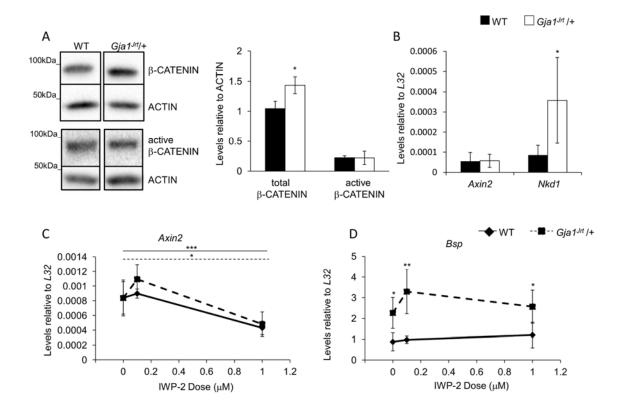
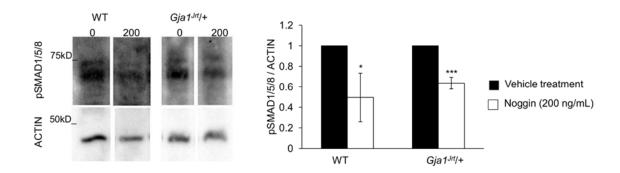

Supplemental Materials Molecular Biology of the Cell


Zappitelli et al.


Supplemental Figure 1. The $Gja1^{Jrt}$ mutation does not cause a systemic increase in adipogenesis or adipocyte activity. (A) Representative DEXA images of WT and $Gja1^{Jrt}$ /+ mice at 2 and 8 months of age. Measurements showed that $Gja1^{Jrt}$ /+ mice had significantly lower body weight than WT littermates at all ages. No differences in percentage fat or percentage lean mass were noted at any age; n = 9. (B) Representative images of WT and $Gja1^{Jrt}$ /+ epididymal fat pads. Expression of adipocyte-associated markers were unchanged in RNA isolated from epididymal fat pads of WT versus $Gja1^{Jrt}$ /+ mice; $n \ge 3$. *p<0.05, **p<0.01 and ***p<0.001.

Supplemental Figure 2. Effect of the $Gja1^{Jrt}$ mutation on formation of bone marrow-derived adipocytes *in vitro*. (A) Representative images of end-point adipogenic stromal cultures stained with Oil Red-O. The stromal cells were cultured under adipogenic conditions for approximately 6 days or until adipocytes could be identified by the presence of visible lipid droplets. (B) The amount of Oil Red-O staining was unaffected between genotypes; n = 3. *p<0.05, **p<0.01 and ***p<0.001.

Supplemental Figure 3. Changes in Wnt/ β -catenin signaling cannot account for the upregulation of Bsp expression in hyperactive $Gja1^{Jrt}/+$ osteoblasts. (A) The level of total β -CATENIN protein was significantly increased in $Gja1^{Jrt}/+$ versus WT confluent osteogenic stromal cultures derived from 4 month old mice. Levels of active β -CATENIN (antibody recognizes the active form of β -CATENIN, dephosphorylated on Ser37 and Thr41) were unchanged. Shown is one representative blot; $n \ge 4$. (B) Expression of direct β -catenin target genes, Axin2 and Nkd1, were unaffected and increased, respectively, in $Gja1^{Jrt}/+$ versus WT cells; $n \ge 8$. When confluent osteogenic stromal cells were treated with IWP-2, a Wnt signaling inhibitor, (C) the expression of Axin2 decreased significantly, but (D) the expression of Bsp remained significantly increased in $Gja1^{Jrt}/+$ versus WT cells. Expression of Bsp was unchanged by IWP-2 treatment in cells of both genotypes; $n \ge 3$. Solid and dashed lines indicate significant differences over dosage concentration in WT and $Gja1^{Jrt}/+$ mice, respectively. *p < 0.05, **p < 0.01 and ***p < 0.001.

Supplemental Figure 4. Levels of pSMAD1/5/8 were significantly reduced in both WT and $Gja1^{Jrt}$ /+ stromal cells treated with 200ng/mL of Noggin versus vehicle treated cells. One representative blot is shown; n = 3. *p<0.05, **p<0.01 and ***p<0.001.

Supplemental Table 1. Quantitative RT-PCR primer sequences used in this study.

Gene	Direction	Sequence	
Adipsin	Forward	TTGCAGGGGAGACTCCGGCAG	
	Reverse	CTCGGGTATAGACGCCCGGCT	
aP2	Forward	TAACCCTAGATGGCGGGGCCC	
	Reverse	AACACATTCCACCACCAGCTTGT	
Axin2	Forward	GCATCGCAGTGTGAAGGCCAA	
	Reverse	AGCAGGTTCCACAGGCGTCA	
Bsp*	Forward	CAGGGAGGCAGTGACTCTTC	
	Reverse	AGTGTGGAAAGTGTGGCGTT	
Bmp2	Forward	GAGGCGAAGAAAAGCAACAG	
	Reverse	GGGGAAGCAGCAACACTAGA	
Bmp4	Forward	TTCCTGGTAACCGAATGCTGA	
	Reverse	CCTGAATCTCGGCGACTTTTT	
L32 #	Forward	CACAATGTCAAGGAGCTGGAAGT	
	Reverse	TCTACAATGGCTTTTCGGTTCT	
LPL	Forward	GACTTGCCCTACGGCGCTCC	
	Reverse	AATCTCTTCCCGCGTCTGCTGC	
Nkd1	Forward	GGAGGACAGCCGGCAAGAGTG	
	Reverse	ACCCGCAGTGTCTTGCTTGATG	
Pparg2	Forward	TCGCTGATGCACTGCCTATG	
	Reverse	GAGAGGTCCACAGAGCTGATT	
Tof7	Forward	AGCCAGAAGCAAGGAGTTCACAGG	
Tcf7	Reverse	GCAGGAAGGGGACAGGGGGTAG	

Supplemental Table 2. List of antibodies used in this study.

Antigen	Host	Company	Catalogue ID
ACTIN	Rabbit	Sigma-Aldrich	A2066
β-CATENIN (active)	Mouse	Millipore	05-665
β-CATENIN (total)	Rabbit	Abcam	ab6302
CREB	Rabbit	Cell Signaling Technology	4820
Connexin 43	Rabbit	Invitrogen	71-0700
pCREB	Rabbit	Cell Signaling Technology	4276
SMAD 1	Rabbit	Invitrogen	38-5400
pSMAD 1/5/8	Rabbit	Cell Signaling Technology	9511
Anti-mouse IgG-HRP	Goat	Thermo Scientific	LE146795
Anti-rabbit IgG-HRP	Goat	Santa Cruz Biotech., Inc.	sc-2004