Chemistry & Biology, Volume 22

Supplemental Information

Delineating the Biosynthesis of Gentamicin X2,

the Common Precursor of the

Gentamicin C Antibiotic Complex

Chuan Huang, Fanglu Huang, Eileen Moison, Junhong Guo, Xinyun Jian, Xiaobo Duan, Zixin Deng, Peter F. Leadlay, and Yuhui Sun

Supplemental Information

Inventory of Supplemental Information

 Table S1.
 LC-ESI-HRMS analysis of genD2-genS2-genN-genD1 knock-out mutants. Related to Figure 2.

Figure S1. In-frame deletion of *genD2*, *genS2*, *genN* and *genD1* in *M. echinospora* ATCC 15835, and complementation of Δ genD2, Δ genS2, Δ genN, Δ genD1, Δ genD2 Δ genK and Δ genS2 Δ genK. Related to Figure 2.

Figure S2. MS and MS/MS spectra of gentamicin-related intermediates isolated from mutants of *M. echinospora*. Related to Figure 2.

Figure S3. LC-ESI-HRMS analysis of the production of the gentamicin C complex and gentamicin-relate intermediates by *Micromonospora echinospora* mutants fed with gentamicin A or G418. Related to Figure 2.

Figure S4. Characterization of purified recombinant GenD2, GenS2, GenN and GenD1. Related to Figures 3 and 4.

Figure S5. LC-ESI-HRMS analysis of GenD2-, GenS2- and GenN-catalyzed modifications on kanamycin B and tobramycin. Related to Figure 3.

Supplemental Experimental Procedures

- 1. List of oligonucleotide primers used in this study
- 2. List of bacterial strains and plasmids used in this study
- 3. Structures of 3"-dehydro-3"-amino-gentamicin A2 and its homologs
- 4. Purification of gentamicin A2
- 5. Kinetic study of GenN with kanamycin B
- 6. Conditions for LC-ESI-MS analyses

Strain	Gentamicin C complex production (×10 ⁵)				Intermediates production (×10 ⁵					
	C1a	C2b	C2	C2a	C1	A2	Α	A2e	X2	DAA2
wild-type	12.6	1.3	59.8	10.0	95.9	2.1	3.4	ND	2.2	ND
ΔgenD2	ND	ND	ND	ND	ND	25.6	ND	30.3	ND	ND
∆genS2	ND	ND	ND	ND	ND	47.4	ND	46.5	ND	ND
∆genD2∆genK	ND	ND	ND	ND	ND	69.1	ND	ND	ND	ND
∆genS2∆genK	ND	ND	ND	ND	ND	70.6	ND	ND	ND	ND
∆genD2∆genK:: <i>genK</i>	ND	ND	ND	ND	ND	27.8	ND	42.3	ND	ND
∆genS2∆genK∷ <i>genK</i>	ND	ND	ND	ND	ND	27.8	ND	36.8	ND	ND
∆genD1	ND	ND	ND	ND	ND	13.7	19.7	5.6	ND	ND
ΔgenN	ND	ND	ND	ND	ND	19.1	ND	18.1	ND	0.7
ND, not detected										

Table S1. LC-HRMS analysis of *genD2-genS2-genN-genD1* knock-out mutants

Figure S1. In-frame deletion of genD2, genS2, genN and genD1 in *M.* echinospora ATCC 15835, and complementation of Δ genD2, Δ genS2, Δ genN, Δ genD1, Δ genD2 Δ genK and Δ genS2 Δ genK. Related to Figure 2.

Schematic representation of the in-frame deletions and complementations, and Southern blot confirmations are shown for each mutant. The arrows indicate the expected size of the fragments from the wild-type and mutants chromosomal DNA, respectively.

A. ∆genD2

B. ∆genS2

C. ∆genD2∆genK

D. ∆genS2∆genK

E. ∆genN

F. ∆genD1

Figure S2. MS and MS/MS spectra of gentamicin-related intermediates isolated from mutants of *M. echinospora*. Related to Figure 2.

