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Three-Dimensional Balance of Cortical Tension and Axial Contractility
Enables Fast Amoeboid Migration
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and Juan C. del Álamo1,4,*
1Department of Mechanical and Aerospace Engineering, 2Department of Bioengineering, 3Cell and Developmental Biology, Division of
Biological Sciences, and 4Institute for Engineering in Medicine, University of California at San Diego, San Diego, California
ABSTRACT Fast amoeboid migration requires cells to apply mechanical forces on their surroundings via transient adhesions.
However, the role these forces play in controlling cell migration speed remains largely unknown. We used three-dimensional
force microscopy to measure the three-dimensional forces exerted by chemotaxing Dictyostelium cells, and examined wild-
type cells as well as mutants with defects in contractility, internal F-actin crosslinking, and cortical integrity. We showed that cells
pull on their substrate adhesions using two distinct, yet interconnected mechanisms: axial actomyosin contractility and cortical
tension. We found that the migration speed increases when axial contractility overcomes cortical tension to produce the cell
shape changes needed for locomotion. We demonstrated that the three-dimensional pulling forces generated by both mecha-
nisms are internally balanced by an increase in cytoplasmic pressure that allows cells to push on their substrate without adhering
to it, and which may be relevant for amoeboid migration in complex three-dimensional environments.
INTRODUCTION
Amoeboid cell movement is required in many physiolog-
ical and pathological processes such as the function of
the immune system or cancer metastasis (1). To move on
surfaces, amoeboid cells implement a motility cycle (2–
4), enabled by the coordination of adhesion turnover, F-
actin polymerization and crosslinking, and motor protein
contractility (5). Unlike slower moving cells that form sta-
ble integrin-mediated focal adhesions, amoeboid cells such
as neutrophils and Dictyostelium cells rely on transient,
diffuse adhesions (2). The motor protein myosin II (MyoII)
binds actin filaments to form a network that can generate
the traction forces and is required for efficient cell motility
(6). F-actin crosslinkers such as filamin reinforce F-actin
filaments at the leading edge, stabilizing newly formed
pseudopodia by enabling a space-filling network that can
communicate traction forces between the front and the
back of the cell (7).

By definition, traction forces are the forces that a body
applies to its tangential surface to propel itself. However,
there is a puzzling lack of correlation between the migration
speed of amoeboid cells and the strength of the traction
forces, and this strength is much larger than needed to
overcome friction from the overlying fluid (8). The molecu-
lar and structural origins of the traction forces are also
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unclear, as migrating cells lacking MyoII or F-actin cross-
linkers are still able to exert significant traction forces (8–
11). Our biomechanical understanding of cell movement is
complicated further because migrating cells exert significant
normal forces (perpendicular to the substrate) in addition to
the tangential ones (12–15). The mechanism whereby the
cells are able to generate these strong normal forces is not
known, nor is the role of these normal forces in regulating
the efficiency of motility.

The three-dimensional (3D) organization of cytoskeletal
filaments (16,17) should account, in part, for the normal
forces exerted by the cells, because filaments pulling on
the substrate at an elevation angle create both a normal
and a tangential projection. However, the cell’s cortex,
which is composed of a shell of dense crosslinked actin
filaments and myosin motors attached to the membrane
and to the remainder of the cytoskeleton (18), may be a
greater contributor to the generation of these normal
forces and has been shown to regulate cell shape changes,
cell polarization, and bleb formation during cell move-
ment (19–22).

By means of a recently developed 3D force microscopy
(3DFM) technique (23), this study uncovered distinct mo-
lecular origins for the tangential and normal forces in
migrating amoeboid cells. We analyzed wild-type (WT)
chemotaxing Dictyostelium cells, as well as mutant strains
with actin crosslinking and cortical integrity defects, and
demonstrated that once the cells initiate their migration
and polarize, they generate axial traction forces by MyoII
contractility, which requires an internal crosslinked F-
actin network. Simultaneously, cortical crosslinking and
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contractility (cortical tension) provides an additional mech-
anism for force generation and cytoplasmic pressurization
that does not require MyoII. Our findings are consistent
with a model in which the two force-generating cellular do-
mains are mechanically connected by myosin I crosslinking
which enables the communication of forces between the
domains.

We found that the balance between axial MyoII contrac-
tility and cortical tension is important to produce the cell
shape changes needed for locomotion, because cell migra-
tion speed correlates with the ratio of the magnitudes of
the tangential traction forces to the normal ones. To our
knowledge, these results reveal a novel role for 3D cellular
forces in establishing the efficiency of amoeboid cell move-
ment and provide the first mechanistic explanation for the
high values of cell-substrate forces measured in migrating
amoeboid cells.
MATERIALS AND METHODS

Cell culture and microscopy

Dictyostelium discoideum cells were grown under axenic conditions in

HL5 growth medium in tissue culture plates. We used 10 different cell

lines: 1) WT Ax3; 2) WT Ax2; 3) myosin II null cells, mhcA� (generated

from Ax3); 4) filamin null cells, abp120� (generated from Ax2); 5) cor-

texillin I null cells, ctxA� (generated from Ax2); 6) cortexillin II null

cells, ctxB� (generated from Ax2); 7) cortexillin I and cortexillin II

double null cells, ctxA�/B� (generated from Ax2); 8) myosin IA null

cells, myoA� (generated from Ax2); 9) myosin IB null cells, myoB�

(generated from Ax3); and 10) myosin IA and myosin IB double null

cells, myoA�/B� (generated from Ax3).

All the cell lines were obtained from the Dicty Stock Center (http://

dictybase.org/StockCenter/StockCenter.html) except the myoA�, myoB�,
and myoA�/B�, which were generously provided by Dr. Margaret Titus,

and in which myosin I genes were disrupted by recombination using the

procedures found in Peterson et al. (24) and Novak et al. (25).MhcA� cells

lack the protein myosin II, which localizes at the back of the cell and acts

both as an F-actin crosslinker and as a motor (26). Abp120� cells lack the

protein filamin, which localizes at the front of the cells and is required for

the stabilization of the newly formed pseudopods (7). CtxA�, ctxB�, and
ctxA�/B� cells lack the protein cortexillin I, cortexillin II, and both pro-

teins, respectively. Cortexillin I and cortexillin II are F-actin-binding pro-

teins, members of the a-actinin/spectrin family that are located in the

cortex of Dictyostelium cells (27). MyoA�, myoB�, and myoA�/B� cells

lack the protein myosin IA, myosin IB, and both proteins, respectively.

Myosin IA and myosin IB are single-headed actin molecular motors

involved in the connection between the plasma membrane and the cortical

and intracellular F-actin (25).

Aggregation-competent cells were prepared by pulsing 5 � 106 cells/mL

suspension in Na/K phosphate buffer (9.6 mMKH2PO4, 2.4 mMNa2HPO4,

pH 6.3) with cAMP to a concentration of 30 nM every 6 min for 6 h.

