Supporting information

Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H₂ production under visible light

Gang Wang,¹ Baibiao Huang,^{*1} Zhujie Li,² Zaizhu Lou,¹ Zeyan Wang,¹ Ying Dai,² and Myung-Hwan Whangbo³

¹State Key Laboratory of Crystal Materials, ²School of Physics, Shandong University, Jinan 250100, People's Republic of China

³Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8205, USA

Correspondence to bbhuang@sdu.edu.cn

Figure S1. The structure of ZnS with one S atom vacancy in a 32-atom $2 \times 2 \times 2$ supercell. The labels 1 - 4 refer to the four Zn atoms surrounding the S vacancy.

Figure S2. The isotherms of N_2 adsorption onto ZnS samples (obtained by using 0.01 mol NaBH₄) and together with the pore size distributions (the inset).

Figure S3. (A) The total DOS plot calculated for ZnS with one S vacancy in a $2\times2\times2$ supercell, for which the geometry relaxation was not included. (B) The projected DOS plot calculated for the four Zn atoms surrounding the S vacancy.

Figure S4. XPS results of ZnS sample (0.01 mol NaBH₄) before and after photocatalytic reaction.

Figure S5. Full XPS survey scan of vacancy ZnS which obtained by adding 0.01 mol NaBH_4

Figure S6. EDS spectrum and detailed information about the composition of different ZnS samples. A is ZnS^{ref} , B-D are vacancy ZnS with different NaBH₄ added during synthesized (0, 0.01, 0.02 mol).

High resolution XPS of spectrum of S in different ZnS samples are show in Figure S7, the standard binding energy of S $2p_{3/2}$ in ZnS^{ref} was about 161.2 eV¹. As the increasing of NaBH₄, the binding energy of obtained samples gradually shifted to higher direction.

Figure S7. High-resolution XPS spectrum of S in different ZnS samples. (A) 0, (B) 0.003, (C) 0.005, (D) 0.01, (E) 0.02, and (F) 0.03 mol of NaBH₄.

Figure S8. Hydrogen evolution rate of ZnS (0.01 mol) sample in the cyclic test.

[1] Liu, J; Wen, S. M. et. al, Dissolubility and surface properties of a natural sphalerite in aqueous solution. *Miner. Meteall. Proc.* **29**, 113-120 (2012).