

Figure S1. Quality and specificity of an Ac-K217 FXR antibody.

Cos-1 cells were cotransfected with the expression plasmids 3flag-FXR-WT or K217R along with p300. Cells were treated with 200 nM of GW4064 and deacetylase inhibitors (500 nM trichostain A and 10 mM nicotinamide) for 2 to 5 h before harvesting. Flag-FXR was bound to M2 agarose and acetylation of FXR was detected by IB using pan acetyl lysine antibody (Ac-Iys) or Ac-K217 FXR antibody (Ac-K217). Flag-FXR levels and Ac-K217 FXR levels in input sample were also detected by IB.

Figure S2. Effects of acetylation of FXR at K217 on expression of gluconeogenic and lipogenic genes in mouse liver.

FXR-WT or K217 mutants were adenovirally expressed in livers of lean or HFD obese mice and the mRNA levels of indicated genes were measured by q-RTPCR (n=4,*p<0.05, **p<0.005, NS, not significant).

Figure S4. Effects of acetylation of FXR at K217 on expression of lipogenic and inflammatory genes in hepatocytes.

Hepatocytes were isolated from FXR-KO mice infected with an adenoviral vector expressing FXR-WT or the K217Q mutant and then, mRNA levels of lipogenic and proinflammatory genes as a function of time after adenoviral infection were detected by q-RTRPCR.

Figure S5. FXR is SUMO1-modified at multiple lysines in vitro, but SUMO1-FXR is not detected, whereas SUMO2-FXR levels are increased, after treatment with LPS and GW4064 in cells.

(A) In vitro SUMO assay: Flag-FXR-WT or FXR mutants (K122R, K277R, or K122/277R) were adenovirally expressed in Cos-1 cells that were then treated with GW4064 and isolated by binding to M2 agarose. Then, in vitro SUMO assays were performed by incubation of purified flag-FXR WT or mutant with purified SUMO components, including SUMO1 protein. Unincorporated SUMO components were removed by washing and SUMO1 modification of FXR was detected by IB. (B) In cell SUMO assay: Cos-1 cells were transfected with expression plasmids for flag-FXR WT, and either HA-SUMO1 or HA-SUMO2 and 48h later, cells were treated with GW4064 and LPS as indicated and SUMO1-FXR or SUMO2-FXR levels were detected by IP/IB.

Figure S6. Effects of treatment with synthetic or natural FXR ligands on SUMO2 modification in hepatocytes.

(A) Primary mouse hepatocytes were infected with an adenoviral vector expressing f-FXR-WT and then, treated with each of FXR ligands as indicated, and SUMO2-FXR levels were measured by IP/IB. FXR levels in input samples are shown below.
(B) SUMO assays in hepatocytes were repeated three times and relative SUMO2-FXR levels were quantified (n=3, **p<0.005).

Figure S7. Effects of K277R mutation in FXR on SUMO2 modification in mouse liver.

In vivo SUMO assays were performed as described in experimental procedures. After SUMO2-flag-FXR levels were detected by IB (left panel) and then, the membrane was stripped and FXR was detected by IB using FXR antibody (right panel).

Figure S8. Effects of feeding a HFD for different times on acetylation of transcriptional regulators in mouse liver.

Livers from 3 mice fed a HFD for the indicated times were pooled, liver extracts were prepared, and the acetylated transcriptional regulator levels were detected by IP/IB. Hepatic expression of transcriptional regulators detected by IB are shown below.

Figure S9. Effects of activation of FXR signaling on expression of inflammatory genes in hepatic cells, hepatocytes, and mouse liver in vivo.

(A) HepG2 cells were treated with GW4064, and mRNA levels of indicated genes were measured by q-RTPCR. (B) HepG2 cells were infected with an adenoviral vector expressing FXR-WT and then treated with TNFa and/or GW4064 as indicated, and q-RTRPCR was performed. (C) Hepatocytes were isolated from mice and treated with LPS and/or GW4064 as indicated, and q-RTPCR was performed. (D) Mice were treated with LPS and/or GW4064 as indicated, and q-RTPCR was performed. (SEM, n=4, *p<0.05, **p<0.005).