Cells were seeded onto the functionalized polyacrylamide substrate and

allowed to adhere. A drawn glass capillary mounted on a micromanipulator

served as the source of chemoattractant (150 mM cAMP in an Eppendorf

femtotip; Eppendorf, Hamburg, Germany). We acquired images using a

spinning disk confocal microscope (Carl Zeiss, Thornwood, NY) and a

cooled charge-coupled device camera (HQ CoolSNAP; Roper Scientific,

Martinsried, Germany). The microscope was equipped with a piezo-Z

actuator (Applied Scientific Instrumentation, Eugene, OR). A PC running

SLIDEBOOK software (Intelligent Imaging Innovations (3i), Denver,

CO) controlled the entire setup.
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Polyacrylamide gel preparation and
characterization

We fabricated 12–mm diameter, ~40 mm-thick polyacrylamide gels of 4%

acrylamide and 0.056% bisacrylamide (~900 Pa (28)) on 22-mm square No.

1 glass coverslips (29,30). To improve the signal/noise of the image z-stacks

and the displacement field calculation, we fabricated the polyacrylamide

gel as two adjacent layers with the bottom one containing no beads and

the top one containing 0.03% carboxylate modified red latex beads with

0.1 mm diameter (Fluospheres; Invitrogen, Carlsbad, CA). The two layers

were verified to adhere well to each other under experimental conditions

by confirming continuous registration of the two layers using gels with

beads of a second color in the bottom layer. We mounted the coverslips

with the gels in Petri dishes with a circular opening in the bottom using sil-

icon grease (Dow Corning, Midland, MI). We made the gels physiologically

compatible by crosslinking collagen I to the surface of the polyacrylamide.

We used 1 mM Sulfo-SANPAH (Thermo Scientific, Rockford, IL) after UV

activation to crosslink 0.25 mg/mL collagen I. The gels were incubated

overnight at room temperature. After washing, the gels were stored in

Na/K phosphate buffer (9.6 mM KH2PO4, 2.4 mM Na2HPO4, pH 6.3,

same composition as used in the experiments) and antibiotic (40 mMAmpi-

cillin) for up to a week.

We measured substrate thickness by locating the top and bottom planes

of the gel and subtracting their z positions. The Young’s modulus (~900

Pa) was verified by measurements of the indentation of a tungsten carbide

sphere (31) and independently through atomic force microscopy. To mea-

sure the thickness of the gel, we located the top plane by maximizing the

number of in-focus pixels of cell outlines as described by del Álamo

et al. (8) and the bottom plane by focusing on streaky patterns left on the

surface of the glass coverslip during treatment for gel attachment.
3DFM

The 3D forces exerted by the cells on the substrate were measured using the

3DFM method described by del Álamo et al. (23). We measured the 3D

deformation of the substrate by imaging a thin layer of the substrate surface

where the fluorescent beads are located by using a confocal microscope. We

imaged a z-stack consisting of 24 planes separated 0.4 mm from each other

and acquired images every 5 s. We calculated the substrate deformation by

cross-correlating each instantaneous image z-stack in which the substrate is

deformed and a nondeformed z-stack used as reference. In each experiment,

the reference z-stack was obtained after the cell moved out of the field of

view, which was easy to achieve, because Dictyostelium cells are highly

motile. The instantaneous and reference z-stacks were divided into 3D

interrogation boxes of size 24 � 24 � 24 pixels in the x, y, and z directions,

to balance resolution and signal/noise while minimizing phototoxic effects.

These settings provided a Nyquist spatial resolution of 2.1 mm.

Using the measured deformations as boundary conditions, we computed

the 3D stresses (force per unit area) generated by the cells on the substrate

using the 3D Green’s function of the elastic equation of equilibrium for a

linear, homogeneous, isotropic 3D body, which was given in closed analyt-

ical form in the Fourier domain by del Álamo et al. (23). Given that our

Fourier method does not enforce zero stress values outside the cell bound-

aries, the finite spatio-temporal resolution of the deformation measurements

may lead to small nonzero values outside of the cell for relatively small,

fast-moving cells such as Dictyostelium (see Fig. 1).
Actin foci localization

WT cells were transformed with a vector encoding Lifeact (Abp140 (1-17)-

GFP), a 17-amino-acid peptide that binds F-actin fused to GFP (32). Life-

act-expressing WT cells were used for fluorescence imaging of the actin

at the ventral surface of the cells. We acquired z-stacks of green and

red fluorescence images to visualize the actin localization of the cells

and the beads’ distribution, respectively. The Lifeact fluorescence plane

http://dictybase.org/StockCenter/StockCenter.html
http://dictybase.org/StockCenter/StockCenter.html
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FIGURE 1 Tangential and normal stresses ex-

erted by a WT cell on the substrate and actin foci

localization at the cell’s ventral surface in contact

with the substrate, plotted every 18 s. (A) Instanta-

neous tangential stresses. The color bar on the right

represents the magnitude of the tangential stresses.

(Black) Contour of the cell. The cell moves from

bottom to top. (B) Instantaneous normal stresses.

The color bar on the right indicates normal stress

magnitude in the upward (pulling, red) or down-

ward (compressive, blue) direction. (C) Localiza-

tion of the actin structures at the ventral side of

the cell at the same instants of time shown in

panels A and B. The scale bar represents 10 mm.

To see this figure in color, go online.
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corresponding to maximum bead fluorescence was used to detect actin

puncta or foci. It is straightforward to see that, if the bead distribution is uni-

form in z, the Lifeact signal recorded in this plane comes from a very nar-

row slice at the surface of the gel, thus allowing us to visualize the actin foci

on the ventral surface of the cells without interference from actin structures

in the cell interior. These actin foci have been previously used as indicators

of the areas where Dictyostelium cells adhere to the substrate (33).
H2B-GFP expressing cells

The sequence of H2Bv2 (34), a histone H2B domain-containing protein,

was amplified from gDNA using the forward primer AAAAAGATC

TAAAAAATGGTATTCGTTAAAGGTCAAAAG and the reverse primer

TTTTTACTAGTGTTTTTGCTTTCAGTTGGATTG.

The H2Bv2 domain was fused to GFP, by cloning into the extrachromo-

somal vector pDM323 digested with BglII and SpeI. The H2Bv2 domain

was sequenced to ensure mutation-free DNA. WT cells were transfected

with this plasmid to generate H2B-GFP expressing cells for fluorescence

imaging.
Cell-based reference system

Shape and orientation of the cells is continuously changing in the laboratory

coordinate system where the images are obtained. Thus, to perform statis-

tical analysis over long periods of time and for many different cells, we

calculated the instantaneous stresses in a cell-based reference system that

is dimensionless and can be used commonly for all the cells. This proce-

dure, thoroughly described in the past (8,10), has allowed us to compile

robust statistics from many cells at different instants of time. We identified

the contour of the cell from the differential interference contrast images

taken with the microscope in the laboratory reference frame and we

computed the principal geometrical axes of the cell contour and their

orientation in the laboratory coordinate system. The center of the cell-based
coordinate system was located in the centroid of each cell at each instant

of time. The coordinates of the center of the cell-based coordinate system

in the laboratory coordinate system were (xc(t), yc(t)). In the cell-based co-

ordinate system (x, h), the axes were parallel to the directions of the prin-

cipal axes of each cell at each instant of time. The direction of the horizontal

x-axis followed the direction of the major axis of each cell with the cell

front pointing in the positive direction, and all spatial coordinates were

rescaled with the half-length of the cell L(t)/2, making the cell-based refer-

ence system dimensionless. The (x, h) coordinates can be expressed math-

ematically as

x ¼ f½x � xcðtÞ�cos½qðtÞ� þ ½y� ycðtÞ�sin½qðtÞ�g=½LðtÞ=2�;

h ¼ f½y� ycðtÞ�cos½qðtÞ� � ½x � xcðtÞ�sin½qðtÞ�g=½LðtÞ=2�;
where x and ywere the coordinates in the laboratory coordinate system, and

q(t) was the angle between the major principal axis of the cell and the x axis
of the laboratory coordinate system.

