPR21 Q99679 IYSLSNSVFQRGLKRLSG 999999999999999999 5,79 x x CT A 

  GPR52 Q9Y2T5 VIYSLSNSVFRLGLRRLS 999999999999999999 5,79 x x CT A 

  MC4R P32245 IYALRSQELRKTFKEIIC 999999999999999999 5,79 x x CT 318 sequence A 

  CHRM4 P08173 KRQMAARERKVTRTIFAI 888999999999999998 5,64   x ICL3 A 

  CHRM2 P08172 SREKKVTRTILAILLAF 89999999999999998 5,39   x ICL3 (3)  A 

  OPN1SW P03999 LNAMVLVATLRYKKLRQ 89999999999999998 5,39   x ICL1 A 

  OPN1MW P04001 TNGLVLAATMKFKKLRH 89999999999999998 5,39   x ICL1 A 

  DRD5 P21918 ASIKKETKVLKTLSVIM 89999999999999998 5,39   x ICL3 375 similarity A 

  HTR4 Q13639 WDRQLRKIKTNYFIVS 9999999999999999 5,14   x ICL1 329 similarity A 

  CNR2 P34972 SYKALLTRGRALVTLG 9999999999999999 5,14   x ICL2 A 

  NPGPR Q9Y5X5 HVVSRKKQKIIKMLLI 9999999999999999 5,14   x ICL3 A 

  MC3R P41968 FYALRYHSIMTVRKAL 8999999999999998 5,07   x ICL2 315 sequence A 

  GALR3 O60755 VYALASRHFRARFRRL 8999999999999998 5,07 x   CT 308 similarity A 

  AVPR2 P30518 GLVLAALARRGRRGHW 8999999999999998 5,07   x ICL1 341, 342 (4) A 

  NPY2R P49146 HLESKISKRISFLIIG 8899999999999998 5,04   x ICL2 342 sequence A 

  FPR1 P21462 GLIATKIHKQGLIKSS 8999999999999988 5,04   x ICL3 A 

  HRH2 P25021 ARDQAKRINHISSWKA 8888999999999998 4,96   x ICL3 305 similarity A 

  GRM7 Q14831 KRKRSFKAVVTAATM 999999999999999 4,82 x   CT (5)  C 

  OPN1LW P04000 TNGLVLAATMKFKKL 899999999999998 4,75   x ICL1 A 

  ADORA1 P30542 YAFRIQKFRVTFLKI 899999999999998 4,75 x x CT 309 sequence A 

  CCKBR P32239 ARVWQTRSHAARVIV 899999999999998 4,75   x ICL2 408 similarity A 

  GPR10 P49683 LRRRISLRLSAYAVLA 8998888888888888 4,64   x ICL2 A 

  NPY2R P49146 LGIISFSYTRIWSKLK 8888888888888888 4,57   x ICL3 342 sequence A 

  OPN1MW P04001 YLQVWLAIRAVAKQQK 8888888888888888 4,57   x ICL3 A 



  PTGER4 P35408 SDFRRRRSFRRIAGA 888888999999998 4,57   x ICL3 A 

  CRHR1 P34998 YCFLNSEVRSAIRK 99999999999999 4,50 x x CT   (6) B 

  ADRB2 P07550 VFVYSRVFQEAKRQ 89999999999998 4,43   x ICL3 341 (7-9) A 