Figure S10. Effects of downregulation of PIASy on inflammatory gene expression and FXR interaction with the p65 subunit of NF- κ B in hepatocytes.

(A) Hepatocytes were isolated from lean mice and transfected with control siRNA or siRNA for PIASy, and mRNA levels of indicated genes were detected by q-RTRPCR. (n=3, *p<0.05, **p<0.005, NS, not significant). (B) Primary mouse hepatocytes were transfected with control siRNA or PIASy siRNA were infected with an adenoviral vector expressing FXR-WT, and then, treated with GW4064 and LPS as indicated. The p65 subunit of NF- κ B was detected by CoIP.

Figure S11. Structural modeling analysis: Effects of SUMO2 modification of FXR on interaction with RXR α on DNA.

The predicted structure of FXR and RXR bound to DNA based on the RXRa/LXR β /DNA (4NQA) structure with the LXR β replaced by FXR (3BEJ) is shown. The positions of K217 and K277 in FXR are indicated. K277 in the LBD of FXR is located in the interface with the RXR DBD (left). SUMO2 modification (dimmers of SUMO2 are shown) of the LBD of FXR would block the interaction of FXR with RXR α (right).

Figure S12. The p65 subunit of NF- κ B directly interacts with SUMO2, but not with SUMO1.

A schematic of the domains of p65 that were fused to GST is shown at the top. The interaction between SUMO1/2 and p65 domains was detected by GST-pull down followed by IB.

Figure S13. Effects of GW4064 treatment on hepatic FXR binding sites near inflammatory genes in mice fed ND or HFD .

USSC browser plots of FXR hepatic binding peaks from our published ChIP-seq studies (Lee et al. Hepatology, 2012). Results are shown for mice fed either a ND or HFD and treated i.p. with vehicle (-) or GW4064 (+) for 1 h.

Figure S14. Cell-based luciferase reporter assay:

Effects of mutation of the FXR DNA binding domain (DBD) on the activity of luciferase driven by either inflammatory genes or FXR/RXR target genes.

(A) Luciferase reporters containing with the NF- κ B binding site in *Tnfsf4* or *IL6ra* or an FXRE were constructed. HepG2 cells were transfected with the reporter vector and either FXR WT or the DBD mutant lacking DNA binding (MT) in mutation at the first zinc finger as indicated and treated with GW4064 and LPS. Luciferase activities were measured (n=3, **p<0.005, NS, not significant). (B) Expression levels of the FXR WT and mutant were detected by IB with lamin as a loading control.

Figure S15. Analysis of proteins used for gel-shift assays.

(A) Flag-FXR and flag-RXR were expressed in bacteria, isolated by M2 agarose, and partially purified proteins were visualized by colloidal staining. (B) Experimental outline for gel mobility shift (gms) assay. (C) Flag-FXR-WT was incubated with purified SUMO components with (+) and without (-) ATP as described in Methods and Materials. Input amounts in the two reactions are shown (left) and SUMO2 modification of FXR detected by IB is shown at the right. (D) Cos-1 cells were transfected with expression plasmids for p65 and p50, and 48 h later, cell were treated with LPS for 15 min and nuclear extracts were prepared. Expression of p65 were detected by IB. (E, F) Fraction of FXR SUMOylated in in vitro SUMO assays. Purified flag-FXR WT was incubated with SUMO components with and without ATP as indicated. Varying amounts of the samples were analyzed by gel electrophoresis and FXR was detected by IB with antibody to FXR. (E) 25% and 50% of the initial amount (100%) were analyzed and (F) 20% of the initial amount (100%) was analyzed. The intensity of the bands for FXR and SUMO-FXR were analyzed using Image J and plotted with the total (FXR + SUMO-FXR) set as 100. The percentage of SUMO-FXR as indicated in the figure ranged from 35%-44% in these experiments.

Figure S16. Effects of treatment with GW4064 and LPS on occupancy of endogenous FXR, SUMO1, SUMO2 and RXR at inflammatory and FXR/RXR target genes.

