Supplementary Information

Differential RNA-seq of Vibrio cholerae identifies the VqmR sRNA as a regulator of biofilm formation

Kai Papenfort, Konrad U. Förstner, Jian-Ping Cong, Cynthia M. Sharma and Bonnie L. Bassler

This supplement contains:

Figures S1 to S8 Tables S1 to S5 Datasets S1 to S4 Supplementary Figure Legends Supplementary Materials and Methods Supplemental References

TABLE OF CONTENTS

Figure S1	Accuracy of TSS predictions.
Figure S2	Intergenic and 5' UTR-derived sRNAs from V. cholerae
Figure S3	3' UTR-derived and <i>cis</i> -encoded sRNAs from <i>V. cholerae</i> .
Figure S4	Annotation of the VqmA protein and its translation start site.
Figure S5	Stability, VqmA EMSA control, and conservation of vqmR.
Figure S6	Secondary structure of VqmR.
Figure S7	Target gene regulation by VqmR.
Figure S8	Gene synteny analysis of <i>vqmR</i> and <i>vqmA</i> / VqmR copy number.

Supplementary Materials and Methods

Table S1	Microarray analysis following VqmR pulse expression.
Table S2	Bacterial strains used in this study.
Table S3	Plasmids used in this study.
Table S4	DNA oligonucleotides used in this study.
Table S5	Mapping statistics for V. cholerae dRNA-seq.
Dataset S1	Gene expression profiles in wild-type and <i>luxO</i> D47E <i>V.cholerae</i> .
Dataset S2	Detection of TSS in wild-type and <i>luxO</i> D47E V. cholerae.
Dataset S3	RNA-seq based re-annotation of V. cholerae ORFs.
Dataset S4	Compilation of known and predicted sRNA candidates in V. cholerae.

Supplementary Figure Legends

Figure S1: Accuracy of TSS predictions. Histogram indicating distances between 35 representative TSS identified by dRNA-seq vs. annotated TSS. 94% matched within ±1 nt tolerance.

Figure S2: Intergenic and 5' UTR-derived sRNAs. Total RNA was obtained following growth for the indicated times from wild-type, *luxO* D47E, and Δhfq *V. cholerae* strains and probed for the designated sRNAs by Northern Blot. The genomic locations of the sRNAs are shown above the gels. Genes are shown in black, sRNAs are shown in red. Arrows indicate TSS. Filled triangles indicate TSS, open triangles indicate processing sites. 5S rRNA served as the loading control. **(A)** sRNAs from intergenic regions **(B)** sRNAs from 5' UTRs of mRNAs.

Figure S3: 3' UTR-derived and *cis*-encoded sRNAs. Total RNA was obtained following growth for the indicated times from wild-type, *luxO* D47E, and Δhfq *V. cholerae* strains and probed for the designated sRNAs by Northern Blot. The genomic locations of the sRNAs are shown above the gels. Genes are shown in black, sRNAs are shown in red. Arrows and scissors indicate TSS and processing sites, respectively. Filled triangles indicate TSS, open triangles indicate processing sites. 5S rRNA served as the loading control. (A) sRNAs from 3' UTRs of mRNAs (B) cis-encoded sRNAs. VqmR (Vcr107) is transcribed separately from the *vca1078* mRNA (see main text). The genomic locations of the sRNAs are shown above the gels.

Figure S4: Annotation of the VqmA protein and its start site. (A) Alignment of VqmA (Vca1078) protein sequences from eleven vibrio species. The first amino acid is boxed. When the residue is valine (V) the start codon is a GTG. **(B)** Left: schematic drawing of the *vca1078::gfp* translational reporter construct. The relative positions of the annotated ATG start codon and the predicted alternative GTG start codon are indicated. Arrows indicate TSS identified by dRNA-seq (see Figure 3A). Right: Western Blot analysis of Vca1078::GFP. Mutation of the annotated start codon is designated ATG-ATC, mutation of the conserved start codon is designated GTG-GTC, ctr designates the control plasmid. RNAPα served as loading control.

Figure S5: Stability, copy number, and conservation of *vqmR.* (A) Left: *V. cholerae* wild-type and Δhfq strains were grown to OD₆₀₀ of 1.0 and treated with rifampicin (250 µg/ml) to terminate transcription. Total RNA was collected at the indicated time-points followed by Northern Blotting and analysis of VqmR. 5S rRNA served as loading control. Right: Quantification of data obtained from three independent biological replicates performed for (A). Diamonds; wild-type, squares; Δhfq strain. The dashed line indicates the sRNA half-life (50% of the initial abundance). (B)

Alignment of *vqmR* sequences from eight vibrio species. Nomenclature is according to Figure 3B with the addition of *Vibrio proteolyticus* (Vpr). The highly conserved R1 and R2 regions are boxed and marked. **C)** Electrophoretic mobility shift assay (EMSA) showing that VqmA protein does not bind a mutated variant of the *vqmR* promoter sequence. The mutated sequence is indicated in Figure 4C (-47 to -49 relative to TSS). Migration of the [P32] end-labeled DNA fragments in the absence and presence of different concentrations of purified VqmA::3XFLAG protein was determined by native polyacrylamide gel electrophoresis and autoradiography.

Figure S6: Secondary structure of VqmR. Left: Enzymatic probing of the VqmR secondary structure. *In vitro* synthesized and radio-labeled VqmR was treated with RNase T1, RNase V1, and RNase A, designated T1, V1, and A, respectively. C indicates the untreated control, A and T1 indicate RNase ladders for VqmR treated with RNase A and RNase T1, respectively, under denaturing conditions, OH indicates the alkaline ladder. Conserved regions R1 and R2 are marked in red. Right: Schematic representation of the VqmR secondary structure. Conserved regions R1 and R2 are marked in red. Cleavage by RNase T1 (red), RNase V1 (green), and RNase A (blue) is indicated by arrows.