  DRD3 P35462 VYARIYVVLKQRRR 89999999999998 4,43   x ICL3 A 

  ADRB3 P13945 FVVATRQLRLLRGE 89999999999998 4,43   x ICL3 361 similarity A 

  MTLR1 O43193 GRERGHRQTVRVLL 89999999999998 4,43   x ICL3 A 

  OR10H2 O60403 SLRNKELKVAMKRT 89999999999998 4,43 x x CT A 

  GPR10 P49683 IARVRRLHNVTNF 8999999999998 4,11   x ICL1 A 

  TACR3 P29371 ILAHKRMRTVTNY 8999999999998 4,11   x ICL1 374 sequence A 

  HCRTR1 O43613 STARRARGSILGI 8999999999998 4,11   x ICL2 A 

  DRD4 P21917 TFRGLQRWEVARR 8999999999998 4,11   x ICL3 A 

  LGR7 Q9HBX9 NQVKKEMILAKRF 8999999999998 4,11   x ICL3 A 

  OR10H1 Q9Y4A9 RNKELKVAMKKTF 8999999999998 4,11 x   CT A 

  OPN4 Q9UHM6 RAIRETGRALQTF 8999999999998 4,11   x ICL3 A 

  CASR P41180 AFKVAARATLRRS 8999999999998 4,11 x   CT (10) C 

  ADRA1A P35348 RVYVVAKRESRGL 8999999999998 4,11   x ICL3 345 sequence A 

  ADORA2A P29274 YRIREFRQTFRKI 8899999999998 4,07 x x CT (11)  A 

  DRD2 P14416 IKIYIVLRRRRKRV 88888888888998 4,07   x ICL3 (12)  A 

  CHRM2 P08172 TVLYWHISRASKSR 88888888888888 4,00   x ICL3 A 

  CHRM5 P08912 RVVLVKERKAAQT 8888999999998 4,00   x ICL3 A 

  PTGER4 P35408 EKIKCLFCRIGGSR 88888888888888 4,00 x   CT A 

  CHRM3 P20309 TKRKRMSLVKEK 899999999998 3,79   x ICL3 (3)  A 

  TACR2 P21452 IILAHRRMRTVT 899999999998 3,79   x ICL1 324 sequence A 

  HCRTR1 O43613 LSGKFREQFKAA 899999999998 3,79 x   CT A 

  HTR5A P47898 IYKAAKFRVGSR 899999999998 3,79   x ICL3 A 

  GHSR Q92847 SLIGRKLWRRRR 899999999998 3,79   x ICL3 A 

  GPR1 P46091 WFTGFKWKKTVT 899999999998 3,79   x ICL1 A 

  OPRM1 P35372 IVRYTKMKTATN 899999999998 3,79   x ICL1 353 sequence A 

  HTR6 P50406 TKHSRKALKASL 899999999988 3,75   x ICL3 A 

  GALR1 P47211 RRSSSLRVSRNA 899999999988 3,75   x ICL2 320 similarity A 

  MTLR1 O43193 ISKKYRAAAFKL 888999999998 3,71 x x CT A 

  NTSR2 O95665 LVRHKDVRRIRS 889999999988 3,71   x ICL3 377 sequence A 

  EDNRB P24530 DRYRAVASWSRI 899988888888 3,54   x ICL2 402, 403, 405 (13), sequence A 