Hepatocytes from WT mice were treated with LPS and/or GW4064 as indicated and ChIP assays were performed using antibodies to FXR, SUMO1, SUMO2 or RXR. Three independent hepatocyte isolation followed by ChIP assays were performed. Sequences of the indicated genes in the immunoprecipitates were detected by q-PCR (n=3, *p<0.05, **p<0.005)

Figure S17. Effects of GW4064 and/or LPS treatment on expression of direct FXR target inflammatory genes.

Hepatocytes were isolated from mice, treated with LPS and/or GW4064 as indicated, and mRNA levels of direct FXR target inflammatory genes were measured (SEM, n=3, *p<0.05).

Figure S18. Effects of downregulation of GPS2 on occupancy of FXR, RXR, and p65 at inflammatory genes.

(A) The mRNA levels of GPS2 after downregulation by GPS2 siRNA were detected by q-RTPCR. (B) ChIP: Hepatocytes from WT mice were transfected with control siRNA (siCon) or GPS2 siRNA (siGPS2) and then, treated with GW4064 and LPS as indicated. Three independent assays were performed. Occupancy of endogenous FXR, p65 and RXR was detected by q-PCR (n=3, *p<0.05, **p<0.005).

C Hepatocytes

Fig. S19. Control experiments for adenoviral-mediated expression of FXR in WT and FXR-KO mice.

(A) Effects of adenoviral infection on inflammatory gene expression: To examine whether inflammatory genes are induced at the viral dose used, mice were injected via the tail vein with Ad-empty (2.5×10^8 pfu/100 µl saline) or vehicle saline and 7 days later, mice were treated with LPS or vehicle for 6 h and livers were collected for q-RTPCR to measure mRNA levels of inflammatory genes (n=4, NS statistically not significant). (B) Levels of adenovirally expressed exogenous FXR in FXR-KO hepatocytes are similar to endogenous FXR levels in WT mouse hepatocytes: Hepatocytes were prepared from WT mice or FXR-KO mice and infected with increasing adenoviral doses (Ad-flag-FXR) as indicated and protein levels of FXR, flag-FXR, tubulin, and GFP were detected by IB. (C) Effects of adenoviral infection on inflammatory gene expression in hepatocytes: Hepatocytes were infected with Ad-empty (2.5×10^8 pfu/100 µl saline) or vehicle saline and 2-3 days later, mRNA levels of inflammatory genes were measured by q-RTPCR. (n=3, *p<0.05, NS statistically not significant).

Table S1. Microarray data of FXR K217Q mutant vs WT in normal diet mice.