Figure S7: Target gene regulation by VqmR. (A) Translational GFP-fusions to the VqmRcontrolled target genes depicted on the x-axis were tested for repression by VqmR in an *E. coli* Δhfq strain. GFP levels were determined in triplicate using a plate reader. Gray bars show GFP production in the presence of the control plasmid (pctr), black bars show GFP production when VqmR is expressed from the plasmid (pVqmR). (B) Northern Blot analysis of VqmR, VqmR Δ R1, and VqmR Δ R2. *E. coli* cells carrying the indicated plasmids were grown to OD₆₀₀=1.0 and assessed for VqmR levels. (C) Predicted base-pairing interaction of VqmR with target mRNAs using RNA hybrid (1). Conserved sequences of VqmR are shown in red. The Shine-Dalgarno sequences and start codons of the mRNAs are boxed. The proposed strength of interaction is indicated below each RNA duplex.

Figure S8: Gene synteny analysis of *vqmR* **and** *vqmA***.** The sequences upstream of *vqmA* genes from vibrios were examined for the presence of *vqmR*. *vqmA* is shown in red and *vqmR* is shown in black. The genes upstream of *vqmR* are shown in gray, and their conservation and orientation vary among vibrios. Nomenclature as in Figure 3B. (B) Copy number of VqmR. Total RNA from wild-type *V. cholerae* was collected at the time points indicated followed by Northern Blot. The amounts of RNA were compared to serial dilutions of *in vitro* transcribed VqmR (lanes 4-8). Copy numbers per cell are indicated below the blot. 5S rRNA served as loading control.

Supplementary Materials and Methods

Plasmid construction

A complete list of all plasmids used in this study is in Table S7. Plasmid pKP-331 was constructed by amplification of the V. cholerae vqmR gene using oligonucleotides KPO-0456/0457 and ligation into pLF575 (2). Plasmid pKP-333 was made by PCR amplification of the vamR gene using oligonucleotides KPO-0456/0465 followed by ligation into pEVS143 (3). This plasmid served as the template for plasmids pKP-410, pKP-442, pKP344 and pKP-345 using oligonucleotides KPO-0750/0751, KPO-0949/0950, KPO-0493/0494 and KPO-0491/0492, respectively. Cloning of GFP fusions (pKP-337, pKP-338, pKP-444, pKP-346, pKP-347, pKP-353, pKP-354, pKP-358) to target genes has been described previously (4) and oligonucleotides for cloning are listed in Table S8. Plasmids pKP-337 and pKP-347 were used to obtain plasmids pKP-398 and pKP-441 using oligonucleotides KPO-0725/0726 and KPO-0947/0948, respectively. For the GFP-based transcriptional reporter plasmids pKP-361 and pKP386, promoter sequences of vqmR and vpsL were amplified with oligonucleotides KPO-0460/0461 and KPO-0671/0696 and cloned into pCMW-1. The translational reporter PvgmA::GFP (pKP-357) was constructed by amplification of the vqmR-vqmA sequence using oligonucleotides KPO460/467 and the product ligated into pEVS143 amplified with oligonucleotides KPO-0092/0285. This plasmid pKP-357 served as th template to obtain plasmids pKP-359 and pKP-366 using oligonucleotides KPO-0468/0469 and KPO-0470/0471, respectively. For plasmid pKP-418, the vgmA sequence was amplified with oligonucleotides KPO-0475/0547 and cloned into pEVS143-CAM. Plasmid pKP-367 was constructed by amplifying the vgmA sequence using oligonucleotides KPO-0545/0546, and the product was cloned into pKP8-35 (5). Plasmid pKP-437 was constructed by PCR amplification of the vqmA::3XFLAG gene (oligonucleotides KPO-0934/0935) from strain KPS-0518 and cloning into pET15b (Novagen) via restriction sites Ncol and BamHI.

Construction of V. cholerae mutant strains

A list of all strains used in this study is provided in Table S6. *V. cholerae* C6706 was the wildtype strain used throughout this study. All *V. cholerae* mutants were generated using the pKAS32 suicide vector (6) and established cloning strategies (7). To generate strain KPS-0429, the flanking regions of *vqmR* were amplified with KPO-0495/0496 and KPO-0497/0498 and the fused PCR product was amplified using KPO-0499/0500. The PCR products were ligated into pKAS32 using AvrII/KpnI restriction sites. The plasmid was conjugated into *V. cholerae* and cells were selected for Ampicillin resistance. Single colonies were transferred to new plates selecting for Streptomycin resistance. Finally, cells were tested for the correct mutation usinfg PCR. The same strategy was used to construct KPS-0431 (oligonucleotides: KPO-0495/0502, KPO-0503/0504, KPO-0499/0505). For strain KPS-0518, the 3XFLAG epitope was introduced downstream of *vpsT* by PCR amplification using oligonucleotides KPO-0527/0528 and KPO-0524/0529. Oligonucleotides KPO-0526 and KPO-0531 were used to amplify the fused PCR product, which was subsequently cloned into pKAS32. A similar strategy was used to make strain KPS-0647 except the *vqmR* promoter was fused upstream of *lacZ* to generate the transcriptional reporter.

RNA structure probing

Secondary structure probing of *in vitro* synthesized and 5' end-labeled RNA was conducted as described previously (8). In brief, VqmR RNA (~0.2 pmol) was denatured, chilled on ice and incubated in 1X structure buffer (Ambion) and 1 µg yeast RNA at 37°C for 10 min. Subsequently, samples were treated with RNase T1, RNase A or RNase V1 (all Ambion) and reactions were terminated at indicated time-points by addition of 2 vol. of precipitation buffer (Ambion). Precipitated samples were washed with 70% ethanol, and resuspended in loading buffer (Ambion). To prepare RNase T1 sequencing ladders, 0.4 pmol RNA was denatured (95°C, 2 min) in 1X sequencing buffer (Ambion) and chilled on ice. RNase T1 was added, and RNA was digested for 5 min at 37°C. Alkaline (OH) sequencing ladders were prepared by incubating 0.4 pmol RNA at 95°C for 5 min in the presence of alkaline hydrolysis buffer (Ambion). Reactions were stopped by addition of 1 vol. of loading buffer. Samples were denatured prior to loading (95°C, 2 min) and separated on 8% PAA/7M urea sequencing gels. Gels were dried and signals were analysed on a Typhoon phosphorimager.