To obtain the average stresses, we converted the instantaneous stresses

into the cell-based coordinate system (x, h). Because the distance was

scaled with L(t)/2 in the cell-based coordinate system, the longitudinal

axis of the cell spanned from x ¼ �1 to x ¼ 1. The dimensions of the

stresses in this coordinate system needed to be consistent with the fact

that their surface integral is a force. Therefore, the forces were scaled

with [L(t)/2]2 and have dimensions of force. In Fig. 2, the x-coordinate is

expressed as x/a and the h-coordinate is expressed as y/a.
Calculation of the correlation coefficients

Once the cell contour was determined in the laboratory-based reference sys-

tem, we determined the principal geometrical axes of the cell. The cell-sub-

strate stresses were calculated in Cartesian coordinates (txz, tyz, and tzz)

and rotated such that the cell major axis was parallel to the vertical
Biophysical Journal 108(4) 821–832
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FIGURE 2 (A) Sketch of the locations of the proteins that we examined

inside the cell, and the interaction with the F-actin filaments. (B–K)

Average tangential and normal cell-generated force maps for WT and
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direction. Then, we calculated the axial tension, Tx(x,t), in the cell-based co-

ordinate system by integrating the x-component of the traction stresses in

the cell-based reference system across the cell width (h-direction) at each

instant of time, and the normal tension, Tz(x,t), by integrating the z-compo-

nent of the stresses in a similar manner, i.e.,

Txðx; tÞ ¼
Z h2

h1

txzðx; h; tÞdh;

T ðx; tÞ ¼
Z h2

t ðx; h; tÞdh:
z
h1

zz

The axial and normal tensions, Tx(x,t) and Tz(x,t), defined this way have di-

mensions of force per unit length and typically are of approximately nN/mm.
Using these data, we determined the position of the maximum axial tension

in the front and back halves of the cells, the position of the maximum normal

tension in the front and rear halves of the cell, and the position of the mini-

mum normal tension in between the regions of positive normal tension. To

calculate the correlation between the spatio-temporal evolution of the

tangential and normal stresses, we calculated the Spearman correlation coef-

ficient for these two signals. To calculate the correlation coefficient between

the location of the negative normal stresses and the location of the cell nu-

cleus, we calculated the Spearman correlation coefficient between the min-

imum normal tension and the location of the cell’s nucleus center. To

calculate the correlation coefficient for the temporal evolution of the tangen-

tial and normal forces, we calculated the magnitudes of these two signals at

each instant of time and determined their Spearman correlation coefficient.
Space-time kymographic representation

We obtained the cell-substrate stresses and rotated them into the cell-based

reference system as described above. Then, we kept the major axis of the

cell aligned to the vertical axis of the kymograph, which represents the po-

sition of the cell, and constructed the kymograph by stacking stresses com-

ing from consecutive temporal measurements with the time variable in the

horizontal axis and the position in the vertical axis. The cell contour was

determined and plotted, together with the tangential stresses. The locations

of the cell front and back were also calculated and plotted, as were the po-

sitions of the maximum tangential tension in the front and rear halves of the

cells. The instantaneous normal stress kymograph was constructed in the

same way, but using the measured normal stresses instead of the tangential

ones.
RESULTS

Adhesion foci are needed to pull upward and
inward but not to push downward

We measured the 3D forces exerted by Dictyostelium cells
when migrating up a chemoattractant gradient over flat
mutant strains. The upper row of each panel shows the distribution of

the tangential traction forces per unit area in picoNewtons, color bar on

the right. (White arrows) Direction of the tangential traction forces.

(Gray) The average cell contour. The lower row of each panel shows

the distribution of the normal forces per unit area in picoNewtons, with

color bar on the right. (Red) Positive normal forces (the cells pull upward);

(blue) negative normal forces (the cells push downward). The average

maps of the following strains are displayed: (B) WT Ax3 cells, N ¼ 13;

(C) WT Ax2 cells, N ¼ 13; (D) mhcA� cells, N ¼ 13; (E) abp120� cells,

N ¼ 12; (F) ctxA�/B� cells, N ¼ 11; (G) ctxA� cells, N ¼ 12; (H) ctxB�

cells, N ¼ 13; (I) myoA�/B� cells, N ¼ 13; (J) myoA� cells, N ¼ 13; and

(K) myoB� cells, N ¼ 14. To see this figure in color, go online.
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elastic substrates using the 3DFM method presented in del
Álamo et al. (23). Fig. 1 A shows the magnitude and spatial
distribution of the tangential (in the plane of the substrate)
traction stresses exerted by a migrating WT cell,

ttangential ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2zx þ t2zy

q
;

with tzx being the axial stresses in the direction of the ma-

jor axis of the cell, and tzy being the lateral stresses in the
direction of the minor axis of the cell. Fig. 1 B shows the
magnitude and direction of the normal stresses, tzz, exerted
in the direction perpendicular to the substrate simulta-
neously to the tangential stresses shown in Fig. 1 A. We
find that cells exert stresses on the substrate in two diffuse
regions located at their front and rear halves. In these re-
gions, the cells apply inward contractile tangential stresses
(Fig. 1 A) as well as normal stresses pulling the substrate
upward (red regions in Fig. 1 B). Concurrently, the cells
also exert downward normal stresses (compressing the sub-
strate) on a central area located between the frontal and
rear regions where the cells pull up (Fig. 1 B). These pat-
terns are consistently observed in all 3D cell-substrate
forces measured over time in WT cells (see Fig. S1 in
the Supporting Material). These data indicate that the loca-
tions where the cell applies tangential traction stresses
directly coincide with the locations where the cell exerts
upward pulling normal stresses.

To clarify the interplay between adhesions, pulling forces,
and pushing forces in migrating amoeboid cells, we
measured 3D cell-substrate forces and the localization of
actin foci inWT cells simultaneously by imaging the F-actin
fluorescent reporter Lifeact at the substrate’s surface (Fig. 1
C). Actin foci are actin-rich structures that have been previ-
ously reported to localize on the ventral surface of the cell
at the adhesion regions in migrating Dictyostelium cells
(33,35). Our results indicate that the locations where the
cell pulls upward and inward on the substrate, identified
by the red spots in Fig. 1, A and B, coincide with the location
of the actin foci (white spots in Fig. 1 C). No actin foci were
found in regions where the cells are pushing down on the
substrate (blue regions in Fig. 1 B). This suggests that cells
need adhesion to pull over the substrate, but can compress it
without.
Cortical tension is an important contributor to
cell-substrate forces in cells with defects in the
leading edge and posterior F-actin crosslinking

Cells lacking MyoII, which is important for axial contrac-
tility, or filamin (Abp120), an F-actin crosslinker that local-
izes to the leading edge and is important for pseudopod
extension (Fig. 2 A), still exert appreciable traction forces
on their substrate (9–11). To understand the genesis of these
forces, we measured the 3D cell-substrate forces in MyoII
null cells (mhcA�) and filamin null cells (abp120�), and
those of their WT background strains (Ax3 and Ax2). To
obtain the average tangential and normal forces exerted by
each strain, we used a cell-based reference system with its
origin at the centroid of the cell and its horizontal axis
aligned along the front-back axis of the cell, and we normal-
ized spatial coordinates with the cell length (8,10) (see Ma-
terials and Methods, and Fig. 2, B–K).