  GALR2 O43603 KHFRKGFRTIC 89999999998 3,46 x   CT A 



  GPR50 Q13585 VTKNKKLRNSG 89999999998 3,46   x ICL1 A 

  LTB4R Q15722 SILKRMQKRSV 89999999998 3,46   x ICL1 A 

  ADRA2B P18089 IFNQDFRRAFRR 888888888888 3,43 x x CT 439 sequence A 

  DRD4 P21917 RQGGSRRQLLLI 888888888888 3,43   x ICL2 A 

  OR10J1 P30954 ASVEGRKKAFA 89999999988 3,43   x ICL3 A 

  AVPR1A P37288 SISRAKIRTVK 88999999998 3,43   x ICL3 365, 366 similarity A 

  CHRM1 P11229 KEKKAARTLSA 89999999888 3,39   x ICL3 (3)  A 

  ADRA2A P08913 AVFTSRALKA 9999999999 3,21   x ICL1 442 similarity A 

  ADRA2C P18825 AVLTSRALRA 9999999999 3,21   x ICL1 A 

  EDG1 P21453 YSLVRTRSRR 8999999998 3,14   x ICL3 328 similarity A 

  HCRTR2 O43614 IKQIRARRKT 8999999998 3,14   x ICL3 A 

  HRH1 P35367 AVRSERKLHT 8999999998 3,14   x ICL1 A 

  HRH2 P25021 VGLNRRLRNL 8999999998 3,14   x ICL1 305 similarity A 

  MTNR1A P48039 KEYRRIIVSL 8999999998 3,14 x   CT A 

  PTH1R Q03431 WTLALDFKRK 8999999998 3,14 x   CT (6)  B 

  HTR2C P28335 IYRRAFSNYL 8899999998 3,11 x   CT (14)  A 

  DRD5 P21918 IVRSRHLRAN 8999999988 3,11   x ICL1 375 similarity A 

  HTR7 P34969 IFKREQKAAT 8999988888 3,00   x ICL3 401 sequence A 

  HTR2B P41595 AFGRYITCNY 8899988888 2,96 x   CT 397 sequence A 

  VIPR1 P32241 EVQAELRRK 999999999 2,89 x   CT (6)  B 

  GLP2R O95838 VKAELRKYW 899999998 2,82 x   CT (6)  B 

  HTR1F P30939 RAAKTLYHK 899999998 2,82   x ICL3 A 

  ADRA2B P18089 RRAQLTREK 899999998 2,82   x ICL3 439 sequence A 

  ADORA3 P33765 TVRYKRVTT 889999988 2,75   x ICL2 303 sequence A 

  DRD1 P21728 IAQKQIRRI 889999988 2,75   x ICL3 347, 351 (15) A 

  PTGFR P43088 AYQRFRQKS 889999988 2,75   x ICL1 A 

  CALCR P30988 WNQRWGRR 99999999 2,57 x   CT (6)  B 

  OPRM1 P35372 KEKDRNLR 89999998 2,50   x ICL3 (16) 353 sequence A 

  ADRA1A P35348 LKFSREKK 89999998 2,50   x ICL3 345 sequence A 

  ADRA1B P35368 FSREKKAA 89999998 2,50   x ICL3 365 sequence A 

  ADRA1D P25100 LLKFSREK 89999998 2,50   x ICL3 419 sequence A 

  GNRHR P30968 KKEKGKKL 88899988 2,39   x ICL1 A 

  OPRD1 P41143 VRYTKMKT 88888888 2,29   x ICL1 333 sequence A 

  OPRD1 P41143 GSKEKDR 8999998 2,18   x ICL3 (16) 333 sequence A 



  GPR1 P46091 QARFRSS 8999998 2,18 x   CT A 

  HTR1E P28566 YARKRTA 8899988 2,11   x ICL2 A 

  HRH1 P35367 RTKTRA 888888 1,71   x ICL2 A 

B) ADCYAP1R1 P41586       x   CT (6)  A 

  GLP1R P43220       x   CT (6)  A 

  AVPR2 P30518       x   CT (17) 341, 342 (4) A 

  HTR2A P28223         x ICL2 (18)  A 

  HTR2A P28223       x   CT (18)  A 

  MC1R Q01726         x ICL3 (19) 315 sequence A 

  GRM5 P41594       x   CT (1)  C 

C) GLP1R P43220 PLRLALLLLGMVGRAGPRPQ 99999999999999999999 6,43   x signal peptide A 

  TACR1 P25103 LAHKRMRTVTNYFLVNL 99999999999999999 5,46   x H2 322 sequence A 

  NPY1R P25929 SGNLALIIIILKQKEMR 99999999999999999 5,46   x H1 338 sequence A 

  TRHR P34981 YKDAIVISCGYKISRNY 89999999999999988 5,36   x ECL2 A 

  MC2R Q01718 ILENILIILRNMGYLK 9999999999999999 5,14   x ECL1 293 sequence A 

  CRHR1 P34998 IGKLYYDNEKCWFGK 999999999999999 4,82   x ECL2 B 

  HTR2A P28223 FNSRTKAFLKIIAVW 899999999999998 4,75   x H4 A 

  NTSR1 P30989 RSRTKKFISAIWLAS 899999999999988 4,71   x H4 381, 383 (20) A 

  TBXA2R P21731 RTTEKELLIYLRVA 99999999999999 4,50   x H7 A 

  OXTR P30559 RRRTDRLAVLATW 8999999999998 4,11   x H4 A 

  FPR1 P21462 ATVRIRELLQGMYK 88888888888888 4,00   x ECL3 A 

  PTGER3 P43115 PLLIMMLKMIFN 999999999999 3,86   x H6 358, 376 sequence A 

Proteins are divided into three groups based on the prediction results. Group A contains proteins and binding sites for which predictions were considered to be 

successful (i.e. proteins known to bind CaM by other methods and proteins which were predicted to bind CaM via the intracellular loop or C-terminal domain). 

