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Fuzzy Molecular Grade Signatures  

Memebership functions 

To transform quantitative data (features) values into the unified membership space several 

membership functions denoted as µk
i  can be used [62].  

- “Fuzzy” extension of the binomial function:  
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where i

k  corresponds to the mean value for the ith feature characterizing class k. This 

membership function works extremely well when the observations are grouped, after 

standardization, around 0 or 1, but may present instability or definition problems when data 

are concentrated around 0.5. Therefore, a membership function which includes the 

proximity to an estimated center should also be considered. Moreover, when the volume of 

the observed data is important, it is very likely to follow a Gaussian or semi-Gaussian 

distribution.  

- Gaussian function: 
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where, i

k is the mean value, and parameter i

k  measures the proximity (variance) of the ith 

feature values based on the samples belonging to class Ck. 

 

 

 

 



Fuzzy feature selection algorithm - MEMBAS (binary class problems) 

 
Assuming that the nth data sample  𝑥𝑛 = [𝑥𝑛

1 , 𝑥𝑛
2, ⋯ , 𝑥𝑛

𝑚] is labeled by class c, let c~ be the 

alternative class, the membership margin for sample 𝑥𝑛is defined by: 

   nβ = ψ U -ψ Unc nc  (3)
 

Where ncU  and cnU ~ are respectively the membership degree vectors of sample 𝑥𝑛 to classes 

c and c~ ,  i iY ψ(Y)  computes the global contribution of a subset of features to each class. 

Note that sample 𝑥𝑛 is correctly classified if βn >0.  

The basic idea is to determine the fuzzy feature weights (wf) which minimize the leave-one-

out error: 
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where βn(wf) is the margin of 𝑥𝑛computed with respect to wf. The first constraint is the 

standardized bound for the modulus of wf so that the maximization ends up with non-

infinite values, whereas the second guarantees the non-negative weight property. 

By using the classical Lagrangian optimization approach an analytical solution can be derived 

and the solution can be written in a closed-form as: 
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(5) 

In this way features are rank-ordered according to their discriminant power (wf). Therefore, 
MEMBAS chooses only the features if they contribute to the overall performance. Hence, it 
addresses the issues of features correlation and redundancy. In Hedjazi [REF These de 
Lyamine] an extensive experimental study, including a comparison with known feature 
selection methods has been performed on several datasets presenting mixed-type and high-
dimensional data.  
 

Fuzzy classification algorithm – LAMDA 

LAMDA (Learning Algorithm for Multivariable Data Analysis) [56], is a fuzzy methodology of 

conceptual clustering and classification. It is based on finding the global membership degree 

of a sample to an existing class, considering all the contributions of each feature. This 

contribution is called the marginal adequacy degree (MAD). To calculate the marginal 

contributions the same membership functions µk
i proposed by (Aguado and Aguilar-Martin, 

1999) can be used. In this work the “fuzzy” extension of the binomial function(1) and the 

Gaussian function (2) were used. 

The MADs are combined using "fuzzy mixed connectives" as aggregation operators in order 

to obtain the global adequacy degree (GAD) of an element to a class [57]. 

Fuzzy logic connectives are fuzzy versions of the binary logic operators, particularly, 

intersection (t-norm) and union (t-conorm). The aggregation function is a linear interpolation 



between t-norm (γ) and t-conorm (ω) as shown in Eq.6) where the parameter 𝛼, 0 ≤ 𝛼 ≤ 1, 

is called exigency. 

𝐺𝐴𝐷(𝑥𝑛|𝐶) = 𝛼 · 𝛾 (𝑀𝐴𝐷(𝑥𝑛
1|𝐶), … , 𝑀𝐴𝐷(𝑥𝑛

𝑚|𝐶)) + (1 −  𝛼) · 𝜔 (𝑀𝐴𝐷(𝑥𝑛
1|𝐶), … , 𝑀𝐴𝐷(𝑥𝑛

𝑚|𝐶)) (6)
 

 

 

 