In the WT strains Ax3 and Ax2, the tangential forces
were concentrated on two areas located at the front and
rear ends of the cell (first row in Fig. 2, B and C, and
see Fig. S1 A). The direction of these tangential forces
(white arrows in Fig. 2) indicates that the cells contracted
axially. In the normal direction, WT cells pulled upward at
their front and rear, while they pushed downward on their
central region (second row in Fig. 2, B and C, and see
Fig. S1 B). The pulling normal and tangential forces
were of similar strength (Fig. 2, B and C). The ratio be-
tween the magnitudes of the tangential and normal forces
was quantified as

rt;n ¼
nD ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2zx þ t2zy

q E.
hjtzzji

o

for each cell, where h,,,i and {,,,} denote, respectively,

spatial and temporal averages (Fig. 3 C), and was close to
0.7 in both Ax3 and Ax2 cells.

In contrast to WT cells, mhcA� and abp120� cells pulled
on the substrate in the tangential and normal directions all
along their peripheral cortex (Fig. 2, D and E, and see
Fig. S2). The tangential forces were weaker in these mutant
strains than in WT cells but the normal forces had similar
strength (Fig. 3, A and B). Consistently, the average ratio
of tangential to normal force magnitude was significantly
reduced in these mutant strains, rt,n ¼ 0.40 for mhcA� cells
and rt,n ¼ 0.48 for abp120� cells (Fig. 3 C). The 3D force
patterns generated by cells lacking actomyosin contraction
were similar to those observed for liquid drops when placed
onto soft substrates, which exert upward forces due to sur-
face tension around their edge, and downward forces due
to fluid pressure under their center (36). These results are
consistent with our previous two-dimensional observations
that axial cell-substrate forces mediated by actomyosin
contraction are lost in mhcA� and abp120� cells
(8,10,11), and suggest that cortical and membrane tension
generate the 3D cell-substrate forces observed in these
cell strains.
Axial traction forces drive the movement of cells
with cortical crosslinking defects

To examine the role of the cell cortex in the generation of
cell-substrate forces, we analyzed three mutant strains
with cortical crosslinking defects: Cortexillin I null cells
(ctxA�), Cortexillin II null cells (ctxB�), and Cortexillin
I and Cortexillin II double null cells (ctxA�/B�). Cortexillin
I and Cortexillin II are F-actin-binding proteins that
Biophysical Journal 108(4) 821–832
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FIGURE 3 (A) Average magnitude of the tangential traction forces in picoNewtons. (B) Average magnitude of the normal forces in picoNewtons. (C) Ratio

between the tangential and normal forces’ magnitude. (D) Top panels show the time fluctuations of the locations of the maximum tangential and normal

tensions in the cell with respect to the cell center. Bottom panels show the time fluctuations of the magnitude of the tangential and normal forces exerted

by the cell. (Left panels) Representative Ax3 cell. (Right panels) Representative myoA�/B� cell. (E) Spearman correlation coefficient for the spatio-temporal

evolution of the location of the tangential and normal tension in the cell-based coordinate system. (F) Spearman correlation coefficient for the temporal evo-

lution of the magnitudes of the tangential and normal forces. The cell lines and number of cells (N) are indicated beneath the box plot. (Asterisks) Statistically

significant differences between each specific mutant strain and its corresponding WT distribution (Wilcoxon ranksum test, * p < 0.05, ** p < 0.01). To see

this figure in color, go online.
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form complexes with the IQGAP proteins (IQGAP1 and
IQGAP2) and bind the Rac family of small GTPases (37).
These proteins are enriched in the cortex of migrating cells
at the front, back, and lateral sides of the cell (38,39), but are
not found in the ventral actin foci (39) (Fig. 2 A). Fig. 2, F–
H, shows that the analyzed cortexillin null cells contracted
axially, in a manner similar to WT cells, exerted tangential
forces on the substrate that were concentrated at the front
and back ends of the cell.

Interestingly, these axial forces were even greater than
those exerted by WT cells (Fig. 3 A). However, compared
to WT cells, the normal forces were weaker with respect
to the tangential ones and were distributed less laterally
(Figs. 2, F–H, and 3 C). Moreover, the average ratio of
tangential to normal force magnitude was significantly
increased in these mutant strains, rt,n ¼ 0.92, 0.86, and
0.84 for ctxA�/B�, ctxA�, and ctxB�, respectively. These re-
sults suggest that in cells with cortical crosslinking defects,
the tangential traction forces mediated by MyoII contrac-
tility are increased and drive the cell motion, whereas the
cortical tension is weaker and is not essential for their
movement. Thus, the ctxA�, ctxB�, and ctxA�/B� cells
exhibit an opposite phenotype regarding the generation of
tangential and normal forces than the cells with defective
Biophysical Journal 108(4) 821–832
leading-edge and posterior F-actin crosslinking, abp120�

and mhcA�.
Myosin IA and Myosin IB are required for
intracellular force transmission between the
cortex and the internal F-actin network

The results above indicate that chemotaxing amoebae can
exert 3D forces on their substrate through two distinct
cellular domains, one being the leading-edge and posterior
F-actin structure and the other being the cortical tension
generated by the cellular membrane and cortex. To examine
whether these mechanical domains are interconnected or in-
dependent, we studied the 3D cell-substrate forces exerted by
Myosin IA null cells (myoA�),Myosin IB null cells (myoB�),
andMyosin IA andMyosin IB double null cells (myoA�/B�).
Myosin IA (MyoA) and Myosin IB (MyoB) are single-head-
ed actin molecular motors with a high-affinity membrane-
binding C-terminal tail domain, which are localized at the
membrane/cortex of the cells (40) (Fig. 2 A). In these strains,
the connections among the plasma membrane, the cortical
actin, and the internal F-actin meshwork are impaired (25).

Our results indicate that myoA�, myoB�, and myoA�/B�

cells exert axial tangential forces that are concentrated on
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two regions at their front and back as observed for the WT
and cortexillin null cells in which the cell-substrate force
generation is dominated by actomyosin contractility (first
row in Fig. 2, I–K, and see Fig. S3 A). The ratios of tangen-
tial to normal forces for myoA�/B�, myoA�, and myoB�

were intermediate between those of WT and cortexillin
null cells, rt,n ¼ 0.82, 0.77, and 0.78, respectively (Fig. 3
C). However, the normal pulling forces exerted by myoB�

and myoA�/B� cells were more evenly distributed along
the cell periphery, similar to the mhcA� and abp120� cells
in which cell-substrate force generation is dominated by
cortical tension (second row in Fig. 2, I and K, and see
Fig. S3 B). These results suggest that the actomyosin con-
tractile compartment of myoB� and myoA�/B� cells is not
fully coupled to their cortex. Loss of MyoA (Fig. 2 J)
affected the cells in a different manner, causing a traction
force phenotype more similar to that of ctxB� cells.