Group B contains proteins that are shown to bind CaM by other methods, but for which binding could not be predicted with the Calmodulin Target Database and 

selected scoring criteria. Group C contains proteins that were predicted to bind to ”nonsensical”  sites on a receptor (i.e. N-terminal domain or transmembrane 

helix). Binding sites are divided to C-terminal “CT” and “other” sites. “Site” describes the binding sites more in detail. Palmitoylation sites “S-p Cys” and their 

references are shown. “Sequence” and “similarity” refer to the UniProt database description of the corresponding modification. GPRC classes into the receptors 

belong are shown. 

 

 



TABLE S3 Distribution of predicted CaM binding sites to palmitoylated and non-palmitoylated GPCRs and intracellular domains. 

  ICL1 ICL2 ICL3 CT Totally   
Palmitoylated 9 8 19 6 42   
  21,4 19,0 45,2 14,3 100,0 % 
Non-palmitoylated 11 7 24 25 67   
  16,4 10,4 35,8 37,3 100,0 % 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



etabotropic Glutamate Receptor Subtype 5 (mGluR5) 

llular Loop of the Serotonin 5-Hydroxytryptamine 1A 

ol. Chem. 279:17027-17037. 

f Muscarinic Receptors. Pharm. Res. 23:647-653. 

opressin Receptor. Mol. Pharmacol. 52:21-29. 

Kinase C Phosphorylation and Calmodulin Binding to 

yroid hormone 1 receptor and a sub-set of class b G-

 of the human beta 2-adrenergic receptor. Mutation of 

. 264:7564-7569. 

. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka, and R. C. 

Coupled Receptor. Science 318:1258-1265. 

quez, P. Kuhn, and R. C. Stevens. 2008. A specific 

 an alternate crystal form. Structure (London, England 

lmodulin Regulates Ca2+-sensing Receptor-mediated 

w Calmodulin Interacts with the Adenosine A2A and 

f Calmodulin to the D2-Dopamine Receptor Reduces 
SUPPORTING REFERENCES 

 

1. Minakami, R., N. Jinnai, and H. Sugiyama. 1997. Phosphorylation and Calmodulin Binding of the M

Are Antagonistic in Vitro. J. Biol. Chem. 272:20291-20298. 

2. Turner, J. H., A. K. Gelasco, and J. R. Raymond. 2004. Calmodulin Interacts with the Third Intrace

Receptor at Two Distinct Sites: Putative Role in Receptor Phosphorylation by Protein Kinase C. J. Bi

3. Lucas, J., D. Wang, and W. Sadée. 2006. Calmodulin Binding to Peptides Derived from the i3 Loop o

4. Sadeghi, H. M., G. Innamorati, M. Dagarag, and M. Birnbaumer. 1997. Palmitoylation of the V2 Vas

5. Nakajima, Y., T. Yamamoto, T. Nakayama, and S. Nakanishi. 1999. A Relationship between Protein 

the Metabotropic Glutamate Receptor Subtype 7. J. Biol. Chem. 274:27573-27577. 

6. Mahon, M. J., and M. Shimada. 2005. Calmodulin interacts with the cytoplasmic tails of the parath

protein coupled receptors. FEBS Lett. 579:803-807. 

7. O'Dowd, B. F., M. Hnatowich, M. G. Caron, R. J. Lefkowitz, and M. Bouvier. 1989. Palmitoylation

Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J. Biol. Chem

8. Cherezov, V., D. M. Rosenbaum, M. A. Hanson, S. G. F. Rasmussen, F. S. Thian, T. S. Kobilka, H.-J

Stevens. 2007. High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–

9. Hanson, M. A., V. Cherezov, C. B. Roth, M. T. Griffith, V.-P. Jaakola, E. Y. T. Chien, J. Velas

cholesterol binding site is established by the 2.8 Å structure of the human β(2)-adrenergic receptor in

: 1993) 16:897-905. 

10. Huang, Y., Y. Zhou, H.-C. Wong, A. Castiblanco, Y. Chen, E. M. Brown, and J. J. Yang. 2010. Ca

Ca2+ Signaling and Its Cell Surface Expression. J. Biol. Chem. 285:35919-35931. 

