
Text S1: Detailed pseudo-code describing the algorithm employed for the simulation

Definitions and Input of experimental parameters:

proteome is the set of all protein species. Each protein is a sequence of amino acids represented as a

 sequence of tuples (aai, si) where aai is the amino acid at position si. The tuples are sequenced and

 positions are indexed from the N- to the C- terminuses of the protein, with the first amino acid

having

 position 1.

Amino acid cleave indicating site at which protease is active. Proteolysis takes place at the carboxyl side

of the

 amino acid. Example: For cyanogen bromide, cleave = Met.

Mapping labels from set of amino acids to dyes used to label them

 Example: labels = {Lys: red, Tyr: green} indicates lysines are labeled using a red dye and tyrosines

are

 labeled with a green dye

Amino acid attachment indicating which amino acid is used to functionalize peptides to the slide

 Example: attachment = Cys indicates peptides are functionalized via cystines

Probability u ϵ [0, 1] of unsuccessfully labeling an amino acid. This occurs when an amino acid intended

to be

 labeled per labels fails to covalently bond to its dye, or the dye that bonds is defective before the

 experiment begins. u is constant across all labels.

Probability p ϵ [0, 1] of the Edman cycle successfully cleaving off the N-terminal amino acid from a

peptide.

Photobleaching constant b ϵ [0, ∞) indicating the photobleaching half-life of all fluors.

Number of experimental cycles the sample will be subjected to.

Function random() is provided by the system and yields random floating point numbers in [0, 1].

Function binomial(x, y) is provided by the system and returns the binomial coefficient

e is Euler’s constant.

Function sort() sorts tuples (aai, si) in by si in ascending order

Each protein is sampled a simulation_depth number of times.

Algorithm section 1: Definition of prefix trie used to collate simulation results and associated utility

functions

 Definitions:

 A node in the trie stores three items:

1. tuple (aai, si)
2. references to all children nodes by their tuples (aai, si); for simplicity, we omit the creation of

child nodes in this pseudocode and assume they all exist

3. counters for all proteins, i.e. a mapping from the proteome to the set of integers, notated by

counter[protein]; all counters are initialized to 0

 The root node stores only references to all children nodes

 Each sequence of tuples (aai, si) uniquely maps to a node in the trie by walking the trie starting from

the root

 node, with each successive tuple (aai, si) indicating the child node to visit next. The sequence

is mapped

 to the last node the walk arrives at. See function increment_counter below for an illustration.

 Functions:

 FUNCTION increment_counter(sequence of tuples (aai, si), protein):

 current_node ← root node

 FOR tuple (aai, si) IN sequence of tuples:

 current_node ← child (aai, si) of current node

 #current_node is now the node that the sequence of tuples maps uniquely onto

 counter[protein] ← counter[protein] + 1

 FUNCTION recursive_traverse(node):

 list_of_nodes ← (node) #list of all child nodes including self

 FOR node IN children nodes:

 list_of_nodes ← list_of_nodes + recursive_traverse(node)

 RETURN list_of_nodes

Algorithm section 2: Experiment initialization

 peptides[protein] = NULL

#this will store all peptides proteolysed from protein that are hybridized to the

#surface

 FOR protein IN proteome:

 peptides ← proteolyze protein using cleave

#peptides is the set of all subsequences of the protein

 #partitioned after tuples with aai=cleave; for example,

#((K, 1) (M, 2)(C, 3)(M,4)) would yield the set

#{ ((K, 1), (M,2)), ((C, 3), (M, 4)) }

 FOR peptide IN peptides:

 IF attachment NOT IN peptide:

 discard peptide #peptides not having attachment cannot attach to the surface and are

 #washed away

 FOR peptide IN peptides:

 FOR tuple (aai, si) IN peptide:

 IF aai NOT IN labels:

 discard tuple from peptide #ignore unlabeled amino acids

 peptides[protein] ← peptides

Algorithm section 3: Monte Carlo simulation

 FUNCTION simulate(peptide, protein):

 #the sequence of tuples in peptide is copied for every call of this function and is manipulated below

 sequence ← copy(peptide)