Table S1. Microarray data of FXR K	21/Q mutant vs w l in normal diet mice.	
ID	Gene Name	Species
Down_ND_K217Q vs WT		
ILMN_1213286	chemokine (C-C motif) ligand 21A; predicted gene 1987	Mus musculus
ILMN 1215209	C-type lectin domain family 4, member e	Mus musculus
ILMN 1215862	chemokine (C-X-C motif) ligand 9	Mus musculus
ILMN_1218525	interleukin 18 receptor 1	Mus musculus
ILMN_1245710	chemokine (C-C motif) ligand 2	Mus musculus
ILMN_1246073	left right determination factor 1	Mus musculus
ILMN 2424299	tumor necrosis factor receptor superfamily, member 12a	Mus musculus
II MN 2473562	linker for activation of T cells family member 2	Mus musculus
ILMN_2591361	CD28 antigen: similar to CD28 antigen	Mus musculus
II MN 2682566	interleukin 1 recentor antagonist	Mus musculus
II MN_2705628	C-type lectin domain family 4 member d	Mus musculus
II MN 2733793	coronin actin binding protein 1A	Mus musculus
IL MN_2760800	chemokine (C-X-C motif) ligand 14	Mus musculus
IL MN_2771766	chemokine (C-C motif) ligand 12: similar to monocyte chemoattractant protein-5	Mus musculus
ILMN 2777408	interlouking 1 beta	Mus musculus
ILMN_27729290	chemoking (C.X.C. metif) ligand 2	Mus musculus
ILIVIN_2770209	defensie hete 1	Mus musculus
ILIVIN_2004000	chemoline (C. C. metif) ligend 7	Mus musculus
ILIVIN_2035117, ILIVIN_2771170	chemokine (C-C molin) ligand 7	
ILMN_2835423	complement factor D (adipsin)	Mus musculus
ILIVIN_2830380	chemokine (C-C motif) ligand 19	Mus musculus
ILMIN_2867076	nistocompatibility 2, O region alpha locus	Mus musculus
ILMN_2948552	chemokine (C motif) ligand 1	Mus musculus
ILMN_2969845, ILMN_2640848, ILMN_2602139	predicted gene 13304; similar to beta chemokine Exodus-2	Mus musculus
ILMN_3122961	guanylate binding protein 2	Mus musculus
Down_ND_K217Q vs WT		
ILMN_1213632	phosphoenolpyruvate carboxykinase 1, cytosolic	Mus musculus
ILMN_1225718	3-hydroxy-3-methylglutaryl-Coenzyme A reductase	Mus musculus
ILMN_1227596	phosphomevalonate kinase	Mus musculus
ILMN_1228752	myo-inositol 1-phosphate synthase A1	Mus musculus
ILMN_1229529	hydroxysteroid (17-beta) dehydrogenase 7	Mus musculus
ILMN_1233469	low density lipoprotein receptor	Mus musculus
ILMN_1234449	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 5	Mus musculus
ILMN_1239239	prostaglandin-endoperoxide synthase 1	Mus musculus
ILMN_1239601	mevalonate kinase; similar to mevalonate kinase	Mus musculus
ILMN_1242564	RIKEN cDNA C730007P19 gene; similar to androgen-repressible liver protein SMP-2	Mus musculus
ILMN_1250008	choline kinase alpha	Mus musculus
ILMN_1253008	acetyl-Coenzyme A acetyltransferase 2	Mus musculus
ILMN_1253224, ILMN_2752940, ILMN_2620106	24-dehydrocholesterol reductase	Mus musculus
ILMN_2540103, ILMN_1225730	similar to farnesyl diphosphate synthetase; farnesyl diphosphate synthetase	Mus musculus
ILMN_2590923	similar to Isopentenyl-diphosphate delta isomerase	Mus musculus
ILMN_2613908	arachidonate 12-lipoxygenase	Mus musculus
ILMN_2614161	lanosterol synthase	Mus musculus
ILMN_2614752	predicted gene 11295; ELOVL family member 6	Mus musculus
ILMN_2645275	mevalonate (diphospho) decarboxylase	Mus musculus
ILMN_2654952	similar to Hmgcs1 protein; 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1	Mus musculus
ILMN_2660471	7-dehydrocholesterol reductase	Mus musculus
ILMN_2683113	angiogenin, ribonuclease, RNase A family, 5	Mus musculus
ILMN_2688075	cytochrome P450, family 51	Mus musculus
ILMN_2720479	lysophosphatidylglycerol acyltransferase 1	Mus musculus
ILMN_2725402, ILMN_2958207,		
ILMN_2594525, ILMN_2594521	NAD(P) dependent steroid dehydrogenase-like	Mus musculus
ILMN_2726412	estrogen receptor 1 (alpha)	Mus musculus
ILMN_2752782	aldo-keto reductase family 1, member D1	Mus musculus
ILMN 2756023	proprotein convertase subtilisin/kexin type 9	Mus musculus
ILMN 2777462	patatin-like phospholipase domain containing 3	Mus musculus
ILMN 2823778	sterol-C4-methyl oxidase-like	Mus musculus
ILMN 2826869	serum amyloid A 1	Mus musculus
ILMN 2858121, ILMN 2709810	acyl-coenzyme A amino acid N-acyltransferase 2	Mus musculus
ILMN 2874352	cytochrome P450, family 17, subfamily a, polypeptide 1	Mus musculus

Table S2. Microarray data of FXR K217R vs WT in high fat diet mice.