11. Woods, A. S., D. Marcellino, S. N. Jackson, R. Franco, S. Ferré, L. F. Agnati, and K. Fuxe. 2008. Ho

the Dopamine D2 Receptors. J. Proteome Res. 7:3428-3434. 

12. Bofill-Cardona, E., O. Kudlacek, Q. Yang, H. Ahorn, M. Freissmuth, and C. Nanoff. 2000. Binding o

Receptor Signaling by Arresting the G Protein Activation Switch. J. Biol. Chem. 275:32672-32680. 



wa, and T. Masaki. 1997. Palmitoylation of Human EndothelinB : ITS CRITICAL ROLE IN 

REMENT FOR THE CYTOPLASMIC TAIL BY G PROTEIN SUBTYPES. J. Biol. Chem. 

rin. 2008. Physical Interaction of Calmodulin with the 5-Hydroxytryptamine 2C Receptor C-

endent Receptor Signaling. Mol. Biol. Cell 19:4640-4650. 

mitoylation occurs at cysteine 347 and cysteine 351 of the dopamine D1 receptor. Eur. J. 

ding to G Protein-coupling Domain of Opioid Receptors. J. Biol. Chem. 274:22081-22088. 

2004. Calmodulin Interacts with the V2 Vasopressin Receptor: Elimination of Binding to the 

 Elevation of Intracellular Calcium. J. Biol. Chem. 279:46969-46980. 

modulin with the Serotonin 5-Hydroxytryptamine2A Receptor: A Putative Regulator of G 

nase C. J. Biol. Chem. 280:30741-30750. 

tion with peptides from G-protein coupled receptors measured with S-Tag labeling. Biochem. 

d M. Kester. 2011. Neurotensin receptor-1 inducible palmitoylation is required for efficient 

brane microdomains. Cancer Biology & Therapy 12:427-435. 
13. Okamoto, Y., H. Ninomiya, M. Tanioka, A. Sakamoto, S. Mi

G PROTEIN COUPLING AND A DIFFERENTIAL REQUI

272:21589-21596. 

14. Labasque, M., E. Reiter, C. Becamel, J. Bockaert, and P. Ma

Terminus Is Essential for G Protein-independent, Arrestin-dep

15. Jin, H., Z. Xie, S. R. George, and B. F. O'Dowd. 1999. Pal

Pharmacol. 386:305-312. 

16. Wang, D., W. Sadée, and J. M. Quillan. 1999. Calmodulin Bin

17. Nickols, H. H., V. N. Shah, W. J. Chazin, and L. E. Limbird. 

C Terminus Also Eliminates Arginine Vasopressin-Stimulated

18. Turner, J. H., and J. R. Raymond. 2005. Interaction of Cal

Protein Coupling and Receptor Phosphorylation by Protein Ki

19. Zhang, Y., D. Wang, and W. Sadée. 2005. Calmodulin interac

Biophys. Res. Commun. 333:390-395. 

20. Heakal, Y., M. P. Woll, T. Fox, K. Seaton, R. Levenson, an

receptor-mediated mitogenic-signaling within structured mem

 
 


	Human Adenosine A2A Receptor Binds Calmodulin with High Affinity in a Calcium-Dependent Manner
	Introduction
	The human adenosine A2A receptor
	Calmodulin and A2AR

	Materials and Methods
	Constructs and protein production
	Protein purification
	Synchrotron radiation far-UV circular dichroism spectropolarimetry
	Fluorescence spectrometry
	NMR spectroscopy
	Native polyacrylamide gel electrophoresis
	Isothermal titration calorimetry
	Analytical gel filtration
	Surface plasmon resonance (SPR)
	Small-angle x-ray scattering (SAXS)
	Calmodulin-binding site prediction

	Results
	The carboxyl terminal domain of the adenosine A2A receptor is intrinsically disordered
	Synchrotron radiation far-UV CD spectropolarimetry and intrinsic tryptophan fluorescence spectrometry
	NMR spectroscopy
	Biophysical characterization of the ACA-ct–CaM complex
	Native PAGE
	Isothermal titration calorimetry
	Analytical gel filtration
	NMR spectroscopy
	Surface plasmon resonance
	SAXS
	Calmodulin binding predictions

	Discussion
	Supporting Material
	Acknowledgments

	Supporting Citations

	References