Selective ion monitoring on (A) $[M+H]^{+}(m/z 456.2188)$ ion of gentamicin A2 (3); (B) $[M+H]^{+}(m/z 470.2344)$ ion of gentamicin A2e (7); (C) $[M+H]^{+}(m/z 455.23478)$ ion of 3"-dehydro-3"-amino-gentamicin A2 (DAA2, [9]); (D) $[M+H]^{+}(m/z 469.2504)$ ion of gentamicin A (6); (E) $[M+H]^{+}(m/z 483.2661)$ ion of gentamicin Ae (10)

Α

.

Figure S3. LC-ESI-HRMS analysis of the production of the gentamicin C complex and gentamicin-related metabolites by *Micromonospora echinospora* mutants when fed with gentamicin A or G418. Related to Figure 2.

Total ion current trace of (A) gentamicin standard; and fermentation culture extracts from (B) wild-type; (C) Δ genD2 mutant fed with gentamicin A; (D) Δ genS2 mutant fed with gentamicin A; (E) Δ genN mutant fed with gentamicin A; (F) Δ genD1 mutant fed with gentamicin A; (G) Δ genD1 mutant fed with G418 (5).

Figure S4. Characterization of purified recombinant GenD2, GenS2, GenN and GenD1. Related to Figure 3 and 4.

(A) SDS-PAGE gel of GenD2, GenS2, GenN and GenD1; (B) UV-visible absorption spectra of GenD2, GenS2 and GenD1.

Figure S5. LC-ESI-HRMS analysis of GenD2-, GenS2- and GenN-catalyzed modifications on kanamycin B and tobramycin. Related to Figure 3. Selective ion monitoring was carried out on

(A) [M+H]⁺ (m/z 484) and [M+Na]⁺ (m/z 506) ions of kanamycin B (**11**);

(B) [M+H]⁺ (m/z 483) and [M+Na]⁺ (m/z 505) ions of 3"-deamino-3"-oxo-

kanamycin B (13), the product of GenS2 catalyzed de-amination of 11;

(C) [M+H]⁺ (m/z 485) and [M+Na]⁺ (m/z 507) ions of 3"-deamino-3"-hydroxy-

kanamycin B (15), the product of GenD2 catalyzed hydrogenation of 13;

(D) $[M+H]^+$ (m/z 498) and $[M+Na]^+$ (m/z 520) ions of 3"N-methyl-kanamycin B (17), the product of GenN catalyzed methylation of 11.

(E) $[M+H]^+$ (m/z 468) and $[M+Na]^+$ (m/z 490) ions of tobramycin (**12**); (F) $[M+H]^+$ (m/z 467) and $[M+Na]^+$ (m/z 489) ions of 3"-deamino-3"-oxotobramycin (**14**), the product of GenS2 catalyzed de-amination of **12**; (G) $[M+H]^+$ (m/z 469) and $[M+Na]^+$ (m/z 491) ions of 3"-deamino-3"-hydroxytobramycin (**16**), the product of GenD2 catalyzed hydrogenation of **14**; (H) $[M+H]^+$ (m/z 482) and $[M+Na]^+$ (m/z 504) ions of 3"N-methyl-tobramycin (**18**), the product of GenN catalyzed methylation of **12**.

MS/MS analysis of $[M+H]^+$ (m/z 484), $[M+H]^+$ (m/z 483), $[M+H]^+$ (m/z 485), $[M+H]^+$ (m/z 498) MS² analysis of $[M+H]^+$ (m/z 468), $[M+H]^+$, (m/z 467), $[M+H]^+$, (m/z 485) and $[M+H]^+$ (m/z 482) ions are also shown.

