Supporting Information

Design, Synthesis, and Application of Fluorine-Labeled Taxoids as ¹⁹F NMR Probes for the

Metabolic Stability Assessment of Tumor-Targeted Drug Delivery Systems

Joshua D. Seitz^{1†}, Jacob G.Vineberg^{1†}, Longfei Wei¹, Jonathan F. Khan¹, Brendan Lichtenthal¹, Chi-Feng Lin¹, Iwao Ojima^{1,2*}

> ¹Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400

²Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400

Table of Contents

Page Number

Figure S1.	S2
Figure S2.	S2
Figure S3.	\$3
Figure S4.	\$3
Figure S5.	S4
Figure S6.	S4
Figure S7.	\$5
Figure S8.	\$5
Figure S9.	S6
Figure S10.	S6
Figure S11.	S7
Figure S12.	S7
Table S1.	S8

[†] These authors contributed equally to this work *Corresponding author. Tel: +1-631-632-1339; Fax: +1-631-632-7942. *E-mail address*: iwao.ojima@stonybrook.edu

Figure S1. ¹⁹F NMR spectra showing individual chemical shifts of probe 1, taxoid 3, thiolactone 9, and a mixture of 1, 3, and 9 in D_2O -DMSO (70:30).

Figure S2. ¹⁹F NMR spectra of **1** (2.5 mM) formulated in 5% solutol, 5% ethanol, 70% saline, 20% D₂O before (top) and after (10 h) (bottom) the addition of 6 equiv. of GSH. Integration of the signals clearly depicts \sim 20% cleavage of the disulfide bond.

Figure S3. ¹⁹F NMR spectral overlay showing individual chemical shifts of probe 2 (blue) and taxoid 4 (red) in CDCl₃ (Table 1, Entry 1).

Figure S4. ¹⁹F NMR spectra (1024 scans) showing individual chemical shifts of 200 μ M solutions of **2** and **4** in blood plasma-D₂O-ethanol-polysorbate 80 (86:10:2:2), and a 1:1 mixture of **2** and **4** in blood plasma-D₂O-ethanol-polysorbate 80 (84:10:4:2) (Table 1, Entry 2).

Figure S5. ¹⁹F NMR spectra (512 scans) showing individual chemical shifts of 200 μ M solutions of **2** and **4** in RPMI 1640-D₂O-ethanol-polysorbate 80 (86:10:2:2), and a 1:1 mixture of **2** and **4** in RPMI 1640-D₂O-ethanol-polysorbate 80 (84:10:4:2) (Table 1, Entry 3).

Figure S6. ¹⁹F NMR spectra (512 scans) showing individual chemical shifts of 200 μ M solutions of **2** and **4** in D₂O-ethanol-polysorbate 80 (96:2:2), and a 1:1 mixture of **2** and **4** in D₂O-ethanol-polysorbate 80 (94:4:2) (Table 1, Entry 4).

Figure S7. ¹⁹F NMR spectra (220 scans) showing individual chemical shifts of 200 μ M solutions of **2** and **4**, and a 1:1 mixture of **2** and **4** in saline-D₂O-ethanol (50:40:10) (Table 1, Entry 5).

Figure S8. ¹⁹F NMR spectra (220 scans) showing individual chemical shifts of 200 μ M solutions of **2** and **4**, and a 1:1 mixture of **2** and **4** in PBS-D₂O-ethanol (50:40:10) (Table 1, Entry 6).

Figure S9. ¹⁹F NMR spectra (1024 scans) showing individual chemical shifts of 200 μ M solutions of **2**, **4**, and a 1:1 mixture of **2** and **4** in DMSO-D₂O (70:30) (Table 1, Entry 7).

Figure S10. ¹⁹F NMR spectra (512 scans) showing individual chemical shifts of 200 μ M solutions of **2**, **4**, and a 1:1 mixture of **2** and **4** in D₂O-ethanol (60:40) (Table 1, Entry 8).

Figure S11. ¹⁹F NMR spectra (>268 scans) showing individual chemical shifts of 200 μ M solutions of **2**, **4**, and a 1:1 mixture of **2** and **4** in D₂O-ethanol-solutol HS15 (84:8:8) (Table 1, Entry 9).

Figure S12. ¹⁹F NMR spectra (>512 scans) showing chemical shifts of a 200 μ M solution of **2** and released taxoid **4** with 100 equivalents of GSH in D₂O-ethanol-polysorbate 80 (96:2:2) at 0, 17, 40, 72, 120, and 168 h, indicating a *t*_{1/2} of approximately 4 d.

Table S1.

Experimental data and normalized values for the drug release study of probe **4**, shown in Figure 7.

time (h)	Normalized Integration for 2	Normalized Integration for 4
0	1	0
1	0.841018667	0.158981333
2	0.658950264	0.341049736
3	0.500068503	0.499931497
4	0.37350062	0.62649938
5	0.23476298	0.76523702
6	0.152388797	0.847611203
7	0.110911486	0.889088514
8	0.094353851	0.905646149
9	0.054218871	0.945781129
10	0.028866218	0.971133782
11	0.019893467	0.980106533
12	0.020392911	0.979607089
13	0.014137708	0.985862292
time (h)	Experimental Integration for 2	Experimental Integration for A
time (h)	Experimental Integration for 2	Experimental Integration for 4
time (h) 0	Experimental Integration for 2 1 0.6803	Experimental Integration for 4 0
time (h) 0 1 2	Experimental Integration for 2 1 0.6803 0.575	Experimental Integration for 4 0 0.1286 0.2976
time (h) 0 1 2 3	Experimental Integration for 2 1 0.6803 0.575 0.365	Experimental Integration for 4 0 0.1286 0.2976 0.3649
time (h) 0 1 2 3 4	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544
time (h) 0 1 2 3 4 5	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0 6441
time (h) 0 1 2 3 4 5 6	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203
time (h) 0 1 2 3 4 5 6 7	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295 0.0926	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203 0 7423
time (h) 0 1 2 3 4 5 6 7 8	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295 0.0926 0.1001	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203 0.7423 0.9608
time (h) 0 1 2 3 4 5 6 7 8 9	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295 0.0926 0.1001 0.0489	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203 0.7423 0.9608 0.853
time (h) 0 1 2 3 4 5 6 7 8 9 10	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295 0.0926 0.1001 0.0489 0.0249	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203 0.7423 0.9608 0.853 0.8377
time (h) 0 1 2 3 4 5 6 7 8 9 10 11	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295 0.0926 0.1001 0.0489 0.0249 0.0183	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203 0.7423 0.9608 0.853 0.8377 0.9016
time (h) 0 1 2 3 4 5 6 7 8 9 10 11 12	Experimental Integration for 2 1 0.6803 0.575 0.365 0.2709 0.1976 0.1295 0.0926 0.1001 0.0489 0.0249 0.0183 0.0191	Experimental Integration for 4 0 0.1286 0.2976 0.3649 0.4544 0.6441 0.7203 0.7423 0.9608 0.853 0.8377 0.9016 0.9175