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Demographic history

We first used the software BOTTLENECK v. 1.2.02 [1] to document reductions

in population size that are relatively recent. Because the heterozygosity excess is

transient, it will only persist for 0.2 – 4Ne generations after the bottleneck [1, 2].

The TPM has been shown to be the most appropriate model for microsatellites

[3]. Even though a TPM with 90% stepwise mutations was recommended as a

conservative model of microsatellite evolution [4], we also ran the model with 95%

of stepwise mutations and SMM as a comparison. We also used a variance of 12

to encompass the range of multistep mutations observed in natural populations [3]

and 10,000 iterations for each mutation model. To determine if the number of loci

exhibiting heterozygosity excess was significant, the one-tailed Wilcoxon signed

rank test for heterozygote excess was applied.

Second, using the same software, we tested the distribution of allele frequencies

to determine whether a bottleneck-induced mode shift has occurred. A mode

shift is a transient distortion in the distribution of allele frequencies such that the

frequency of alleles at low frequencies become lower than the frequency of alleles

in an intermediate allele frequency class [5].

Third, in order to detect genetic bottlenecks that occurred over relatively long

periods of time (<100 generations), we used the M -ratio test [4]. This test is

based on the ratio of the observed number of microsatellite alleles and the range

of allele sizes, such that the M -ratio decreases in bottlenecked populations when

alleles are randomly lost as a result of genetic drift [4]. We used the software

M-P-Val to calculate M and software Critical_M to determine the cut-off value
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for statistical significance [4]. Critical_M simulates an equilibrium distribution

of M (MC) in a constant population assuming values for three parameters: ✓, the

parameter based on effective population size prior the bottleneck and mutation

rate; Dg, the average size of non one-step mutations; and ps, the proportion of

one-step mutations. A reduction in effective size is suggested when the M -ratio

falls below the simulated MC. We simulated two sets of parameters values: the

first is a reasonable parameterization of the two-phase mutation model as noted by

Garza and Williamson [4] with ps = 0.9 and Dg = 3.5; the second set of parameter

values, with a lower proportion of stepwise mutations ps = 0.78 and Dg = 3.5 is

less realistic [4], but still useful for comparison. It is thus expected that the loci

used here would follow a mutation model in between those two extremes. We also

tested two values of ✓ parameter (1 and 10) corresponding to a pre-decline Ne of

500 and 5,000, respectively, and the mutation rate m was held constant at 5 × 10-4

[4]. Although smaller values of ✓ will increase the value of MC, we set the value

of ✓ at a maximum of 10, because ✓ is population specific. In order to account for

the upward bias in the M -ratio estimate, the M -ratio was also calculated using

only polymorphic loci, as implemented in Arlequin 3.11 [6].

It is worth noting that the heterozygote excess and mode-shift tests detect

more recent bottlenecks, while the M -ratio method is suited to detecting older

bottlenecks (<100 generations) [4]. Heterozygote excess is reduced rapidly as

a population expands and reaches a new migration–drift equilibrium (< 4 Ne

generations), while gaps in the allele frequency spectrum can only be filled in

by new mutations or migration [7].

In order to assess changes in Ne, we used the coalescent-based Bayesian method

of Storz and Beaumont [8] implemented in the program MSVAR 1.3. We initially
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conducted six independent simulations of model varying the prior and hyperprior

distributions with a range of biologically realistic distribution values to examine

their effect on the posterior distributions. These variations of the priors had little

effect on the posterior distribution of the models so prior distributions for all other

analyses were set to the parameters of simulation one (Table S2). In order to check

for the convergence of model we ran the simulations five times for each dataset

considered. Each simulation was performed for 2 × 109 iterations with parameter

values recorder every 1 × 105 iterations resulting in 20,000 records. We discarded

the first 10% of recorded values for each chain (when simulations may not have

stabilized), and processed the data using the computer program BOA version

1.1.4 [9] for R version 2.3.1 [10]. The Brooks, Gelman and Rubin Convergence

diagnostic tests were done using boa on all the data chains to check statistically

for convergence (Gelman & Rubin 1992; Brooks & Gelman 1998). Convergence

of the chains is demonstrated where the corrected scale reduction factor output

approximates a value of 1, indicating the samples have arisen from a stationary

distribution [9]. The potential scale reduction factors for all three parameters

were approximately 1 (Log10NC = 1.002; Log10NH = 1.07; Log10T = 1.06) for

each sample analyzed, providing statistical evidence for convergence of the chains.

Thereafter, the last 50% of the data from the five chains were combined (50 000

sample points) and the mode and 90% highest posterior densities (HPD) were

calculated for each parameter using the R-package Locfit 1.5–6 [11]. We evaluated

the strength of evidence for population expansion versus decline by calculating the

Bayes factor for each of the models [12, 13] as described by Storz and Beaumont

[14] and Girod et al. [15]. The Bayes factor indicates the following levels of support

for the model; BF, 0.33 = false detection of contraction/ expansion, 0.33–3 = no
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support, 3–10 = substantial support, and >10 = strong support [13]. We ran

theses analyses for both exponential and linear models. However, an exponential

model of population size change is expected to be more accurate at modeling recent

population declines [16].

Finally, for the comparison of population scenarios using an ABC approach [17],

we simulated 1,00,000 genetic datasets for each scenario (bottleneck and constant

population size), with the demographic and marker parameters described above.

These simulations were independently carried out considering the three clusters

previously identified by clustering analyses [18]. Seven summary statistics were

generated for the observed and simulated datasets: mean gene diversity [19], the

mean number of alleles across loci, mean allele size variance across loci and Garza

and Williamson’s M [4] for microsatellite data and the number of haplotypes, the

number of segregating sites and Tajima’s D [20] for mtDNA. For each population

or cluster tested, normalized Euclidian distance was calculated between the ob-

served dataset and each of the simulated datasets using the local linear regression

method of Beaumont et al. [17]. The 10,000 simulated datasets with the smallest

Euclidian distances were then retained to build posterior parameter distribution,

which were smooth weighted using the Locfit function within R version 2.9.2 [10].

The posterior probabilities of each scenario were first estimated by taking the 500

simulated data sets closest to the observed data set and calculating the propor-

tion that belong to each scenario (direct approach) and secondly using a logistic

regression approach on the closest 1% of data sets to the observed data, providing

both point estimated and 95% confidence intervals [21, 22]. Statistical measures of

performance and Type I and Type II error rates were also calculated as a method

of model checking [6]. The above analyses were implemented within the DIYABC
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V 1.0.4 software package [22, 23].

Additionally, we performed a model checking step implemented in DIYABC V

1.0.4 and tested the “goodness-of-fit” of the chosen scenario to the observed data, as

advised by Cornuet et al.[23]. This model checking procedure consists of simulating

the pseudo-observed data sets with parameters drawn from the posterior parameter

distribution of the considered scenario and positioning the summary statistics of

the observed data in the summary statistic distribution of the pseudo-observed

data. The scenario is then considered suitable if the observed data summary

statistics are included in the confidence interval drawn from pseudo-observed data

[23].
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