To further investigate the interconnection between the
actomyosin-mediated axial contractility and cortical ten-
sion, we assessed the correlation in the magnitude and co-
localization of the tangential and normal pulling forces for
each strain (see Materials and Methods). In WT cells, the
tangential and normal pulling forces colocalized in space
and their magnitudes followed the same temporal evolution
(Fig. 3 D), leading to high values of the correlation coeffi-
cients of colocalization (Fig. 3 E) and magnitude (Fig. 3
F). Similar high correlation values were obtained for the
mhcA�, abp120�, ctxA�/B�, ctxA�, and ctxB� cells, sug-
gesting that the cortical and the internal F-actin networks
are two independent, yet interconnected generators of
cellular force. However, in myoA�/B� cells the tangential
and pulling normal forces did not colocalize, and their mag-
nitudes evolved differently in time (Fig. 3 D and see Fig. S3,
A and B). Consequently, both correlation coefficients were
significantly lower in myoA�/B� than in WT (Fig. 3, D–
F). Loss of MyoB caused a decreased correlation in coloc-
alization but not in magnitude, whereas loss of MyoA did
not cause significant changes in either measure of correla-
tion between the tangential and normal forces. Taken
together, these results suggest that both MyoA and MyoB
play distinct roles in the communication of forces between
the internal F-actin network and the cortex. Loss of MyoA
alone is not enough to significantly alter this communica-
tion, which is completely disrupted in cells lacking both
MyoA and MyoB. Additionally, MyoB is involved in the
spatial colocalization of the forces generated by actomyosin
contractility and cortical tension, while MyoA is not.
Cortical tension is balanced by increased
cytoplasmic pressure causing compressive
forces on the substrate

For all the strains we analyzed, strong normal compressive
forces appeared at one location near the cell center (Figs.
1 and 2, and see Figs. S1, S2, and S3). It has been speculated
that downward compressive forces are due to the nucleus
(13,41) because this organelle is the largest and stiffest
cellular compartment in many cell types and is tightly linked
to the cytoskeleton (42). To investigate this hypothesis,
we simultaneously measured 3D cell-substrate forces and
determined the location of the nucleus in WT Dictyostelium
cells expressing H2B-GFP, which marks the nucleus fluores-
cently (see Materials and Methods). Fig. 4, A and B, shows a
kymographic representation of the instantaneous tangential
and normal cell-substrate forces together with the contour of
the cell and the location of its nucleus. In a space-time
kymograph, the spatial data are aligned so that the cell
axis is parallel to the y direction at each instant of time,
and data from different instants of time are stacked together
in the x direction (see Materials and Methods and Bastounis
et al. (11) for details).

Using this representation, we observed that there are
considerable periods of time where the nucleus is not
located in the area where the cell is compressing the sub-
strate. In fact, there are long periods of time where the nu-
cleus colocalizes with areas in which the cell is pulling
upwards (Fig. 4 B). Consistent with these observations, we
found that the coefficient of correlation between nuclear po-
sition and the location of maximum compressive force is ~0
(Fig. 4 C). These results indicate that in Dictyostelium cells,
the nucleus does not take part in the generation of the
normal compressive forces exerted during migration. We
note, however, that Dictyostelium cells have smaller nuclei
compared to other cell types. Our results do not rule out
that the stiffness of the nucleus may play some role in the
generation of normal compressive forces in mammalian
cells or other cell types with a larger nucleus.

The cytosol is an incompressible medium with mechani-
cal properties similar to those of water that can sustain hy-
drostatic pressure. Thus, we postulated that cell-substrate
compressive forces are mediated by an increase in cytosolic
pressure that balances the tension generated at the cell cor-
tex. This model is analogous to the Young-Laplace’s theory
that describes the increase of pressure created by surface
tension across the interface between two fluids. To test
this hypothesis, we estimated the relative intracellular pres-
sure of the different strains from the measurements of the
compressive normal stresses applied by cells on the sub-
strate and used Young-Laplace’s law to estimate the cortical
tension of the cells by applying an equilibrium of forces in
the normal direction (see Fig. S4). We approximated the
shape of the cell as an equivalent hemisphere of radius R
equal to one-half the cell length, which is a reasonable
assumption for Dictyostelium cells (2), leading to

g ¼ htzziR=2; (1)

where htzzi represents the average of the maximum value
of the compressive, normal cell-substrate stresses generated
by a cell at each instant of time. In the context of our
Biophysical Journal 108(4) 821–832
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FIGURE 4 (A) Spatiotemporal kymograph of the instantaneous magnitude of the tangential traction stresses as a function of the position along the cell

trajectory and time, for a representative WT cell. The instantaneous magnitude of tangential traction stresses (color bar on the right), localization of nucleus

(green), and cell contours (black) are displayed every 14 s. (Gray envelope lines) Time-evolving position of the front and back edges of the cells. (B) Same as

panel A for the instantaneous normal stresses (color map on the right; red indicates the cell is pulling upwards, blue indicates the cell is pushing downwards).

(C) Box plot of the Spearman correlation coefficient between the location of the maximum negative normal tension and the location of the nucleus for Ax3

cells expressing H2B-GFP (N ¼ 8). To see this figure in color, go online.
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experiments, Eq. 1 should be taken as an estimation that
allowed us to test if the pulling forces exerted by the cells
on their substrate are balanced by a rise in intracellular pres-
sure, rather than a model to estimate g, for which more ac-
curate techniques are available (43). However, even if our
model neglects the nonspherical shape of the cell, the
pressure sustained by the internal cytoskeleton and the regu-
lation of cell-substrate adhesions, the values of the estimated
cortical tension (Fig. 5) are in reasonable agreement with
previous data obtained by micropipette aspiration (see de-
tails in the Supporting Material). The reductions of the
cortical tension that we estimated for these mutant
strains—25% in mhcA�, 46% in abp120� cells, 64% in
myoA�/B� cells, and 12% in myoA� and myoB� cells—
were similar to the cortical tension reductions measured
by micropipette aspiration or cell poking (43–45). Thus,
FIGURE 5 Bar plot of the cortical tension in mN/m for the cell lines and

number of cells (N) indicated. (Asterisks) Statistically significant differ-

ences between each specific mutant strain and its corresponding WT distri-

bution (Wilcoxon ranksum test, ** p < 0.01). To see this figure in color, go

online.
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we concluded that cortical tension in migrating amoeboid
cells is balanced by increased cytoplasmic pressure that
causes the measured compressive forces on the substrate.
The speed of amoeboidmovement correlates with
the ratio between the magnitudes of the
tangential and normal cell-substrate forces

The speed of amoeboid migration is related to the ability of
cells to form and release their adhesions and is limited by
the rate at which the cell can make the required shape
changes to form a new pseudopod and retract their rear
part (8,10,11). Efficient amoeboid cell movement requires
a contraction driven by the axial forces and a softening of
the anterior cortex that allows the cells to form the new pro-
trusion. Thus, we hypothesized that the cells’ efficient
movement depends on the relative strengths of the front-
to-back axial contraction and the force generated through
cortical tension. Consistent with this hypothesis, we found
clear indications that the cell migration speed, v, increases
considerably with the ratio of the tangential to normal
cell-substrate forces, rt,n (Fig. 6).