ID	Gene Name	Species
Up_HFD_K217R vs WT		
ILMN 1214531	cvtochrome P450, family 2, subfamily b, polypeptide 13	Mus musculus
II MN 1229267 II MN 1244847 II MN 2734598	-,	
ILMN 3150131 ILMN 3070804	cytochrome P450, family 2, subfamily a, polypentide 21	Mus musculus
LINN 4004440	by draws delta 5 starsid debuder service 2 beta and starsid delta is service 5	Mus musculus
ILMIN_1234449	nydroxy-delta-5-steroid denydrogenase, 3 beta- and steroid delta-isomerase 5	Mus musculus
ILMN_1243516	fat storage-inducing transmembrane protein 1	Mus musculus
ILMN_1246069	NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1	Mus musculus
ILMN_1246446	leucine rich repeat containing 59	Mus musculus
ILMN 1247832	CD74 antigen	Mus musculus
IL MN_1250364	cytochrome P450 family 2 subfamily a polypentide 4	Mus musculus
ILMNL 2433685	estopueleoside triphosphate diphosphohydrolase 5	Mus musculus
ILMIN_2433003	ectorid cleoside inpriosphale dipriosphonydrolase 5	Mus musculus
ILIVIN_2004303	cytochrome P450, family 7, subfamily a, polypeptide 1	wius musculus
ILMN_2617625	cytochrome P450, family 2, subfamily b, polypeptide 9	Mus musculus
ILMN_2627744	cytochrome P450, family 8, subfamily b, polypeptide 1	Mus musculus
ILMN_2641678	3-hydroxybutyrate dehydrogenase, type 2	Mus musculus
ILMN 2644350	thymus cell antigen 1, theta	Mus musculus
ILMN 2647234, ILMN 2772070	deiodinase, iodothyronine, type I; similar to Dio1 protein	Mus musculus
IL MN_2666018	matrix Gla protein	Mus musculus
12MN_2000010	interleukin 7 recenter	Mus musculus
ILIVIN_2000027		Nus musculus
ILMN_2691295	cytochrome P450, family 26, subfamily a, polypeptide 1	Mus musculus
ILMN_2697415	CD3 antigen, delta polypeptide	Mus musculus
ILMN_2730425, ILMN_2733073	ryanodine receptor 1, skeletal muscle	Mus musculus
ILMN 2736539	cytochrome P450, family 2, subfamily c, polypeptide 55	Mus musculus
ILMN 2739847. ILMN 2795106	cvtochrome P450, family 1, subfamily a, polypeptide 2	Mus musculus
II MN_2750035	neurexin l	Mus musculus
II MN 2753607	CD2 antigen	Mus musculus
ILIVIIN_27.0007		Muo musculus
		IVIUS MUSCUIUS
ILMN_2830666	RIKEN cDNA 9130409123 gene	Mus musculus
ILMN_2841328	Vac14 homolog (S. cerevisiae)	Mus musculus
ILMN 2850342	cytochrome b-561 domain containing 2	Mus musculus
ILMN_2875737	cytochrome P450, family 2, subfamily d, polypeptide 12	Mus musculus
II MN 2896768	carbonyl reductase 3	Mus musculus
ILMN 2017296	dutathiono & transformo	Mus musculus
	giulatitione S-transierase	wus musculus
