Supporting Information Corrected June 17, 2015

Supplementary Tables

Strains	Relevant characteristic	Reference or source			
Sinorhizobium meliloti					
1021	Sm ^r derivative of 2011 (<i>expR</i> ⁻)	(1)			
8530	1021 <i>expR</i> ⁺ derivative; Sm ^r	(2)			
<i>Rm9020</i>	8530 <i>exoY</i> ::Tn5-132; Sm ^r Otc ^r	(3)			
$8530 \Delta expR$	8530 derivative with <i>expR</i> deletion	(M.J. Soto)			
8530 sinI::Km	8530 derivative with a Km resistant cassette inserted in <i>sinI</i>	(M.J. Soto)			
2011mTn5STM.1.08.B12	2011 derivative with miniTn5 in SMb20391 gene; Nm ^r	(4)			
2011mTn5STM.4.13.E03	2011 derivative with miniTn5 in <i>SMb20391</i> and oriented <i>gus</i> fusion; Nm ^r	(4)			
2011mTn5STM.4.03.E12	2011 derivative with miniTn5 in SMb20460 gene: Nm ^r	(4)			
SMb20391::Nm	8530 derivative with miniTn5 <i>in SMb20391</i> ; Str ^r Nm ^r	This work			
SMb20391::Nm-gus	8530 derivative with miniTn5 in <i>SMb20391</i> and oriented <i>gus</i> fusion: Sm ^r Nm ^r	This work			
SMb20460::Nm	8530 derivative with miniTn5 <i>in SMb20460</i> ; Sm ^r Nm ^r	This work			
Δ <i>SM</i> b20390	8530 derivative with <i>SMb20390</i> deletion; Sm ^r	This work			
Agrobacterium tumefacien	S				
C58 LBA1010	C58 containing oncogenic pTiB6	(5)			
Escherichia coli					
DH5a	supE44, $\Delta lacU169$, $\Phi 80$, $lacZ\Delta M1$, $recA1$, endA1, $gvrA96$, thi1, $relA1$, $5hsdR171$	(6)			
One Shot® TOP10	(F–) mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 araD139 Δ (araleu)7697 galU galK rpsL (Sm ^r) endA1 nupG	Invitrogene			
β2163	(F-) RP4-2-Tc::Mu <i>dapA</i> ::(<i>erm-pir</i>) [Km ^r Em ^r]	(7)			
S17.1	Tmp ^r , Sm ^r , Sp ^r ; <i>thi, pro, recA, hsdR, hsdM,</i> <i>Rp4Tc::Mu, Km::Tn7</i>	(8)			
BL21(DE3)	$F^- ompT$ gal dcm lon $hsdS_B(r_B^- m_B^-) \lambda(DE3)$ [lac1 lacUV5-T7 gene 1 ind1 sam7 nin5])	Novagene			
OmniMAX™	[proAB lacIq lacZ Δ M15 Tn10(Tc ^r) Δ (ccdAB)] mcrA Δ (mrr hsdRMS-mcrBC) Φ 80(lacZ) Δ M15 Δ (lacZYA-argF)U169 endA1 recA1 supE44 thi- 1 gyrA96 relA1 tonA panD	Invitrogene			
Plasmids					
pJB3Tc19	Ap ^r , Tc ^r ; cloning vector, P _{lac} promoter	(9)			

Table S1. Bacterial strains and plasmids used in this study.

pET28b+	Km ^r expression vector, IPTG-inducible T7 promoter.	Novagene
pET28b::BgsA	Expression vector encoding BgsA with a His ₆ - tag in the N-terminus	This work
pQE80L	Medium-copy expression vector, IPTG- inducible T5 promoter, Ap ^r for N-terminus His6-tag fusions	Qiagen
pQE80L::C-BgsA	Expression vector encoding the last 139 amino acids of BgsA with a His ₆ -tag in the N-terminus	This work
pET21::PA3353	Expression vector encoding a His ₆ -tag derivative of the PilZ domain protein PA3353 from <i>Pseudomonas aeruginosa</i>	(10)
pJBpleD*	Ap ^r , Tc ^r ; pJB3Tc19 derivate bearing a 1423 bp XbaI/EcoRI fragment containing <i>pleD</i> *	(11)
pJB9091	Ap ^r , Tc ^r ; pJB3Tc19 derivate bearing a EcoRI fragment containing <i>SMb20390</i> and <i>SMb20391</i>	This work
pJBpleD*9091	Ap ^r , Tc ^r ; pJB39091 derivate bearing a 1423 bp XbaI/EcoRI fragment containing <i>pleD</i> *	This work
pCR-XL-TOPO	Km ^r ; cloning vector for PCR products	Invitrogen
pK18mobsacB	Km ^r ; mobilizable suicide plasmid	(12)
pK18∆20390	Km ^r ; pCR-XL-TOPO carrying the deleted version of the <i>SMb20390</i> gene	This work

Ap^r, Gm^r, Km^r, Nm^r, Otc^r, Sm^r, Sp^r, Tc^r, Tmp^r, stand for resistance to ampicillin, gentamicin, kanamycin, neomycin, oxytetracycline, streptomycin, spectinomycin, tetracycline and trimethoprim, respectively.