1%

Supplemental Experimental Procedures

Primer	Oligonucleotide sequences (5' to 3')	Restriction Site
genD2-L1	CGC <u>CATATG</u> AGAGATGGAACTGGC	Ndel
genD2-L2	CCG GAATTC CACTCGGGGATC	<i>Eco</i> RI
genD2-R1	GTG GAATTC AATGCCTGACAACAAG	<i>Eco</i> RI
genD2-R2	CAGAAGCTTCTCGCCCTCCCG	HindIII
genD2-CK1	GCTGCGGTTCGACAACAAGC	
genD2-CK2	TTGGACGGGATCGGCAGCAC	
genS2-L1	CGT <u>CATATG</u> TGTCGCATTCCCACCG	Ndel
genS2-L2	GGC <u>GAATTC</u> CTGGTGCATGGTGTTC	<i>Eco</i> RI
genS2-R1	GAG GAATTC CAGGACATGCTGGATG	<i>Eco</i> RI
genS2-R2	CTG AAGCTT TACAACATCGGCCAGG	HindIII
genS2-CK1	TGGAGAACTACTGGGTGAAGCA	
genS2-CK2	TCGACCGTGACCTTGAGGAA	
genD2-a	CACGG <u>CATATG</u> CTGCCGATGG	Ndel
genD2-b	GGGG GAATTC TTGTCAGGCATTCAT	<i>Eco</i> RI
genS2-a	CCG <u>CATATG</u> ACGCAGAAACTGGCCA	Ndel
genS2-b	GCCA <u>GAATTC</u> GATCATAGGCTCTTC	<i>Eco</i> RI
genK-CK1	CGGGCGAACCTTCGGGATA	
genK-CK2	CCGTCAGCGTTGGCAATAA	
genD1-L1	GGC <u>CATATG</u> GCTCGCGGCCG	Ndel
genD1-L2	AAG <u>GAATTC</u> CGTGAGGGTCGCCACC	<i>Eco</i> RI
genD1-R1	CCG <u>GAATTC</u> GCCCTCGGGGC	<i>Eco</i> RI
genD1-R2	GTG AAGCTT GATCGGCCGGACATCG	HindIII
genD1-CK1	GAAGCTCGCCGATGCCA	
genD1-CK2	CAGGTGAAGGCGGTGGTG	
genD1-a	CGC <u>CATATG</u> ACCGTCACTAACAAG	Ndel
genD1-b	CCG GAATTC TCAGCGGCTACCTGCCCC	EcoRI

1. List of oligonucleotide primers used in this work

genN-L1	GCG <u>CATATG</u> CTCGTAGACCCAGTTC	Ndel
genN-L2	CTG <u>GAATTC</u> CGAGCCTCCGACGATC	EcoRI
genN-R1	GAC <u>GAATTC</u> CTGCGGGGCTGACCCC	EcoRI
genN-R2	GAG <u>AAGCTT</u> GCCGCCGACTCCGACC	HindIII
genN-CK1	GGATGGGATGCCAACGACC	
genN-CK2	ACCGCGACGACGATGACG	
genN-a	CGC <u>CATATG</u> ATCGTCGGAGGCTCG	Ndel
genN-b	CCG <u>GAATTC</u> TCAGCCCCGCATGAGCCG	EcoRI
pGenD1-For	GGAGTCCT <u>CATATG</u> ACCGTCACTAACAAGA	Ndel
pGenD1-Rev	5GGCCAGGGCC <u>GGATCC</u> GGACGGGGTCGCCA	<i>Bam</i> HI
pGenD2-For	GTGGGTGCTG CATATG GTTG AGCGCCTGGG	Ndel
pGenD2-Rev	CCCAACACGT <u>GAATTC</u> CGCCCATCGGGTCG	EcoRI
pGenN-For	ACTCTCGGGAGTAG <u>CATATG</u> ATCGTCGGAG	Ndel
pGenN-Rev	GGTGCGGT <u>GGATCC</u> AACCTG TGGCAGGGCC	BamHI
pGenS2-For	GGCAG GTAGCCG <u>CATATG</u> ACGCAGAAACTG	Ndel
pGenS2-Rev	TCGCCGATCGG GAATTC TTCGAGGGATCGG	EcoRI

Primer pairs for amplification of left- or right-flanking fragments of a target gene, for PCR/sequencing confirmation, for complementation plasmid construction, and for cloning target genes for over-expression are marked with suffixes –L1/–L2, -R1/-R2, –a/-b, CK1/CK2, or –For/-Rev, respectively.