Library construction and sequencing

Libraries for Illumina sequencing (HiSeq) of cDNA were constructed by vertis Biotechnology AG, Germany (http://www.vertis-biotech.com/), as described previously for eukaryotic microRNAs (9), except that the RNA size-fractionation step prior to cDNA synthesis was omitted. Total RNA samples were used for the preparation of two libraries each, either covering all transcripts or being specifically enriched for primary transcripts by treatment with terminator exonuclease (TEX, Epicentre). Next, RNA was treated with Poly(A) polymerase to add poly-A-tails and 5'-triphosphates were removed using tobacco acid pyrophosphatase (TAP). This step resulted in 5'-monophosphates at the ends of transcripts. Subsequently, an RNA adapter was ligated to the 5'-phosphate. First-strand cDNA was synthesized using an oligo(dT)-adapter primer, and M-MLV reverse transcriptase. A PCR-based amplification step was performed to increase the cDNA

concentration to ~20-30 ng/ μ l. A library-specific barcode for multiplex sequencing was incorporated into the 3'-sequencing adapters. The following adapter sequences flanked the cDNA inserts:

TrueSeq Sense primer

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3'

TrueSeq Antisense NNNNN primer (NNNNNN = 6n barcode for multiplexing)

5'-CAAGCAGAAGACGGCATACGAGAT-NNNNNN-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC(dT25)-3'

The resulting cDNA libraries were sequenced using a HiSeq 2500 instrument (Illumina) in singleread mode for 100 cycles. The raw, de-multiplexed reads as well as the normalized coverage files have been deposited in the National Center for Biotechnology Information's Gene Expression Omnibus (GEO) (10) and are accessible via the GEO accession number GSE62084.

Read mapping and coverage plot construction

Detailed information on data analyses are available at: https://zenodo.org/record/13136. To assure a high sequence quality, the Illumina reads in FASTQ format were trimmed with a cut-off phred score of 20 using the program fastg quality trimmer from FASTX toolkit version 0.10.1 (http://hannonlab.cshl.edu/fastx toolkit/). The following steps were performed using subcommand "create", "align" and "coverage" in the tool READemption (11) version 0.3.0: The poly(A)-tail sequences were computationally removed, and a size filtering step was applied in which sequences shorter than 12 nt were eliminated. The remaining reads were mapped to the reference genome sequence using segement version 0.1.7 (12). As reference sequence, two replicons from V. cholerae with the accession numbers NC 002505.1 and NC 002506.1 were NCBI downloaded from the ftp server ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Vibrio cholerae O1 biovar El Tor N16961 uid 57623. As there was a small fraction of fungal contamination in the sample, the following additional replicons NC_001133.9, NC_001134.8, NC_001135.5, NC_001136.10, NC_001137.3, NC_001138.5, NC_001139.9, NC_001140.6, NC_001141.2, NC_001142.9, NC_001143.9, NC_001144.5, NC_001145.3, NC_001146.8, NC_001147.6, NC_001148.4, NC_001224.1 were downloaded from ftp://ftp.ncbi.nih.gov/genomes/Fungi/Saccharomyces cerevisiae uid128/.

READemtion's subcommand align was called with the following parameters:

--split -r -p 24 -a 95 -l 12 --poly_a_clipping -progress -x

"Vibrio:NC_002505.1,NC_002506.1;Fungus:NC_001133.9,NC_001134.8,NC_001135.5,NC_001 136.10,NC_001137.3,NC_001138.5,NC_001139.9,NC_001140.6,NC_001141.2,NC_001142.9,N

C_001143.9,NC_001144.5,NC_001145.3,NC_001146.8,NC_001147.6,NC_001148.4,NC_00122 4.1".

Mapping statistics (input, aligned, uniquely aligned reads, etc.) can be found in Table S9. Coverage plots in wiggle format that represent the number of aligned reads per nucleotide were generated. The data were visualized using the Integrated Genome Viewer (13). Each graph was normalized using the total number of reads that could be aligned from the corresponding library. To restore the original data range and to prevent rounding of small errors to zero by genome browsers, each graph was subsequently multiplied by the minimum number of mapped reads calculated over all libraries.

Transcription start site prediction

Transcription start sites were predicted based on the normalized wiggle files using TSSpredator (14) with the "more strict" parameter setting.

Meme analysis

Sequences of the TSS and the 50 nts upstream were extracted from the TSSpredator output master table. MEME version 4.9.1 (15) was used to detect motifs of lengths of 45 nt.

Differential gene expression analysis

The predicted TSS were used to extend the gene annotations of the existing *V. cholerae* genome database. Gene expression quantification and expression comparisons were performed based on these extended annotations using the non-TEX treated libraries and READemption in combination with DESeq2 version 1.4.5 (11). Genes changing >1.5-fold (p-value < 0.05) were defined as differentially expressed.

Table S1: Microarray following VqmR pulse expression

Gene ^a	Fold-change ^b	Annotation
vc0200	-2.8	iron(III) compound receptor
vc0201	-2.2	iron(III) ABC transporter, ATP-binding protein
vc1063	-3.2	tesB;acyl-CoA thioesterase II
vc1186	+2.2	sanA protein
vc1187	+2.4	hypothetical protein
vc1188	+3.0	sfcA;malate dehydrogenase
vc1449	-2.2	hypothetical protein
vc1450	-2.4	rtxC;RTX toxin activating protein
vc1865	-2.5	hypothetical protein
vca0068	-17.2	methyl-accepting chemotaxis protein
vca0590	-2.4	peptide ABC transporter, permease protein
vca0591	-2.2	peptide ABC transporter, periplasmic peptide-binding protein
vca0676	-3.6	ferredoxin-type protein NapF
vca0677	-4.2	napD protein
vca0679	-5.9	napB;periplasmic nitrate reductase, cytochrome c-type protein
vca0917	-2.3	transcriptional regulator, TetR family
vca0952	-2.8	transcriptional regulator, LuxR family (VpsT)

a. according to *V. cholerae* N16961 gene annotation
b. Fold-change as obtained by transcriptome analysis using *V. cholerae* specific whole genome microarrays.