Note that while the cell migration speed is v z 6–8 mm/
min when rt,n < 0.5, it increases almost threefold up to vz
18–20 mm/min when rt,n z 1. Fig. 6 shows the best least-
square fit to the observed dependence of v on rt,n, which
was given by v ¼ a þ brt,n

c with an exponent c z 1.8.
On the other hand, we found no correlation between the ve-
locity of migration and the magnitude of either the tangen-
tial or the normal cell-substrate forces alone (see Fig. S5).
This argument is also supported by the fact that cells with



FIGURE 6 Speed of amoeboid cell migration as a function of the ratio

between the magnitudes of the tangential and normal cell-substrate forces.

(Vertical box plots) Distribution of migration speed for each of the strains

examined. (Horizontal box plots) Distribution of tangential to normal force

ratio, rt,n. Box-plot color indicates the cell strain similar to Fig. 3. (Black

line) Best polynomial least-square fit to the data, v ¼ a þ brt,n
c, with an

exponent c z 1.8. (Inset) Scatter plot of the cells’ migration speed versus

rt,n, where each point corresponds to a different cell. Circles are colored ac-

cording to cell strain, similar to Fig. 3. To see this figure in color, go online.
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lower velocities of migration showed reduced fluctuations in
their aspect ratio (see Fig. S6), which may be related to a
difficulty in overcoming the cortical tension through the
front-to-back axial contractility.
DISCUSSION

Fast amoeboid cell migration involves large cell-shape
changes (2) and requires cells to apply mechanical forces
on their surroundings via transient adhesions (6,46). How-
ever, the role of the cell-generated forces in this process is
not understood, to the point that a relationship between
the strength of these forces and the migration speed is yet
to be found (8,9). This lack of understanding contrasts
with the case of slower migrating mesenchymal cells such
as fibroblasts, where the dependence between cell speed
and the strength of cell-substrate adhesions has been demon-
strated experimentally (47) and theoretically (48). Further-
more, amoeboid cells move in a highly 3D manner and
exert 3D forces even while crawling on flat surfaces
(13,23,49), but the vast majority of existing measurements
of cell-generated forces are two-dimensional, neglecting
the possible role that the forces perpendicular to the sub-
strate may play in the migration process.

To investigate the role of the cellular forces in establish-
ing the speed of amoeboid migration, we measured the 3D
forces exerted by chemotaxing Dictyostelium cells on flat
elastic substrates using 3DFM (23). We consideredWT cells
and eight different mutant strains with defective actin cross-
linking and cortical integrity. Our measurements suggest
that cells can modulate their 3D shape and move faster
if they are able to generate periodic axial contractions
that counterbalance the tension of their cortex. For a long
time, the tangential traction forces exerted by crawling cells
were known to be much greater than needed to overcome the
external resistance of the environment (8,50), but the biolog-
ical or mechanical reasons why the cells exert these forces
were unknown. Our findings suggest a reasonable mecha-
nistic explanation for the existence of such large traction
forces.

The new 3DFM measurements presented in this study
revealed that amoeboid cells exert forces on their substrate
using two distinct mechanisms. In addition to the axial
forces mediated by actomyosin contractility that had
been previously described by two-dimensional force mi-
croscopy (8,10), we demonstrated that the thin actin cor-
tex at the cell membrane can generate significant 3D
forces. The spatial pattern of this cortical force was iso-
lated in cells lacking internal F-actin crosslinking (mhcA�

and abp120�), which exhibit reduced actomyosin contrac-
tility. It consists of an annular region of inward and
upward pulling at the cell edge, surrounding a central re-
gion where the cell pushes down on the substrate. Similar
patterns have been shown to be caused by liquid drops
or liposomes when placed onto soft substrates (36,51),
where interface tension is the only source for the
measured forces.

Mathematical models for the generation of traction forces
have suggested the importance of interface tension as well
(52–54). Plasma membrane tension is reported to be
~1000 times lower than cortical tension in Dictyostelium
(44,55). Liposomes that have an actin cortex attached to
the membrane can withstand tensions up to 0.3 mN/m
when placed onto soft substrates before breaking (51),
which is similar to the cortical tension reported for Dictyos-
telium. Therefore, the membrane should contribute little to
the generation of 3D substrate forces in comparison to the
actin cortex. Consequently, the cortical component of the
cell-generated forces was found to be significantly lower
than the axial contractility component in strains with
cortical crosslinking defects (ctxA�/B�, ctxA�, and ctxB�),
and in strains that are defective in linking the F-actin to the
plasma membrane (myoA�/B�, myoA�, and myoB�).

Our finding that the tangential and normal forces are
higher in the ctxA�/B� cells than in WT cells could be
unexpected. However, we note that in these cells F-actin
levels are increased (56) and F-actin is localized around
much of the cortex of the cell (see Movies S1, S2, S3, and
S4 in the Supporting Material and Cha and Jeon (39)) rather
than predominantly in the front as in WT cells. We suggest
that, while these higher cortical F-actin levels lead to
increased forces, the resulting misorganization of the
F-actin cytoskeleton impacts the cortical integrity compared
to the cell’s axial contractility.

In Dictyostelium cells, axial contractile forces are gener-
ated and transmitted by a dense F-actin network that is regu-
lated by F-actin crosslinking and actomyosin contractility
(7,10,11). In the absence of axial contractility, the shape
Biophysical Journal 108(4) 821–832
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of the cell is rounder and less dynamic, as expected for a
compartment confined by its surface tension, and the fre-
quency of pseudopod protrusion is decreased (10,57). Cells
lacking F-actin crosslinkers may rely on the in situ
modulation of cortical tension to control their shape and
migrate (21). Our measurements indicate that the interplay
between the axial contractility and the cortical tension con-
trols the forces exerted by migrating cells and their speed.
Mechanical tension in the plasma membrane plays an
important role in cell migration by spatially confining the
signals for F-actin polymerization (58). In cells moving by
extending thin, stable lamellipodia, membrane tension has
been shown to determine lamellipodial shape and extension
rate (19,59). However, the actual mechanisms used by
migrating cells to actively regulate their membrane tension
are not well understood. Our studies suggest that axial
contraction and cortical crosslinking may contribute to
this function jointly. The lack of correlation between
cortical tension and axial contractility that we observed in
myoA�/B� cells suggests that myosin I may be necessary
for the proper communication of forces between the plasma
membrane and the cortical and intracellular cytoskeletal
networks.

