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Supplementary methods and results: 

The EM algorithm - EM stands for Expectation-Maximization - is well known and 

widely used for modeling mixture of normally distributed populations, and extracting 

their respective parameters. Unfortunately, EM does not perform well on very large 

and noisy vectors such as CGH Log2(Ratios) computed from hundreds of thousands 

of probes. On such values, this method is time consuming, and not well adapted for 

detecting centralization peaks, since EM tends to over estimate (or underestimate) 

the number of sub-populations (figure 1). 

 

Figure 1: The EM algorithm was applied on real data (Safir01 sample). On its original 

form (top), the method considers the central population as itself a mixture of 3 

populations (means: -0.09, 0.062 and 0.23, respectively), which is probably true, but 

maybe not relevant in that context.  Instead, the adapted resampling method (center) 

identifies one unique peak, and simplifies the decision for centering the entire vector. 
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To significantly reduce the computation time, as well as to improve the efficacy of the 

EM algorithm in that particular context, we adapted the algorithm as follow: 

A Log2(Ratios) is modeled as a mixture of Gaussian distributions, using 1e3 values 

randomly picked, instead of using the entire vector of values. The procedure is 

repeated 100 times, independently. Then, means and variances of each population in 

the mixture are averaged, considering only the models for which the number of 

groups corresponds to the median of groups detected over all the models. 

Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819202122 23

−2

−1

0

1

2

0e+00 1e+09 2e+09 3e+09
Genomic position (bp)

Lo
g2

(R
at

io
)

−2 −1 0 1 2

0.
0

0.
4

0.
8

1.
2

Log2(Ratio)

D
en

si
ty

−0.97

−0.09
0.06

0.24

0.39

True mixture

−2 −1 0 1 2

0.
0

0.
4

0.
8

1.
2

Log2(Ratio)

D
en

si
ty

−0.91

0.08

0.82

True mixture



	
   3	
  

The performances of the procedure were estimated on simulated Gaussian mixtures 

of various total lengths, N from 1e3 to 1e6, with 3 arbitrary components, Ci i=1 to 3, 

each with different means (mu), standard deviations (sd) and proportions (p): 

 

C1 ~ N −0.58,  0.25( );  p1 = 0.15
C2 ~ N 0,  0.5( );  p2 = 0.7
C3 ~ N 0.58,  0.75( );  p3 = 0.15

 

 

The choice of the different parameters was arbitrary, but consistent with mixtures 

observed in real situations. 

This simulations showed that the EM computation time increases exponentially with 

the size of vector, while the resampling method increases almost linearly, and 

becomes advantageous on large data, namely N>2e5. This value roughly 

corresponds to the length of a vector of Log2(Ratios) generated from Agilent 4x180K 

microarrays (figure2). Moreover, when N is large, N>2e5, the EM algorithm tends to 

split some of the sub-components itself into separate populations, and is unable to 

correctly estimate the mixture and its parameters. Under the same conditions, 

repeated random resamplings lead to better estimation of the mixture, close to the 

expected results (figure 3 & 4). 

 

Figure 2: The EM computation time increases exponentially with the length of the 

vector (black line). The resampling approach is more stable, and becomes 

advantageous on very large data (N>2e5) (red line). 
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Figure 3: a mixture of 3 normally distributed vectors was simulated. When applying 

the original EM, the ability of detecting the right number of groups depends on the 

size of the entire vector (black line), while the resampling approach always detect the 

correct number of sub-populations, independently of the size of the data (red line). 

 
 

Figure 4: On the same 3-groups mixture simulation, the original EM fails to properly 

identify the means of each group (grey dash lines at -0.58, 0 and 0.58), while the 

resampling approach returns values close to the expected ones. Red dots are 

population means estimated with the original EM, boxes are the distributions of 

means across the replicated resampling method, bold lines are the medians of the 
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means for each sub-population. Note that, the EM estimated means were assigned 

to the group with the closest expected value. 

 

 
 

Validation on NCI cell lines 

This approach was validated on the NCI data by estimating, for each sample, the 

reproducibility of the maximum peak detection using this procedure, on 1000 

independent tests. The 2-standard deviation interval of the maximum peak values 

distribution was used to refine our definition of a valid alternative peak. 

From the 60 individual cell lines represented by 72 CGH data, 3 were removed 

because of too few karyotypic information to generate a genomic-like profile. The 

remaining 57 cell lines were represented by 69 aCGH data, including replicated 

experiments. 