Strain	Relevant markers/ genotype	Reference/ source
V. cholerae		
KPS-0014	Wild-type C6706	(16)
KPS-0023	<i>luxO</i> D47E C6706	(17)
KPS-0053	∆hapR C6706	(17)
KPS-0054	∆hfq C6706	(17)
KPS-0429	$\Delta v q m R C 6706$	This study
KPS-0431	∆ <i>vqm</i> A C6706	This study
KPS-0518	VpsT::3XFLAG C6706	This study
KPS-0519	∆hapR/vpsT::3XFLAG C6706	This study
KPS-0520	∆luxO/vpsT::3XFLAG C6706	This study
KPS-0521	∆ <i>vqmR/vpsT</i> ::3XFLAG C6706	This study
KPS-0522	∆ <i>vqmA/vpsT</i> ::3XFLAG C6706	This study
KPS-0647	PvqmR::lacZ	This study
KPS-0678	∆hapR/ptac-mKate2::lacZ C6706	(18)
KPS-0932	∆hapR /∆vqmR/vpsT::3XFLAG C6706	This study
KPS-0933	∆luxO /∆vqmR/vpsT::3XFLAG C6706	This study
ZLV-101	∆ <i>vqm</i> R/vqmA C6706	(19)
other vibrios		
Vha	Vibrio harveyi BB120	(20)
Van	Vibrio anguillarum 775	Bassler strain collection
Val	Vibrio alignolyticus 12G01	Bassler strain collection
Vfu	Vibrio furnissii CDC B3215	Bassler strain collection
Vpa	Vibrio parahaemolyticus EB101	Bassler strain collection
Vpr	Vibrio proteolyticus NCMB 1326	Bassler strain collection
E. coli		
TOP10	$mcrA\Delta(mrr-hsdRMS-mcrBC) \Phi 80 lacZ\DeltaM15\Delta lacX74 deoRrecA1 araD139\Delta(ara-$	Invitrogen
	leu)7697 galU galK rpsL endA1 nupG	
S17λpir	Δ <i>lacU</i> 169 (Φ <i>lacZ</i> Δ M15), <i>recA</i> 1, <i>endA</i> 1, <i>hsdR</i> 17, <i>thi</i> -1, <i>gyrA</i> 96, <i>relA</i> 1, λ <i>pir</i>	(21)
STR1353	F-, DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-rhaB)568,	Bassler strain collection
	hsdR514, ∆hfq	

Table S2: Bacterial strains used in this study

Plasmid trivial	Plasmid	Relevant	Comment	Origin, marker	Reference
name	name	nagment		marker	
pctr	pCMW-1		Control plasmid	P15A, Kan ^R	(22)
pBAD-VqmR	pKP-331	VqmR	pBAD-VqmR expression	P15A, Kan ^R	This study
n) (ave D	=KD 000) / mm D	plasmid	D15A Kan ^R	This study
	pKP-333		VqmR expression plasmid	P15A, Kan D15A, Kan ^R	This study
	PKF-344			PIDA, Kan	
pVqmR∆R2	pKP-345	VqmR∆R2	VqmRAR2	P15A, Kan	This study
pvpsL::gip	pKP-386	vpsL::gip		P15A, Kan	This study
pvps1::gip	pKP-337	vps1::gip	translational reporter vps1.:gip	PSC101*, Cm	This study
Pvcauuo8gip	prp-330	vca0068gip	vca0068::gfp	PSC101 , Cm	This study
Pvca0917::gfp	pKP-444	vca0917::gfp	translational reporter vca0917::gfp	PSC101*, Cm ^R	This study
Pvc0200::gfp	pKP-346	vc0200::gfp	translational reporter	PSC101*, Cm ^R	This study
Pvc1063::gfp	pKP-347	vc1063::gfp	translational reporter	PSC101*, Cm ^R	This study
Pvc1449::afp	pKP-353	vc1449::afp	translational reporter	PSC101*, Cm ^R	This study
	pru coo	i e i i i engip	vc1449::qfp	,	The etady
Pvca0591::gfp	pKP-354	vca0591::gfp	translational reporter	PSC101*, Cm ^R	This study
Pvc1865::gfp	pKP-358	vc1865::gfp	translational reporter	PSC101*, Cm ^R	This study
PvamAafp	nKP-357	vamA…afn	translational reporter vamA: afp	P154 Kan ^R	This study
PvqmA::gfp (ATC)	pKP-359	vqmA::gfp	translational reporter vqmA::gfp	P15A, Kan ^R	This study
PvqmA::gfp (GTG)	pKP-366	vqmA::gfp	translational reporter vqmA::gfp	P15A, Kan ^R	This study
pBAD-ctr	pKP8-35			PBR322, Amp ^R	(5)
pBAD- <i>vqmA</i>	pKP-367	VqmA	pBAD- <i>vqmA</i> expression plasmid	PBR322, Amp ^R	This study
pvqmR::gfp	pKP-361	vqmR::gfp	transcriptional reporter vgmR	P15A, Kan ^R	This study
pVqmA	pKP-418	VqmA	vqmA complementation	P15A, Cm ^R	This study
p <i>vpsT::gfp</i> G- 17C	pKP-398	vpsT::gfp	translational reporter vpsT::gfp G-17C	PSC101*, Cm ^R	This study
pVqmR C94G	pKP-410	VqmR	VqmR C94G expression plasmid	P15A, Kan ^ĸ	This study
Pvc1063::gfp G- 10C	pKP-441	vc1063::gfp	translational reporter vc1063::qfp G-10C	PSC101*, Cm ^R	This study
pVqmR C63G	pKP-442	VqmR	VqmR C63G expression plasmid	P15A, Kan ^ĸ	This study
pET- vqmA::3xFLAG	pKP-437	VqmA	Over-expression construct for VqmA::3XFLAG purification	PBR322, Amp ^R	This study
pKAS32	-		suicide plasmid for allelic exchange	R6K	(6)