Down_HFD_K21/R vs wi		
ILMN_1218075	fibrinogen beta chain	Mus musculus
ILMN_1221700	elastase 2, neutrophil	Mus musculus
ILMN 1223880	transmembrane protease, serine 2	Mus musculus
II MN 1225218	kininggen 1	Mus musculus
ILMN_1228474	cathensin I	Mus musculus
ILMNI 1000710	oundeeen 1	Mus musculus
ILIVIN_1220710		Mus musculus
ILMN_1228832	neutrophilic granule protein	Mus musculus
ILMN_1228958	follistatin	Mus musculus
ILMN_1237485, ILMN_2479977	energy homeostasis associated	Mus musculus
ILMN_1253755, ILMN_1242370, ILMN_2897167	fibrinogen-like protein 1	Mus musculus
ILMN 1257574	endothelial cell-specific molecule 1	Mus musculus
ILMN_2524865	chitinase 3-like 4	Mus musculus
II MN 2531773 II MN 2984219	cDNA sequence BC048546	Mus musculus
ILMN 2543108	nonagouti	Mus musculus
	fibren e stin 4	Mus musculus
		wius musculus
ILMN_2589915	nyaluronan and proteoglycan link protein 4	Mus musculus
ILMN_2600421, ILMN_2925094, ILMN_1249030	myeloperoxidase	Mus musculus
ILMN_2617005, ILMN_2868699	prolactin receptor	Mus musculus
ILMN_2659426	chemokine (C-X-C motif) ligand 14	Mus musculus
ILMN_2660969	mannan-binding lectin serine peptidase 1	Mus musculus
ILMN 2682613	insulin-like growth factor binding protein 5	Mus musculus
ILMN_2683113	angiogenin, ribonuclease, RNase A family, 5	Mus musculus
II MN 2690603	secreted nhosnhonrotein 1	Mus musculus
ILMN_2602316	dinantidasa 2	Mus musculus
		Nus musculus
ILMIN_2095360	lipocalin 13	wus musculus
ILI/IN_2/54364	lactotransterrin	Mus musculus
ILMN_2757966	platelet factor 4	Mus musculus
ILMN_2758029	proteinase 3	Mus musculus
ILMN_2758571	serum amyloid A 2	Mus musculus
ILMN 2766604	cathelicidin antimicrobial peptide	Mus musculus
ILMN_2771237	lipopolysaccharide binding protein	Mus musculus
II MN_2777087	melanoma inhibitory activity 1	Mus musculus
II MNL 2789900	CD177 antigen	Mus musculus
LIVIN_2/09900	CDTTT antigett	Mus musculus
ILIVIN_2803074	S roo calcium binding protein A9 (calgranulin B)	
ILIVIN_2804685	detensin deta 1	Mus musculus
ILMN_2826869	serum amyloid A 1	Mus musculus
ILMN_2896170	serum amyloid P-component	Mus musculus
ILMN_2930680	leucine rich repeat and fibronectin type III domain containing 3	Mus musculus
ILMN_2964560	CD163 antigen	Mus musculus
II MN_3008361	BMP-binding endothelial regulator	Mus musculus
II MN 3009880 II MN 2653328	interleukin 28 recentor alnha	Mus musculus
LIVIN _0000000, ILIVIN _2000020	laminin gamma 3	Mus musculus
	annin vanilla 3	Mus musculus