Strain/Plasmid	Characteristics	Reference		
E.coil				
DH10B	Host for general cloning	Invitrogen		
NovaBlue	Host for general cloning	Novagen		
BL21(DE3)	Host for recombinant protein expression	Novagen		
ET12567/pUZ8002	Donor strain for conjugation between <i>E.coli</i> and 2567/pUZ8002 <i>Streptomyces</i>			
Micromonospora echinospora				
ATCC15835	Gentamicin producing wild-type strain	Weinstein et al., (1963)		

ΔgenD2	genD2 single in-frame deletion mutant	This work
∆genS2	genS2 single in-frame deletion mutant	This work
∆genD2∆genK	genD2 and genK in-frame deletion mutant	This work
∆genS2∆genK	genS2 and genK in-frame deletion mutant	This work
∆genD2:: <i>genD</i> 2	Self-complementation of genD2 in Δ genD2	This work
∆genD1:: <i>genD1</i>	Self-complementation of $genD1$ in $\Delta genD1$	This work
∆genS2:: <i>genS</i> 2	Self-complementation of genS2 in Δ genS2	This work
∆genN:: <i>genN</i>	Self-complementation of $genN$ in $\Delta genN$	This work
∆genD2∆genK:: <i>genK</i>	Self-complementation of $genK$ in $\Delta genD2\Delta genK$	This work
∆genS2∆genK∷ <i>genK</i>	Self-complementation of $genK$ in $\Delta genS2\Delta genK$	This work
Plasmid		
pUC18	Vector for sub-cloning and DNA sequencing	Takara
pYH7	E. coli-Streptomyces shuttle vector	Sun et al., (2009)
pWHU1	genK in-frame deletion construct	Guo et al. (2014)
pWHU6	genD2 in-frame deletion construct	This work
pWHU21	genS2 in-frame deletion construct	This work
pYH287	genD1 in-frame deletion construct	This work
рҮН289	genN in-frame deletion construct	This work
pWHU67	genK self-complementation construct	Guo et al., (2014)
pWHU115	genS2 self-complementation construct	This work
pWHU184	genD2 self-complementation construct	This work
pWHU66	genD1 self-complementation construct	This work
pWHU68	genN self-complementation construct	This work
pET28/genD2	for over-expression of recombinant GenD2	This study
pET28/genS2	for over-expression of recombinant GenS2	This study
pET28/genN	for over-expression of recombinant GenN	This study
pET28/genD1	for over-expression of recombinant GenD1	This study
pDB1282	for over-expression of iron-sulfur cluster (isc) biosynthetic genes	Zheng et al., 1998

3. Structures of 3"-dehydro-3"-amino-gentamicin A2 and its homologs, kanamycin B, tobramycin and sisomicin.

4. Purification of gentamicin A2

Purification of gentamicin A2 (**3**) from extracts of the Δ genS2 Δ genK mutant fermentation broth after cation exchange (see Experimental Procedures) was performed on a Waters 2535 semi-preparative HPLC system using a ZORBAX SB-C18 (9.4 × 250 mm, 5 μ , Agilent) semi-preparative column, with as mobile phase (A) 0.2% TFA in water adjusted to pH 2 with NH₄OH and (B) acetonitrile. Elution of gentamicin A2 was carried out isocratically at 95% A for 15 min at a flow rate of 4 ml/min. The column eluate was directed to an Evaporative Light Scattering Detector(ELSD, Alltech 3300) with 2ml/min splitting, and the rest of the eluate was collected in 1 ml fractions. The atomization temperature of ELSD was 55°C and the drift tube temperature was 48 °C. Fractions containing gentamicin A2 were pooled and further confirmed by LC-ESI-HRMS.