Table S3: Plasmids used in this study

	Sequence	Description
KPO-009	CTACGGCGTTTCACTTCTGAGTTC	5S rRNA probing E. coli
KPO-0092	CCACACATTATACGAGCCGA	plasmid construction
KPO-0285	GTTTTTTCTAGAGCTAGCAAAGGAGAAGAACTCT	plasmid construction
KPO-0456	P-CAGAGCATGAGTTGCATGAC	plasmid construction
KPO-0457		plasmid construction
KPO-0460	GTTTTTTCCATCCATCCTCCCTTTCTACC	plasmid construction
KPO-0465	GTTTTTGGATCCAGCTTATCTTGCCTATTCGG	plasmid construction
KPO-0468	CTGATCCTTGGTATCAATATGAT	plasmid construction
KPO-0469	CCAAGGATCAGTCATGCAACTC	plasmid construction
KPO-0470	GGCGTCCCTAACCATCTGA	plasmid construction
KPO-0471	TTAGGGACGCCATATCCTC	plasmid construction
KPO-0475		plasmid construction
KPO-0477		cloning vps1::gip
KPO-0479	GTTTTTTATGCATGCATTGCATGCATGCATGCATGCATGC	cloning vca0068::gfp
KPO-0480	GTTTTTTGCTAGCGAAAAATACCGGTACTACAACCTG	cloning vca0068::gfp
KPO-0484	GTTTTTTGCTAGCAACCGCATCCATAATGGTCT	cloning vca0917::gfp
KPO-0487	GTTTTTTATGCATACTACAAAAGAGGGTCCTAAGTC	cloning vc1063::gfp
KPO-0488	GTTTTTTGCTAGCCCCCTCTTCCAGTTTCTCC	cloning vc1063::gfp
KPO-0489		cloning vc0200::gfp
KPO-0490		cioning Vcu2uu::gtp
KPO-0492	CATGAATCCAGCGAGGGTC	plasmid construction
KPO-0493	P-TGGATTCATGGAACCTCTTC	plasmid construction
KPO-0494	CTGCTGAACACAGAGGTAT	plasmid construction
KPO-0495	GCCAAACAATATAACCTTGA	strain construction
KPO-0496	GTTTGTACTTTACCGAACGC	strain construction
KPO-0497		strain construction
KPO-0498	GTTTTTGGTACCTCATGCTTTCGCACTCAGCT	strain construction
KPO-0500	GTTTTTCCTAGGAGTTTGGCCTCATACCCTTC	strain construction
KPO-0502	ATGCGGCGATATGATACCAA	strain construction
KPO-0503	TTGGTATCATATCGCCGCATGCAACAACGTCAAGCTGATTG	strain construction
KPO-0504	TATCTGCGGCGAAAGGCCTA	strain construction
KPO-0505		strain construction
KPO-0521		strain construction
KPO-0523	GACTTCCCTCTTCTTAACGTTTCGTTGTGTAATGTCTCTTC	strain construction
KPO-0524	CACACATACCAACCTCGGT	strain construction
KPO-0525	GTTTTTGGTACCGCGAAGTTTCACGTACTCGC	strain construction
KPO-0526		strain construction
KPO-0527		strain construction
KPO-0529	ATAAAGATCATGATATCGACTACAAAGATGACGATAAATAGTAATTCGTTGTGTAATGTCTCTTC	strain construction
KPO-0531	GTTTTTTATGCATTTAAAATAAATAATACAATAATAACCC	cloning vc1449::gfp
KPO-0531	GTTTTTTATGCATTTAAAAATAAATAATAACAATAATAACCC	strain construction
KPO-0532	GTTTTTTGCTAGCAGAAAACACACCTTTATTGTAGT	cloning vc1449::gfp
KPO-0533		cloning vc1865::gfp
KPO-0534		cloning vc1865::gtp
KPO-0538	GTTTTTTGCTAGCACTGAATTGGCTCGATAAC	cloning vca0591gip
KPO-0545	P-GCATTTCCAGTGGAGGATAT	plasmid construction
KPO-0546	GTTTTTTCTAGAATCAGCTTGACGTTGTTGC	plasmid construction
KPO-0547	GTTTTTGGTACCAATCAGCTTGACGTTGTTGC	plasmid construction
KPO-0554	GAGAATAAACCAGAAAGTCGCAG	sense oligo qRT-PCR vpsT
KPO-0555		antisense oligo qR1-PCR vps1
KPO-0556		antisense oligo gRT-PCR vCa0068
KPO-0558	CCGCTTCGATTTTGTATGGTG	sense oligo gRT-PCR vc0200
KPO-0559	ATCATTACCCACTTGTAGGCC	antisense oligo qRT-PCR vc0200
KPO-0560	TGCCAAACCGACTGTACTG	sense oligo qRT-PCR vc1188
KPO-0561	GATAGCGGGAAGACAATAGGG	antisense oligo qRT-PCR vc1188
KPO-0562	AGAGGCGATTCATTTTGCTTTG	sense oligo qRT-PCR vca0676
KPO-0566		antisense oligo qRT-PCR vca0676
KPO-0567	GTGTTTTGGAAATAGCTGCGG	antisense oligo gRT-PCR vca0591
KPO-0570	GGCTGAAAGCGATAATGATCTTG	sense oligo qRT-PCR vc1449
KPO-0571	CGGCTTCCATTCTAGGATCTTC	antisense oligo qRT-PCR vc1449
KPO-0572	TTACGAAGATGAGCATGGGC	sense oligo qRT-PCR vc1450
KPO-0573	AGTCGGATGGAGATATTTCGC	antisense oligo qRT-PCR vc1450
KPO-0574		sense oligo qR1-PCR vc1865
KPO-0578	ATACCTCTGTGTGTTCAGCAG	sense oligo gRT-PCR vomR
KPO-0579	AGACGGGCTGGCATAAATAC	antisense oligo gRT-PCR vamR
KPO-0580	TGGATGACTGGCTACTGTTTG	sense oligo gRT-PCR vc1063

Table S4: DNA oligonucleotides used in this study Sequences are given in $5' \rightarrow 3'$ direction; 5'P denotes a 5' monophosphate.

