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1 Estimating the Personalized Treatment Effect in Terms

of Relative Risk

When the response Y is binary, relative risk may also be used as a measure for individualized

treatment effects. For example, if we consider an alternative approach for fitting the logistic
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regression working model with modified covariates W∗
i = TiWi/2 by letting

γ̂ = argminγ

N∑
i=1

{
(1− Yi)γ

′W∗ + Yie
−γ′W∗

i

}
,

then γ̂ converges to a deterministic limit γ̃∗ and exp{W(z)′γ̃∗(z)/2} can be viewed as an

approximation to

∆̃(z) =
P(Y (1) = 1|Z = z)

P(Y (−1) = 1|Z = z)
, (1)

which measures the treatment effect using “relative risk” rather than “risk difference”. This

loss function is motivated by the fact that the logistic regression model can be fitted by

solving the estimating equation

N−1

N∑
i=1

[
W∗

i

{
(1− Yi)− Yie

−γ′W∗
i

}]
= 0,

which is the derivative of the proposed loss function. Furthermore, the optimal augmentation

term a0(z) for this estimating function can be approximated by

−1

2
W(z)

{
E(Y |Z = z)− 1

2

}

when γ∗ ≈ 0. The efficiency augmentation algorithm can be carried out accordingly.

To justify (1), we consider the proposed objective function

l̃(Y, f(Z)T ) = (1− Y )f(Z)T + Y e−f(Z)T ,
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and have

L(f) =E{l̃(Y, f(Z)T )}

=EZ

[
1

2
EY {l(Y, f(Z)T )|Z, T = 1}+

1

2
EY {l(Y, f(Z)T )|Z, T = −1}

]

=EZ

[
1

2
{m−1(Z)−m1(Z)}f(Z) +

1

2
m1(Z)e−f(Z) +

1

2
m−1(Z)ef(Z)

]
,

where mt(z) = P(Y (t) = 1|Z = z) for t = 1 or -1. Therefore

∂L(f)

∂f
=

1

2
EZ

[{m−1(Z)−m1(Z)} −m1(Z)e−f(Z) + m−1(Z)ef(Z)
]

which implies that the minimizer of L(f) is

f ∗(z) = log
m1(z)

m−1(z)

for all z ∈ Support of Z.

2 Justification of the Optimal a0(z) in the Efficiency

Augmentation

Let S(y,w∗,γ) be the derivative of the objective function l(y, γ ′w∗) with respect to γ. γ̂ is

the root of an estimating equation

Q(γ) = N−1

N∑
i=1

S(Yi,W
∗
i ,γ) = 0.
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Similarly, the augmented estimator γ̂a can be viewed as the root of the estimating equation

Qa(γ) = N−1

N∑
i=1

{S(Yi,W
∗
i ,γ)− Ti · a(Zi)} = 0.

Since E{Ti · a(Zi)} = 0 due to randomization, the solution of the augmented estimating

equation always converges to γ∗ in probability. It is straightforward to show that

γ̂ − γ∗ = N−1A−1
0

N∑
i=1

S(Yi,W
∗
i ,γ

∗) + oP (N−1)

and

γ̂a − γ∗ = N−1A−1
0

N∑
i=1

{S(Yi,W
∗
i , γ

∗)− Tia(Zi)}+ oP (N−1),

where A0 is the derivative of E{S(Yi,W
∗
i ,γ)} with respect to γ at γ = γ∗. Selecting the

optimal a(z) is equivalent to minimizing the variance of {S(Yi,W
∗
i ,γ

∗) − Tia(Zi)}. Noting

that

E
[{S(Yi,W

∗
i , γ

∗)− Tia(Zi)}⊗2
]

= E
[{S(Yi,W

∗
i , γ

∗)− Tia0(Zi)}⊗2
]
+E[{a(Zi)−a0(Zi)}⊗2],

where a0(z) satisfies the equation

E [{S(Y,W∗,γ∗)− Ta0(Z)}Tη(Z)] = 0

for any function η(·), a0(·) is the optimal augmentation term minimizing the variance of γ̂a.

Since a0(·) is the root of the equation

E

[
{S(Y,W∗,γ∗)− Ta0(Z)}′T

∣∣∣∣ Z = z

]
= 0,

a0(z) =
1

2
[E{S(Y,W(z)/2, γ∗)|Z = z, T = 1} − E{S(Y,−W(z)/2,γ∗)|Z = z, T = −1}] .
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For continuous responses,

S(Y,W∗, γ) = −1

2
TW(Z)

{
Y − 1

2
TW(Z)′γ

}

and

a0(z) =
1
2

(
E[−W(z){Y −W(z)′γ∗/2}/2|T = 1,Z = z]− E[W(z){Y + W(z)′γ∗/2}/2|T = −1,Z = z]

)

=−W(z)
{

1
4
E(Y |T = 1,Z = z) +

1
4
E(Y |T = −1,Z = z)

}

=− 1
2
W(z)E(Y |Z = z).

For binary responses,

S(Y,W∗,γ) = −1
2
W(Z)T

{
Y − eTW(Z)′γ/2

1 + eTW(Z)′γ/2

}

and

a0(z) =− 1
4
W(z)

[
E

{
Y − eW(z)′γ∗/2

1 + eW(z)′γ∗/2

∣∣∣∣ T = 1,Z = z

}
+ E

{
Y − e−W(z)′γ∗/2

1 + e−W(z)′γ∗/2

∣∣∣∣ T = −1,Z = z

}]

=− 1
4
W(z)

{
E(Y |T = 1,Z = z) + E(Y |T = −1,Z = z)−

(
eW(z)′γ∗/2

1 + eW(z)′γ∗/2
+

e−W(z)′γ∗/2

1 + e−W(z)′γ∗/2

)}

=− 1
2
W(z)

{
E(Y |Z = z)− 1

2

}
.

5



For survival responses, the estimating equation based on the partial likelihood function is

asymptotically equivalent to the estimating equation N−1
∑N

i=1 S(Yi,W
∗
i ,γ) = 0, where

S(Y,W∗,γ) = −
∫ τ

0

[W∗ −R(u; γ)] M(du,W∗,γ).

Thus

a0(z) = −1

2

[
1

2
W(z) {G1(τ ; z) + G2(τ ; z)} −

∫ τ

0

R(u){G1(du; z)−G2(du; z)}
]

.

3 The Lasso Algorithm in the Efficiency Augmentation

In general, the augmentation term is in the form of a0(Zi) = W(Zi)
′r̂(Zi), where r̂(Zi) is a

simple scalar. The Lasso regularized objective function can be written as

1

N

N∑
i=1

{l(Yi,γ
′W∗

i )− γ ′W∗
i r̂(Zi)}+ λ|γ|.

In general, this Lasso problem can be solved iteratively. For example, when l(·) is the

negative log-likelihood function of the logistic regression model, we may update γ̂ iteratively

by solving the standard OLS-Lasso problem

1

N

N∑
i=1

ŵi(ẑi − γ ′W∗
i )

2 + λ‖γ‖1,

where

ẑi = γ̂ ′W∗
i + ŵ−1

i {Yi − p̂i + r̂(Zi)}, ŵi = p̂i(1− p̂i),

γ̂ is the current estimator for γ and

p̂i =
exp{γ̂ ′W∗

i }
1 + exp{γ̂ ′W∗

i }
.
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