5. Kinetic study of GenN with kanamycin B

8.5 nM GenN was incubated in 500 μ l Tris-HCl (50 mM, pH 7.5) buffer at 30°C with kanamycin B (**11**) at concentrations of 30, 40, 50, 60 and 70 μ M in the presence of 250 μ M SAM. An 80 μ l aliquot of each reaction was taken out after 1, 2, 3, 4, 5 and 6 min incubation and mixed immediately with an equal volume of ice cold chloroform to precipitate the enzyme. The reactions were analyzed by LC-ESI-MS. The product 3"N-methylkanamycin B (**17**) was quantified

based on the peak integration of the selected ion. Data points are the mean value of three replicates.

6. Conditions for LC-ESI-MS analyses

LC-ESI-HRMS analysis of gentamicin-related metabolites and in vitro assays were performed on a Thermo LTQ-Orbitrap XL instrument using a Luna C18 column (250 mm × 4.6 mm, 5 μ , Phenomenex) with a flow rate of 0.4 ml/min. LC-MS analysis of proteins was carried out on a ThermoFinnigan LCQ fitted with an ESI source connected to an Agilent HP 1100 HPLC system using a Nucleosil C4 column (250 mm × 2 mm, 5 μ , Macherey-Nagel). The mobile phase and gradients used for HPLC are as follows:

HPLC gradient used for analysis of gentamicin-related metabolites

Mobile phase A: 0.2% TFA in water; Mobile phase B: acetonitrile. 2% B to 14% B over 18 min, then to 90 % B within 1 min, maintained at 90% B for 5 min, returned to 2% B over 1 min and maintained at 2% B for a further 5 min. The injection volume was 5 μ l for each gentamicin standard (500 μ g ml⁻¹) and 20 μ l for each sample. Each cultivation and analysis was performed in triplicate.

HPLC gradient for analysis of aminoglycosides in enzymatic assays

Mobile phase A: 0.2% TFA in water; Mobile phase B: 0.1% TFA in acetonitrile. 2%B to 8%B over 9 min then to 90%B over 1 min, maintained at 90%B for 4 min, returned to 2%B over 1 min and then maintained at 2%B for a further 5 min. flow rate 0.6 ml/min.

HPLC gradient for analysis of 5'-deoxydenosine in enzymatic assays

Mobile phase A: 0.1% TFA in water; Mobile phase B: 0.1% TFA in acetonitrile. 0%B to 20% B over 30 min. 0.6 ml/min.

HPLC gradient for analysis of proteins

Mobile phase A: 0.1% TFA in water; Mobile phase B: 0.1% TFA in acetonitrile. 35% B to 45 % B over 5 min, increasing gradient of B to 75% over 20 min, gradient to 95% within 2 min, maintained at 95% B for 7 min, followed by a gradient from 95% B to 35% B within 3 min;

References

1. Kim J.Y., Suh J.W., Kang S.H., Phan T.H., Park S.H., Kwon H.J.(2008). Gene inactivation study of gntE reveals its role in the first step of pseudotrisaccharide modifications in gentamicin biosynthesis. Biochem. Biophys. Res. Commun. *372*, 730-734.

2. MacNeil, D.J., Occi, J.L., Gewain, K.M., MacNeil, T., Gibbons, P.H., Ruby, C.L., and Danis, S.J. (1992). Complex organization of the *Streptomyces avermitilis* genes encoding the avermectin polyketide synthase. Gene *115*,

119-125.

3. Weinstein, M.J., Luedemann, G.M., Oden, E.M., Wagman, G.H., Rosselet, J.P., Marquez, J.A., Coniglio, C.T., Charney, W., Herzog, H.L., and Black, J (1963). Gentamicin, a new antibiotic complex from *Micromonospora*. J. Med. Chem. *6*, 463-464.

4. Sun, Y., He, X., Liang, J., Zhou X., and Deng, Z. (2009). Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in *Streptomyces lividans* 1326. Appl. Microbiol. Biotechnol. *8*2, 303-310.

5. Guo, J., Huang, F., Huang, C., Duan, X., Jian, X., Leeper, F., Deng, Z., and Leadlay, P.F., Sun, Y. (2014). Specificity and promiscuity at the branch point in gentamicin biosynthesis. Chem Biol. *21*, 608-618.