The nature and molecular receptors controlling cell-sub-
strate adhesion in Dictyostelium are not fully identified
(3,60). However, actin-rich structures often referred to as
actin foci are localized in the adhesion regions of migrating
cells (33,35). Our study revealed that pulling forces require
formation of firm adhesion to the substrate colocalized with
actin foci regions and are directly transmitted by the actin
cytoskeleton (46). In contrast, we did not observe actin
foci in the regions where cells were generating compressive,
normal forces on the substrate. Because the cell nucleus did
not colocalize with these regions either, we concluded that
the compressive forces are transmitted directly by cytosolic
pressure. We corroborated this hypothesis by estimating
the cortical tension using our measurements of normal
compressive cell-substrate forces, and a simple Young-Lap-
lace’s model that assumes that cortical tension is balanced
by an increase in cytoplasmic pressure with respect to the
extracellular medium. The cortical tensions estimated in
this manner were found to be in good agreement with previ-
ously reported data measured by micropipette aspiration or
cell poking for the cell lines considered in this study
(43,44,61,62).

Thus, our experiments indicate that amoeboid cells
can exert strong compressive forces on their substrate
by increasing their cytoplasmic pressure. We previously
showed that in Dictyostelium cells in which F-actin poly-
merization at the front is impaired by lack of F-actin cross-
linking (abp120�), lateral squeezing generates the required
pressure rise to propel their cytoplasmic material (11).
These results agree with studies showing motion driven by
internal hydrostatic pressure in other amoeboid cells (63)
and support the hypothesis that hydrostatic pressure is one
Biophysical Journal 108(4) 821–832
of the forces driving pseudopod extension during cell crawl-
ing (64). Amoeboid cells migrating in 3D matrices may use
similar mechanisms to push off the surrounding obstacles
without establishing specific cell-matrix adhesions (65,66).
Cell malleability is recognized as an important factor in
the migratory efficiency of amoeboid cells embedded in
3D matrices. Emerging studies suggest that leukocytes
squeeze through small gaps in the ECM by actomyosin-
regulated contractility without significant remodeling of
the ECM; however, the mechanistic details of this process
are still not well understood (67). Thus, the results of our
study could contribute to a better understanding of cell
migration, not only on flat surfaces, but also in more com-
plex environments.
CONCLUSIONS

Our findings demonstrate that migrating amoeboid cells
exert forces on their substrate through two complementary
and overlapping mechanisms: the contractility of the F-actin
cytoskeletal network and the internal pressure resulting
from the tension of their cortex. We show that cell migration
speed increases when the axial actomyosin contractility is
able to balance the cortical tension to produce the cell shape
changes needed for locomotion. To our knowledge, these
findings provide the first mechanistic explanation for the
high values of cell-substrate forces measured in migrating
amoeboid cells.
SUPPORTING MATERIAL

Supporting Materials, six figures, and four movies are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(14)04741-9.
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SUPPORTING	  MATERIAL	  
	  
Comparison	   of	   the	   values	   of	   the	   cortical	   tension	   that	   we	   estimate	   and	   the	  
previously	  measured	  ones:	  
	  
The	  calculated	  values	  of	  the	  cortical	  tension	  for	  the	  two	  wild-‐type	  Dictyostelium	  cells	  
shown	   in	   Figure	   5	   are	   in	   good	   agreement	   with	   previous	  measurements	   obtained	  
from	  micropipette	  aspiration	  experiments	  that	  reported	  an	  approximate	  value	  of	  1	  
mN/m	   (1-‐4).	   In	   mhcA-‐	   cells,	   we	   measured	   a	   25%	   reduction	   in	   cortical	   tension	  
compared	  to	  wild-‐type	  cells	  (Figure	  5).	  This	  reduction	  is	  also	  in	  agreement	  with	  the	  
20%	   decrease	   previously	   reported	   for	   these	   mutant	   cells	   from	   micropipette	  
aspiration	   experiments	   (1),	   and	   the	   30%	   reduction	   estimated	   by	   needle	   poking	  
methods	   (5).	   In	   the	  myoA-‐/B-‐	  cells,	   we	  measured	   a	   64%	   reduction	   in	   the	   cortical	  
tension	   (Figure	   5),	   also	   in	   agreement	   with	   previous	   micropipette	   aspiration	  
measurements	   that	   reported	   approximately	   a	   60%	   reduction	   (2,	   6).	   In	   the	  myoA-‐	  
and	  myoB-‐	  cells,	  we	  measured	   a	   12%	   reduction	   in	   the	   cortical	   tension	   (Figure	   5),	  
also	   in	   agreement	   with	   previous	   micropipette	   aspiration	   measurements	   that	  
reported	   approximately	   a	   10-‐15%	   reduction	   (2).	   In	   filamin	   null	   cells,	   Luo	   et	   al.	  
found	   a	   reduction	   in	   cortical	   tension	   of	   approximately	   20%	   using	   micropipette	  
aspiration	  (4),	  whereas	  in	  our	  case,	  we	  measure	  a	  larger	  reduction	  of	  46%	  (Figure	  
5).	   Kee	   et	   al.	   measured	   the	   cortical	   tension	   of	   cortexillin	   mutant	   strains	   using	  
micropipette	   aspiration.	   They	   found	   that	   the	   cxtB-‐	   cells	   had	   a	   16%	   increase	   in	  
cortical	  tension,	  and	  that	  the	  cortical	  tension	  was	  reduced	  by	  35%	  and	  60%	  in	  cxtA-‐	  
and	  cxtA-‐/B-‐	   respectively	  (7).	   In	  contrast,	  we	  found	  that	  the	  ctxA-‐	  and	  ctxB-‐	  mutant	  
cells	  exhibit	  a	  decrease	  of	  8%	  and	  5%	  respectively,	  and	  cxtA-‐/B-‐	  cells	  an	  increase	  of	  
10%	  (Figure	  5).	  
	   2	  
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SUPPLEMENTARY	  FIGURES:	  
	  
Supplementary	  figure	  1:	  

	  
Supplementary	   figure	   1:	   (A)	  Spatiotemporal	  representation	  of	   the	   instantaneous	  
magnitude	   of	   the	   tangential	   stresses	   as	   a	   function	   of	   the	   position	   along	   the	   cell	  
trajectory	   and	   time	   for	   a	   representative	   wild-‐type	   cell.	   The	   cell	   contour	   is	  
represented	   in	   black.	   The	   colormap	   on	   the	   right	   indicates	   the	   magnitude	   of	   the	  
tangential	   stresses.	   The	   red	   and	   black	   lines	   indicate	   the	   instantaneous	   front	   and	  
back	   edges	   of	   the	   cell	   respectively.	   Dotted	   black	   lines	   denote	   the	   location	   of	   the	  
maximum	   front	   and	   back	   absolute	   value	   of	   the	   axial	   traction	   tension,	  Tx(x,	   t).	   (B)	  
Same	  as	  in	  panel	  A	  for	  the	  normal	  stresses.	  The	  colormap	  on	  the	  right	  indicates	  the	  
magnitude	   and	   direction	   of	   the	   normal	   stresses.	   Dotted	   black	   lines	   denote	   the	  
location	  of	  the	  maximum	  normal	  tension	  Tz(x,	  t)	  at	  the	  frontal	  and	  rear	  halves	  of	  the	  
cell.	  
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Supplementary	  figure	  2:	  