Over all these remaining 69 experiments, the maximum peak values showed a 2-

standard deviation (2SD) from 1.19e-3 to 1.38e-1. We then considered the largest 

observed 2SD interval of 0.14 as an additional constraint. Finally a relevant 

alternative centralization value was defined as the mean of a peak with a density 
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height of at least 50% the density height of the major peak, and at least at 0.14, in 

Log2, from this major peak (figure 5). 

 

Figure 5: Given the validation step on the NCI cell lines, a valid alternative peak was 
defined as a peak with a maximum density higher than 50% of the height of the main 
peak, and at least at 0.14, in Log2 scale. 
 

 
 

For 6 of the 57 different cell lines, 2 or more replicated aCGH experiments were 

available. In all the cases, but one, the peak estimations were similar across the 

replicated experiments. For one of the 4 MCF-7 replicates, an alternative peak was 

detected, but at a distance lower than 0.14. This profile had also a highest derivative 

log2(Ratio) spread, compared to the 3 others (.256 vs. .252, 0.243 and 0.230, 

respectively). 
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Supplementary figure S1: General array-based genomic profiling workflow. 

After hybridization, fluorescent signals are digitized and then mapped with the probes 

locations. LogR are computed against the reference signals (dual-color hybridization) 

or against an external reference (single-color hybridization). The centralization step 

adjust the LogR on their median, or on the maximum density value. Then, the 

segmentation step identifies the breakpoints. Calls rely on the segments magnitude 

with respect to the base line, considered as the neutral-copy level. 

 

Supplementary figure S2: Frequency of ploidies in the NCI60 cell lines panel, and 

proportion of alternative peak identification. 

The NIC60 cell line panel predominantly includes aneuploid cell lines; more than 50% 

of the cell lines are, at least, 3n (A). Interestingly, centralization alternatives occur in 

rare cases of 2n cell lines, while alternative options are extremely frequent in 3 and 

4n cell lines (B). The unique case of a 5n-/+ cell line is specifically described in 

supplementary figure 2. 

 

Supplementary figure S3: Consistency of genomic profiles according to the 

centralization methods: the A549 cell line 

The A549 genomic profiles has been centered on LogR median (top panel), the 

maximum density peak (central panel), or the alternative LogR density peak (bottom 

panel), before being segmented using the CBS algorithm, with the same 

segmentation parameters. The corresponding centralization values are indicated in 

bold on each density plot (Centralization). When comparing with the corresponding 

karyotype, The 2 first methods adjust the entire profile on the main cell line ploidy, 

namely 3n, and lead to consider all of the 3-copy chromosomes (1p, 2, 3, 5, 7 to 10, 

12, 14 and 16) as in normal count, while most of the 2-copy chromosomes are 

considered as lost (1p, 4, 6, 13, 19, 21 and 22). Adjusting on the alternative peak 

dramatically reduce such discrepancies, although errors persist on chr11. Notice that 

2 supplementary copies of chr19 are located on chr15, according to the karyotype. 

 

Supplementary figure S4: The 5n-/+ SF-295 cell line. 

No alternative centralization is suggested when analyzing the LogR density as a 

mixture of Gaussian populations (left), and only the major density peak seemed to 

correspond to a sensible value for adjusting the genomic profile (center). However, 
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this choice leaded to an erroneous profile, given the karyotype (right); most of the 5-

copy chromosomes were considered as in normal counts on the genomic profile, 

while 3-copy chromosomes (chr10 and 14) were considered as lost. 

 

Supplementary figure S5: Correlation between copy number variation and sensitivity 

to related inhibitors. 

The Spearman correlations of FGFR1 and MET, with their respective inhibitors in the 

CCLE data (TKI258 and PHA665752, respectively), are not significantly improved 

when changing the profile centralization strategy: p were at least greater than 0.27 in 

all comparisons. To note, the relatively weak correlations between these genes copy 

number variation and responses to their corresponding inhibitor. 

 

Supplementary table S6: Amplification calls in SAFIR01 and MOSCATO-01, 

according to the centralization method. 

Study, patient Id, and platforms are indicated in columns 1 to 3, respectively. 

Considering the same genes as in André et al., and using the same decision rules, 

amplifications are indicated, for each centralization method, in the corresponding 

column: “none” means no amplification detected, and in bold, genes detected using 

one method only.   
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