	Table S3.	Lists	of	primer	sec	uenc	e.
--	-----------	-------	----	--------	-----	------	----

No.	Gene	Forward (5'-3')	Reverse (5'-3')				
prim	primer sequence for q-PCR						
1	Вір	TCATCGGACGCACTTGGAA	CAACCACCTTGAATGGCAAGA				
2	Bseb	GTCGGACCTGCATTGTCATTG	ATGTGTGTCTGAGATTCTTGCATT				
3	Calreticulin	TTACGCACTGTCCGCCAAA	GCTCATGCTTCACCGTGAACT				
4	Ccl2	CCCAATGAGTAGGCTGGAGA	TCTGGACCCATTCCTTCTTG				
5	Ccl7	GTGTCCCTGGGAAGCTGTTA	ATAGCCTCCTCGACCCACTT				
6	Chop	GTCCCTAGCTTGGCTGACAGA	TGGAGAGCGAGGGCTTTG				
7	Coronin 1a	TCTGATCTGTGAGGCCAGTG	ATGTCTAGCACAGGGGCAGT				
8	CRP	TATGGGAGAATGGTCGGAAC	TCAAGGGTCATCTGGTCCTC				
9	Cxcl14	TATCGTCACCACCAAGAGCA	CTTCTCGTTCCAGGCATTGT				
10	Cxcl2	TCCAGAGCTTGAGTGTGACG	TTCAGGGTCAAGGCAAACTT				
11	Cxcl8(IL8)	TCACCGATGTCTACCTGCTG	CACAGGGTTGAGCCAAAAGT				
12	F4/80	TTACGATGGAATTCTCCTTGTATATCA	CACAGCAGGAAGGTGGCTATG				
13	Fibrinogen-β	GTATTTGCTGGCCTCGTTCT	GGGACCCACAGAACTTCTCA				
14	IFNγ	TGCTGATGGGAGGAGATGTCT	TTTCTTTCAGGGACAGCCTGTT				
15	IL18ra	CCGATCACAAATTCATGTGG	GGTGGCTGTTTCATTCCTGT				
16	IL1β	AACCTGCTGGTGTGTGACGTTC	CAGCACGAGGCTTTTTTGTTGT				
17	IL6	AGAAGGAGTGGCTAAGGACCAA	AACGCACTAGGTTTGCCGAGTA				
18	iNOS	GATGGTCCGCAAGAGAGTGC	AACGTAGACCTTGGGTTTGCC				
19	Mcad	GATCGCAATGGGTGCTTTTGATAGAA	AGTTGATTGGCAATGTCTCCAGCAAA				
20	Mmp13	ATCCTGGCCACCTTCTTCTT	TTTCTCGGAGCCTGTCAACT				
21	p300	GAGAAACTAGGCCTTGGCTTAGATG	GCGGCGGGAGTCTCCT				
22	Saa1/2	GTAATTGGGGTCTTTGCC	TTCTGCTCCCTGCTCCTG				
23	Scara3	TAAATCCGTCTCCCTCATGC	GGAGAGGTTTCGGACATTGA				
24	Shp	CAAGAAGATTCTGCTGGAGG	GGATGTCAACATCTCCAATG				
25	Sirt1	CCTCCTGTTGACCGATGGAC	CTGGCGTGTGACGTTCTGTC				
26	Tnfα	AGCCCCCAGTCTGTATCCTT	GGTCACTGTCCCAGCATCTT				
27	C1qtnf2	AAGGGACCTAAGGGCAAAAA	TGGGTAGCTCTTGGTTACCG				
28	IL6ra	CCAGGTGCCCTGTCAGTATT	CTGGACTTGCTTCCCACACT				
29	Tnfsf4	CTGAACGATGGTCGAAGGAT	ACAACAATCAGCTCCCCATC				
30	Sumo1	ATTGGACAGGATAGCAGTGAGA	TCCCAGTTCTTTCGGAGTATGA				
31	Sumo2	GGACAGGATGGTTCTGTGGT	CGGAATCTGATCTGCCTCAT				
32	Piasy	GCCTGGTGTGGAACCTAAGA	ATAGTTGCCCCAGGTGACAG				
33	Fas	CCTGGATAGCATTCCGAACCT	AGCACATCTCGAAGGCTACACA				
34	Gps2	ATCGCCCAGGTACTCTGATG	AGCTGCTGATCCCACGTAGT				
35	Srebp1c	GCTGTTGGCATCCTGCTATC	TAGCTGGAAGTGACGGTGGT				
36	Acc1	CGAAACTCCCAGAACTGCTC	TGCAATCTTATCCCCCAAAG				
37	Scd1	CCCAGTCGTACACGTCATTTT	CATCATTCTCATGGTCCTGCT				
prim	er sequence for (ChIP-PCR and EMSA					
1	C1qtnf2	TCTAAGGAGCATGCCATGTG	GAGGGCGTGGTACCAAATAG				
2	IL6ra	GGTACCCACAGATCCCAGAA	GTTGCTGAGGACCAAGTTGC				
3	Tnfsf4	AAATITTGGTGCATGTGTGTG	GCCAAGCCTGATAACCTGAG				
4	Shp	CAGIGAGAACCCTGGTCTT	CIGGCCAAACAACCTTGAC				
5	Bsep	CGACCTTTCCTCTCATGTCA	CALIGAACAGAAATCAGGCTTTT				
6	Snp (EMSA)	IGGIACAGCCIGAGIIAATGACCTTGTTTATC	GATAAACAAGGICATTAACTCAGGCTGTACCA				
7	Intst4 (EMSA)	CCIGATCAAGGCTAAAGAAAAGCCAGTACTAA	TIAGTACTGGCTTTTCTTTAGCCTTGATCAGG				