	  
Supplementary	   figure	   2:	   (A)	  Spatiotemporal	  representation	  of	   the	   instantaneous	  
magnitude	   of	   the	   tangential	   stresses	   as	   a	   function	   of	   the	   position	   along	   the	   cell	  
trajectory	  and	  time	  for	  a	  representative	  mhcA-‐	  cell.	  The	  cell	  contour	  is	  represented	  
in	   black.	   The	   colormap	   on	   the	   right	   indicates	   the	   magnitude	   of	   the	   tangential	  
stresses.	  The	  red	  and	  black	  lines	  indicate	  the	  instantaneous	  front	  and	  back	  edges	  of	  
the	   cell	   respectively.	  Dotted	  black	   lines	  denote	   the	   location	  of	   the	  maximum	   front	  
and	  back	  absolute	  value	  of	  the	  axial	  traction	  tension,	  Tx(x,	  t).	  (B)	  Same	  as	  in	  panel	  A	  
for	   the	   normal	   stresses.	   The	   colormap	   on	   the	   right	   indicates	   the	   magnitude	   and	  
direction	   of	   the	   normal	   stresses.	   Dotted	   black	   lines	   denote	   the	   location	   of	   the	  
maximum	  normal	  tension	  Tz(x,	  t)	  at	  the	  frontal	  and	  rear	  halves	  of	  the	  cell.	  	  
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Supplementary	  figure3:	  

	  
Supplementary	   figure	   3:	   (A)	  Spatiotemporal	   representation	  of	   the	   instantaneous	  
magnitude	   of	   the	   tangential	   stresses	   as	   a	   function	   of	   the	   position	   along	   the	   cell	  
trajectory	   and	   time	   for	   a	   representative	   myoA-‐/B-‐	   cell.	   The	   cell	   contour	   is	  
represented	   in	   black.	   The	   colormap	   on	   the	   right	   indicates	   the	   magnitude	   of	   the	  
tangential	   stresses.	   The	   red	   and	   black	   lines	   indicate	   the	   instantaneous	   front	   and	  
back	   edges	   of	   the	   cell	   respectively.	   Dotted	   black	   lines	   denote	   the	   location	   of	   the	  
maximum	   front	   and	   back	   absolute	   value	   of	   the	   axial	   traction	   tension,	  Tx(x,	   t).	   (B)	  
Same	  as	  in	  panel	  A	  for	  the	  normal	  stresses.	  The	  colormap	  on	  the	  right	  indicates	  the	  
magnitude	   and	   direction	   of	   the	   normal	   stresses.	   Dotted	   black	   lines	   denote	   the	  
location	  of	  the	  maximum	  normal	  tension	  Tz(x,	  t)	  at	  the	  frontal	  and	  rear	  halves	  of	  the	  
cell.	  
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Supplementary	  figure	  4:	  
	  

	  
Supplementary	   figure	  4:	   (A)	  Sketch	  of	  a	  cell	   that	  undergoes	  an	  internal	  pressure	  
and	  exerts	  a	  deformation	  on	  the	  substrate	  while	  moving.	   (B)	  Approximation	  of	  the	  
cell	   shape	   by	   a	   sphere	   of	   radius	   equal	   to	   the	   cell’s	   length.	   (C)	   Cortical	   tension	  
estimation	  by	  balancing	  the	  force	  generated	  by	  the	  cortical	  tension	  and	  the	  internal	  
pressure	  of	  the	  cell.	  
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Supplementary	  figure	  5:	  

	  
Supplementary	   figure	   5:	   (A)	   Scatter	   plot	   of	   the	   cells’	   mean	   velocity	   versus	   the	  
average	   magnitude	   of	   the	   tangential	   traction	   forces.	   (B)	   Scatter	   plot	   of	   the	   cells’	  
mean	  velocity	  versus	  the	  average	  magnitude	  of	  the	  normal	  forces.	  The	  colors	  of	  the	  
circles	  in	  the	  scatter	  plots	  for	  each	  cell	  line	  correspond	  to	  the	  colors	  used	  in	  figure	  3.	  	  
The	  number	  of	  cells	  for	  each	  cell	   line	  is	  the	  same	  as	  in	  figure	  3.	  To	  better	  visualize	  
the	  correlation,	   the	  plane	  was	  divided	  into	  rectangular	  tiles	  of	  equal	  area,	  and	  size	  
and	   color	   of	   each	   data	   point	   were	   scaled	   according	   to	   the	   total	   number	   of	   data	  
points	  that	  fall	  on	  each	  specific	  tile	  (i.e.,	   its	  rate	  of	  occurrence).	  As	  a	  result,	  darker,	  
larger	   circles	   represent	   those	   data	   points	   that	   were	   observed	   more	   often	   in	   our	  
experiments,	  and	  vice	  versa.	  	  
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Supplementary	  figure	  6:	  

	  
Supplementary	  figure	  6:	  (A)	  Cell	  shape	  aspect	  ratio	  (ratio	  between	  the	  cell	  length	  
and	   width)	   for	   the	   cell	   lines	   and	   number	   of	   cells	   (N)	   indicated.	   (B)	   Aspect	   ratio	  
change	  with	  time	  (derivative	  of	  the	  aspect	  ratio	  with	  respect	  to	  the	  time)	  for	  the	  cell	  
lines	  and	  number	  of	  cells	  (N)	  indicated.	  
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SUPPLEMENTARY	  MOVIES:	  
	  
Supplementary	   movie	   1:	   3D	   reconstruction	   of	   the	   actin	   distribution	   in	   a	  
representative	   chemotaxing	   wild-‐type	   cell	   expressing	   lifeact-‐GFP.	   Z-‐stacks	   of	  
fluorescent	   images	  were	   acquired	   every	  6	   seconds.	   The	  3D	   rendering	   of	   the	   actin	  
and	   the	   video	  were	   generated	   by	   using	   IMARIS	   software	   (Bitplane).	   The	  movie	   is	  
accelerated	  30x	  real	  time.	  
	  
Supplementary	  movie	  2:	  2D	  projection	  of	  the	  actin	  distribution	  for	  the	  same	  cell	  as	  
in	   Supplementary	   movie	   1.	   The	   2D	   projection	   of	   the	   actin	   and	   the	   video	   were	  
generated	  by	  using	   IMARIS	  software	   (Bitplane).	  The	  movie	   is	  accelerated	  30x	  real	  
time.	  
	  
Supplementary	   movie	   3:	   3D	   reconstruction	   of	   the	   actin	   distribution	   in	   a	  
representative	   chemotaxing	   ctxA-‐/B-‐	   cell	   expressing	   lifeact-‐GFP.	   Z-‐stacks	   of	  
fluorescent	   images	  were	   acquired	   every	  6	   seconds.	   The	  3D	   rendering	   of	   the	   actin	  
and	   the	   video	  were	   generated	   by	   using	   IMARIS	   software	   (Bitplane).	   The	  movie	   is	  
accelerated	  30x	  real	  time.	  
	  
Supplementary	  movie	  4:	  2D	  projection	  of	  the	  actin	  distribution	  for	  the	  same	  cell	  as	  
in	   Supplementary	   movie	   3.	   The	   2D	   projection	   of	   the	   actin	   and	   the	   video	   were	  
generated	  by	  using	   IMARIS	  software	   (Bitplane).	  The	  movie	   is	  accelerated	  30x	  real	  
time.	  
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