KPO-0581	GGCTGTTGCGACCAAATTG	antisense oligo qRT-PCR vc1063
KPO-0582	CCTGCTGTTTCACCACATTG	sense oligo qRT-PCR vca0917
KPO-0583	TGTCCGAATTTCTCTTCCGTC	antisense oligo qRT-PCR vca0917
KPO-0584	GCAAGGTCAGATCGAATCATTTG	sense oligo qRT-PCR hfq
KPO-0585	GGTGGCTAACTGGACGAG	antisense oligo qRT-PCR hfq
KPO-0671	GTTTTTTGTCGACTTCAATGTAAATCCAAAATGTAATACA	plasmid construction
KPO-0696	GTTTTTGCGGCCGCAATATCTGCATCAATTCTAAGACT	plasmid construction
KPO-0725	TTGATCTGTTAGGAGGGGTG	plasmid construction
KPO-0726	TAACAGATCAAGGCTAACATGCA	plasmid construction
KPO-0750	CTACAGGTCGACAAGATATGTTT	plasmid construction
KPO-0751	TCGACCTGTAGAAGAGGTTCC	plasmid construction
KPO-0803	GTTTTTTATGCATACCAAAATATGATTTATTGCGGTT	cloning vca0917::gfp
KPO-0947	AGAGGCTCCTAAGTCATGAGTA	plasmid construction
KPO-0948	TAGGAGCCTCTTTTGTAGTATGC	plasmid construction
KPO-0949	CAGAGCCTCGCTGGATTCAT	plasmid construction
KPO-0950	GAGGCTCTGCTGAACACACA	plasmid construction
KPO-0216	AGTCGAGGACTCAGTTTATGATTA	sRNA probing
KPO-0243	TTCGTTTCACTTCTGAGTTCGG	5S rRNA probing vibrios
KPO-0331	GAGCCAAICIACAAIICAICAGA	sRNA probing
KPO-0346		sRNA probing
KPO-0379		sRNA probing
KPO-0452		sRNA probing (vqmR region R2)
KPO-0539		SRNA probing (5' end VqmR)
KPO-0813		SRNA probing
KPO-0814		SRNA probing
KPO-0818		SRINA probing
KPO-0019		sRNA probing
KPO-0620		aDNA probing
KPO-0021		sRINA probing
KPO-0824		sRNA probing
KPO-0826		sRNA probing
KPO-0828	GGACCTTGCTCCACCTGATAA	sRNA probing
KPO-0833	CATCAATGCATATTTATCCAAGTAAG	sRNA probing
KPO-0835	GAGCTAGTTTGCTCTACCCTTT	sRNA probing
KPO-0837	GGATTCAAATAACATGGGCGACT	sRNA probing
KPO-0838	GGTTGCGATCAAAGTACCGATA	sRNA probing
KPO-0842	GTAAAGCAATTAACTTACGCCAATTG	sRNA probing
KPO-0845	TTGGCCCGTCACAGGCTGAA	sRNA probing
KPO-00857	GATGGCTCTAAGAAAGTCGCTT	sRNA probing
KPO-0858	CCACTTGAACTCTTATGTACCTC	sRNA probing
KPO-0867	TCATCGCAGGATTAGCAACGATT	sRNA probing
KPO-0873	CTCTCCATGGGACAGAGTCT	sRNA probing
KPO-0874	GTTTGGCGCTTGTTTGGCTTG	sRNA probing
KPO-0875	AGGGTTACAACGCACCATTTCA	sRNA probing
KPO-0876	AGTTTTTCTGATAAGCAAGGTAGAG	sRNA probing
KPO-0881	CATTGTCATCTGTAACAATCCACA	sRNA probing
KPO-0915	GTTGTTAGTAATGGTTATTCAGAAT	sRNA probing
KPO-0917	ATATATGCAAGCGTCTCTTAGCC	sRNA probing
KPO-0918	AGTTCCACTTATCCTCCTAAGC	sRNA probing
KPO-0923	ACAACAGGACCCAGTTGTTTGAT	sRNA probing
KPO-0924	TAACAACGTCAGTTGGCTAGGT	sRNA probing
KPO-0934	CTTGCTTCCCCAATAACCGG	plasmid construction
KPO-0935	GTTTTTCCATGGCTAACCATCTGACATTAGAGCAG	plasmid construction

Table S5: Mapping statistics for V. cholerae dRNA-seq

Libraries	D47ES1_0.1 minus_TEX	D47E_S1_0. 1_plus_TEX	D47E_S1_2.0 _minus_TEX	D47E_S1_2. 0_plus_TEX	D47E_S2_0.1 _minus_TEX	D47E_S2_0. 1_plus_TEX	D47E_S2_2.0 _minus_TEX	D47E_S2_2. 0_plus_TEX	WT_S1_0.1_ minus_TEX	WT_S1_0.1 _plus_TEX	WT_S1_2.0_ minus_TEX	WT_S1_2.0 _plus_TEX	WT_S2_0.1_ minus_TEX	WT_S2_0.1 _plus_TEX	WT_S2_2.0_ minus_TEX	WT_S2_2.0 _plus_TEX
No. of input reads	12020323	10134004	6041793	7312970	15984818	15403926	7972525	9330337	13012710	6423924	6719857	6679325	10717828	20739202	7331811	7759407
No. of reads - PolyA detected and removed	8674534	7536490	4189449	3102702	12298501	11040700	5494342	4409395	8622196	3962800	5160930	3220767	8706350	16302487	5249579	4046300
No. of reads - Single 3' A removed	407920	497820	282028	656295	575781	1037249	387562	771477	576353	481959	253071	669546	256527	1068032	332091	659685
No. of reads - Unmodified	2937869	2099694	1570316	3553973	3110536	3325977	2090621	4149465	3814161	1979165	1305856	2789012	1754951	3368683	1750141	3053422
No. of reads - Removed as too short	733608	1198196	299168	221690	1306388	1898173	473496	388582	637372	830044	400704	325092	802474	3117308	348585	486877
No. of reads - Long enough and used for alignment	11286715	8935808	5742625	7091280	14678430	13505753	7499029	8941755	12375338	5593880	6319153	6354233	9915354	17621894	6983226	7272530
Total no. of aligned reads	10536538	8186187	5472276	6890068	13259927	12157299	7159818	8627012	11591377	5191739	5942884	6173775	9120565	15516660	6643865	7036898
Total no. of unaligned reads	602356	710740	257038	196671	1323488	1304246	327270	308792	614663	380711	360059	175089	699857	2030722	325040	230462
Total no. of uniquely aligned reads	2838220	2525662	4018715	4970468	3506745	3646857	5321223	5848685	3641476	2091139	4110536	3996992	1968041	4156019	4369033	4179564
Total no. of alignments	35069849	25876009	12036938	17467196	41408199	36949222	15484789	24190661	38080442	16187184	13369414	18172308	28413639	47196025	17211719	22726156
Total no. of split alignments	35539	20279	23993	9857	23417	37026	11812	10555	38348	10394	10721	9642	29612	49468	15720	8604
Percentage of aligned reads (compared to total input reads)	87.66	80.78	90.57	94 22	82.95	78.92	89.81	92.46	89.08	80.82	88.44	92.43	85.1	74.82	90.62	90.69
Percentage of uniquely aligned reads (in relation to all aligned reads)	26.94	30.85	73.44	72.14	26.45	30	74.32	67.8	31.42	40.28	69.17	64.74	21.58	26.78	65.76	59.39