 ###simulate fluor label failure

 FOR tuple (aai, si) IN sequence:

 IF random() < u:

 discard (aai, si) from the sequence

 ###end of fluor label failure section

 ###simulate Edman failure

 cumulative_delay = 0 #temporary variable keeping track of total Edman failures

 FOR tuple (aai, si) IN sequence:

 d ← si IF this is the first tuple in the sequence ELSE si – si – 1

#distance between consecutive labels

 delay_sample = random() #generate random point for delay probability distribution

 delay = 0 #keep track of delays for interval between (aai, si) and (aai – 1, si – 1)

 accumulator = 0 #temporary variable for accumulating delay probabilities

 #map delay onto [0, 1] via its probability distribution

 WHILE:

 binomial_pdf = 0 #binomial probability density function

 IF random_delay = 0:

 binomial_pdf ← p
d

 ELSE:

 binomial_pdf ← binomial(d – 1, d – 1 + delay) * p
d

*(1 - p)
delay

 -

 binomial(d – 1, d – 2 + delay) * p
d

*(1 - p)
delay - 1

 accumulator ← accumulator + binomial_pdf

 #test if this was the delay chosen by delay_sample

 IF accumulator ≥ delay_sample:

 BREAK

 ELSE:

 delay ← delay + 1

 cumulative_delay ← cumulative_delay + delay

 (aai, si) ← (aai, si + cumulative_delay)
#delay aai in fluorosequence due to all prior Edman failures

 #simulation assumes Edman cannot proceed past the first amino acid hybridized to the surface

 IF aai = attachment:

 #although Edman cannot reach them, the delay still affects fluors after attachment due to

 #photobleaching

 FOR (aaj, sj) IN sequence:

 IF j > i:

 (aaj, sj) ← (aaj, sj + cumulative_delay)
 BREAK

 ###end of Edman failure section

 ###simulate photobleaching

 #first loop photobleaches fluors before the first attachment, because

 # Edman cannot proceed past it

 #second loop (further below) photobleaches fluors after first attachment

 FOR (aai, si) IN sequence:

 #this IF statement stops the first loop at the first attachment

 IF aai = attachment:

 BREAK

 photobleach_sample = random()

#random point for photobleaching probability distribution

 accumulator = 0 #temporary variable for accumulating photobleaching probabilities

 exposures = cycles + 1 IF cycles < si ELSE si #number of exposures for the fluor

 FOR k FROM 0 TO exposures - 1:

 accumulator ← accumulator + e
-bk

 IF accumulator * (1 – e
-b

) ≥ photobleach_sample:

 (aai, si) ← (aai, k + 1)

 BREAK

 #second loop photobleaches fluors after first attachment

 FOR (aai, si) IN sequence:

 #this IF statement ignores all fluors before the first attachment

 IF aai = attachment:

 CONTINUE

 photobleach_sample = random()

 #random point for photobleaching probability distribution

 accumulator = 0 #temporary variable for accumulating photobleaching probabilities

 exposures = cycles #number of exposures for these fluor is always all cycles

 FOR k FROM 0 TO exposures - 1:

 accumulator ← accumulator + e
-bk

 IF accumulator * (1 – e
-b

) ≥ photobleach_sample:

 (aai, si) ← (aai, k + 1)

 BREAK

 ###end of photobleaching section

 #sort sequence by final observations and collate result into trie

 sequence ← sort(sequence)

 increment_counter(sequence, protein)

 #main simulation loop

 FOR protein IN proteome:

 FOR k FROM 0 to simulation_depth:

 FOR peptide IN peptides[protein]:

 simulate(peptide, protein)

Algorithm section 4: Count identified proteins

 identified_proteins = {} #set of all proteins considered classified

 FOR node in recursive_traverse(root node):

 total_source_proteins = 0 #calculate total number of times the fluorosequence mapping to this

node

 #has been observed

 FOR protein IN counters:

 total_source_proteins ← total_source_proteins + counters[protein]

 FOR protein IN counters:

 IF counters[protein] > 10 AND counters[protein] / total_source_proteins > 0.90:

 identified_proteins ← identified_proteins + protein

 RETURN identified_proteins