Supplementary References

- 1. Rehmsmeier M, Steffen P, Hochsmann M, & Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. *RNA* 10(10):1507-1517.
- 2. Shao Y, Feng L, Rutherford ST, Papenfort K, & Bassler BL (2013) Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. *EMBO J* 32(15):2158-2171.
- 3. Dunn AK, Millikan DS, Adin DM, Bose JL, & Stabb EV (2006) New rfp- and pES213derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. *Appl Environ Microbiol* 72(1):802-810.
- 4. Corcoran CP, et al. (2012) Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. *Mol Microbiol* 84(3):428-445.
- 5. Papenfort K, et al. (2006) SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. *Mol Microbiol* 62(6):1674-1688.
- 6. Skorupski K & Taylor RK (1996) Positive selection vectors for allelic exchange. *Gene* 169(1):47-52.
- 7. Drescher K, Nadell CD, Stone HA, Wingreen NS, & Bassler BL (2014) Solutions to the public goods dilemma in bacterial biofilms. *Curr Biol* 24(1):50-55.
- 8. Frohlich KS, Papenfort K, Fekete A, & Vogel J (2013) A small RNA activates CFA synthase by isoform-specific mRNA stabilization. *EMBO J* 32(22):2963-2979.
- 9. Berezikov E, et al. (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38(12):1375-1377.
- 10. Edgar R, Domrachev M, & Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. *Nucleic Acids Res* 30(1):207-210.
- 11. Forstner KU, Vogel J, & Sharma CM (2014) READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data. *Bioinformatics*.
- 12. Hoffmann S, *et al.* (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. *PLoS Comput Biol* 5(9):e1000502.
- 13. Robinson JT, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24-26.
- 14. Dugar G, et al. (2013) High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. *PLoS Genet* 9(5):e1003495.
- 15. Bailey TL, *et al.* (2009) MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res* 37(Web Server issue):W202-208.
- 16. Thelin KH & Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. *Infect Immun* 64(7):2853-2856.
- 17. Svenningsen SL, Tu KC, & Bassler BL (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. *EMBO J* 28(4):429-439.
- 18. Nadell CD & Bassler BL (2011) A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. *Proc Natl Acad Sci U S A*.
- 19. Liu Z, Hsiao A, Joelsson A, & Zhu J (2006) The transcriptional regulator VqmA increases expression of the quorum-sensing activator HapR in Vibrio cholerae. *J Bacteriol* 188(7):2446-2453.
- 20. Bassler BL, Greenberg EP, & Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. *J Bacteriol* 179(12):4043-4045.
- 21. de Lorenzo V & Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. *Methods Enzymol* 235:386-405.
- 22. Waters CM & Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. *Genes Dev* 20(19):2754-2767.

Figure S1 Papenfort *et al.*, 2015

Papenfort et al., 2015

55 rRNA

В

Papenfort et al., 2015

Vcr039

Vcr038

Vcr095

Vcr107 vca1077 vca1078 // WT luxO D47E Δhfq

Papenfort et al., 2015

Α

	1 110
VCA1078	MLGINMIPLCV00TLAGFMEPLLHVDKICFLYLC0PVFRLAFFHPNSPRIGKISLOSTLLLVSYRRISSGGYQVPNHLTLE0ISLFK0LPGYWGCKDLNSVFVYAN0AYG
Vch1786 II	MLGINMIPLCVOOTLAGFMEPLLHVDKICFLYLCOPVFRLAFFHPNSPRIGKISLOSTLLLVSYRRISSGGYVPNHLTLEOISLFKOLPGYWGCKDLNSVFVYANOAYG
VCD 000264	MLGINMIPLCVOOTLAGFMEPLLHVDKICFLYLCOPVFRLAFFHPNSPRIGKISLOSTLLLVSYRRISSGGYDVPNHLTLEOISLFKOLPGYWGCKDLNSVFVYANOAYG
VC395 A110	MFSRPSLDSWNLFYTSTRYVSCIY-ASPSSGWLFFIOTVPRIGKISLOSTLLLVSYRRISSGGYUVPNHLTLEOISLFKOLPGYWGCKDLNSVFVYANOAYC
03Y 18523	MPNHLTLEOISLEKOLPGYWGCKDLNSVEVYANOAYC
VCM66 A103	
VC0395 016	MPNHLTLEOISLEKOLPGYWGCKDLNSVEVY ANOAYC
VCLMA B082	MPNHLTLEOISLEKOLPGYWGCKDLNSVEVY ANOAYC
vfu B00971	
N175 16845	
VAA 01919	
VAA_01919	MMTGULY21UV122UV/GF4TPALMENTGY26L1ALIETMIIUVUY1G112M2TPGF44MAMET2Y5612P666F91M9CVDPM2ALAIMMAY6
	111 220
VCA1078	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
Vch1786_II	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
VCD_000264	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
VC395_A110	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
03Y_18523	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
VCM66_A103	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
VC0395_016	ELIGLKRAEDCIGRTDFEMPSPTAACAAEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
VCLMA_B082	ELIGLKRAEDCIGRTDFEMPSPTAACATEFQQQDRYVIETGHSVKVLDIHPYPDGHWHAHIFTKTPWRDSQGKIQGTIFFGQDLTDTAILEVGHWVCRATGLSTS-TTFK
vfu_B00971	ELIGVASAEQCVGRTDFDMPSPTVACAGDFQEQDRYVMQTGRSLKVLDIHPYPDGRWHAHIFTKSPWRDADGNIQGTIFYGQDLTDTAILEVGHWVCRATGLTAPFKSSN
N175_16845	KLIGVSDAKQCIGLTDFEMPSPTTACAAEFQQQDRCVISTKKPLKVLDIHPYADGSWRAHIFTKTPWFNAQGEVQGTIFFGQELTDTAILEVGHWICRATGLTTT-QHSP
VAA_01919	KLIGVSDAKQCIGLTDFEMPSPTTACAAEFQQQDRCVISTKKPLKVLDIHPYADGSWRAHIFTKTPWFNAQGEVQGTIFFGQELTDTAILEVGHWICRATGLTTT-QHSA
	221 320
VCA1078	
Vch1786 TT	SVADBDTLKLTARESEVLFLLLVGKKPOHTARVMGTSIKTVEGYRAKLRSKFGALSKDOLIDIALDRGFGSVIFKTLLRKOLSVUSDHTIPKKVDVVAO
VCD 000264	SVADBTLKLTARFSEVLELLLVGKKOOHTARVMGTSTKTVFGVFAKLRSKFGALSKOOLDLALADGGFGSVTEKTLLBKGTSVUSDHTTEKKUDVUJAO
VC395 A110	SVADDTIKI TARFSEVI FILLI VCKV DOHLARVMCI SI KTVECVEAKLESKEGAL SKOOL DILAD REGESVI DEVIL DROLSVIL SDHTT FKKVDIVAO
03Y 18523	SVADDTIKI TARFSEVI FILLI VCKV DOHLARVMCI SI KTVECVEAKLESKEGAL SKOOL DILAD REGESVI DEVIL DROLSVIL SDHTT FKKVDIVAO
VCM66 1103	SVADBTLKLTARFSEVLELLLVGKKDOHTARVMGTSTKTVFGVPAKLRSKFGALSKDOLTDLALDRGFGSVTEKTLERKOTSVUSDHTTEKKVDVVAO
VC0395 016	SVADDTIKI TARFSEVI FILLI VCKV DOHLARVMCI SI KTVECVEAKLESKEGALSK DOLIDILAD REGESVI PKTLIRKOLSKVI DOHT TIKKVDVIQ
VCLMA B082	SVADDTLKLTARESEVUELLLYCKKPOHTARVMGISTKTVEGVEAKLRSKEGALSKDOLIDLALDRGEGSVIPKTLLRKOLSVUSDHTTPKKVDVVAO
vfu B00971	SHSETPLEKLTTRESETLELMLYGKKPOHTARVMGTSTKTVEGYEARLRNKFGAHSKENLLDVALDIGEGSVTEKTLLKTOLSVVLKNEHAA
N175 16845	GVLEP I SGPLTTRESEVLET LLYGKKPKNTARVMKISIKTVEGYFAKLRHKFAAHSKEOLIDMALDOGYGSNTPKTLLKTOLSVVLNSECPT
VAA 01919	GVLEPISGPLTTRESEVLFLLLYGKKPKNIARVMKISIKTVEGYEAKLRHKFAAHSKEOLIDMALDOGYGSNIPKTLLKTOLSVVINSECPI

GTG-GTC

ct

GFP

RNAPα

В

ATG

Papenfort et al., 2015

В

	R1
Vch	CAGAGCATGAGTTGCATGACTGATGCTTGGTATCAATATGATACCTCTGTGTGTTCAGCAGACCCTCGCTG
Vfu	CAAGCGTTAGGT-CAGACCTACCGCCCGATATCTTATTGATATCTCTGTGTTTTCAGCAGACCCTCGCTG
Van	GAATATCAAACACGTTTGATATTTGATATCCATGTGGTATCCCTATGAATTTGCAAdACCCTCGCAG
Vpa	CGAGCTC-TAGGATGCATACGACCCTGAGCTC-TCGGTATCTGATTGATACCTCTAACTTA-CTTAGCA-GACCCTCGCTA
Vha	CGAGCTC-TAGGATGCATACGACCCTGAGCTCATCGGTATCTACTTGATACCTCTAACTTA-CTTAGCA-GACCCTCGCTA
Val	CGAGCTT-TAAGATGCATACGATCTAAAGCTC-TCGGTATCTCATTGATACCTCTAACTTA-CTTAGCA-GACCCTCGCTA
Vvu	AGAGATCGTGACAAGCATACGTCGCTGT-CTC-TTGGTATCTTGT-GATACCTCTAAATTGGCGTAGCAACACCCTCGCTA
Vpr	TGAACTCAGATGACAGTATCTGCGTTTGGTATCTA-TTGATACGTCTATTCTCAACGGTAACGTTG
Vch	GATTCAT-GGAACCTCTTCTACACGTCGACAAGATATGTTTCTTGTATTTAT-GCCAGCCCGTCTTCAGGCTGGCTTTTTT
Vfu	AAATCAT-GGAACCTCTTCTACACGTCGACAAGATATGTTTCTTGTATTTGTTGCCAGCCCGTCTTCAGGCTGGCT
Van	CATTCAT-AGAACCTCTTCTACACGTCGACAAGAAGCAATTCTTGTATTTAT-GCCAGCCCTTCTTCAGGCTGGCTTTTTT
Vpa	TGTAATTTAGAACCTCTTCTACACGTCGACAAGATT-ATATCTTGTGTTGCCAGCCCGTCTTCAGGCTGGCTTTTTT
Vha	CGTAATTTAGAACCTCTTCTACACGTCGACAAGATT-ATATCTTGTGTTGCCAGCCCGTCTTCAGGCTGGCTTTTTT
Val	GGTAATTTAGAACCTCTTCTACACGTCGACAAGATT-ATATCTTGTGTTGCCAGCCCGTCTTCAGGCTGGCTTTTTT
Vvu	TGTGATTTAGAACCTCTTCTACACGTCGACAAGATTGATATCTTGTGTTGCCAGCCCCTCTTCAGGCTGGCCTTTTT
Vpr	GGCAT-AGATCCTCTTCTACACGTCGACAAGATAAATCTTGTGTTTGCCAGCCTTTATGGCTGGCTTTTTT
	R2

С

P*vqmR*mut

Papenfort et al., 2015

Figure S7 Papenfort *et al.*, 2015

В

vca0068

vca0591

vc1865

Papenfort et al., 2015

5S rRNA