Primer	Product	Sequence (5' to 3')	Used in
op90-F	496 bp	5'GTCCCATTTCTATCTCCCTCG3'	
20390L-R		5'GACGCGGATCGCCAGGAGGAGGATGCC3'	D.1.1
20390R-F	408 bp	5'TCCTGGCGATCCGCGTCACGCTCGCT3'	Deletion of SMb20390
SM_b20391-R		5'CGACGTAGCGGCTCATC3'	
op90-F	3720 bp	5'GTCCCATTTCTATCTCCCTCG3'	Amplification of
op91-R		5'CTCCCGCACGCTCTATGC3'	SMb20390-91 operon
op91-F		5'CATCGATAGGAGGTTGCTTGTGGTTCAG	Overexpression of
	2068 bp	TCTCTTCTAGC3'	SMb20391
op91-R		5'CTCCCGCACGCTCTATGC3'	
C-BgsA-F	488bp	5'GGATCCGCCTCGCTTATCTGCTTC3'	Overexpression of
C-BgsA-R		5'AAGCTTTCCCGCACGCTCTATGC3'	C-terminus of SMb20391
SMb20390-F	144 bp	5'GGGATATTCCTCGTCGG3'	aDT DOD
SMb20390-R		5'GGCTATCTGCTGGTCCG3'	qKI-PCK
SMb20391-F	150 bp	5'TGCGTTACATGCTCTGGC3'	
SMb20391-R		5'CGACGTAGCGGCTCATC3'	qKI-PCK

Table S2. Primers used in this work

Supplementary Figures

S. meliloti 8530 carrying pJBpleD* plasmid (right side of plates) or the vector pJB3Tc19 (left side of plates), grown on rich TY or minimal (MM) medium. A, Media supplemented with Congo Red; B, Media supplemented with Calcofluor. Cultures were imaged under white (A) or UV light (B) after growth at 28°C for 3 days.

Figure S2. Elevated c-di-GMP levels in *Sme* promote floculation in liquid cultures. (A) Flocs produced by *Sinorhizobium meliloti* 8530 expressing *pleD** (pJBpleD*) after growth for 1 week at 28°C with shaking in liquid MM in plates, in contrast to the control strain (*Sme* pJB3Tc19). (B) Scanning electron microscopy (SEM) images at $\times 2,000$ and $\times 7,500$ magnification (inset) of a floc formed by *Sinorhizobium meliloti* 8530 expressing *pleD** (pJBpleD*). The images reveal details of the mesh of entangled filaments formed by *Sme* with high c-di-GMP levels.

pJB3TC19 pJBpleD*

pJB3Tc19 pJBpleD*

Figure S3. Elevated c-di-GMP levels in *Sme* promote biofilm formation and attachment to abiotic and biotic surfaces. (A and B) Biofilm formed by *Sinorhizobium meliloti* 8530 (pJBpleD*) after growth with shaking for 3 days at 28°C in glass tubes with liquid MM media supplemented with CF (100µM) under white (A) and UV illumination (B).

(C) Biofilm formation of *Sme* 8530 (pJBpleD*) on alfalfa root surface. Bacteria were grown at 28°C for 3 days in glass tubes with liquid MM media supplemented with CF (100 μ M) in the presence of *Medicago sativa* roots. Images of the biofilm formed by *Sme* pJBpleD* over the roots were taken with a stereomicroscope under white- and UV-light.

Figure S4. 500 MHz ROESY (mixing time 100 ms) of the acetylated mixed-linkage β-Glucan (MLG) purified from *Sinorhizobium meliloti* 8530 overexpressing *pleD** (*Sme* pJBpleD*). Inter-residue cross-peaks are indicated in bold.

Figure S5. Influence of gene mutations on S. meliloti staining with different dyes.

Appearances of *S. meliloti* 8530 (Wt) and *SMb20391* and *SMb20460* mutant strains expressing *pleD** (pJBpleD*). Cultures were imaged after growth at 28°C for 3 days in solid MM media supplemented with (A) Congo Red or (B) Calcofluor (UV light).

Figure S6. Transcription of the Sinorhizobium meliloti SMb20390-91 operon.

(A) Cotranscription of *SMb20390* and *SMb20391* genes: M, Molecular ladder (λ HindIII); Reverse-Transcriptase (RT) PCR amplification of the depicted 885 bp fragment using *Sme* 8530 RNA carried out with (lane 1) or without (lane 2) the RT enzyme. Genomic DNA of *Sme* 8530 strain was used as positive control (lane 3) and MiliQ water as a blank (lane 4). (B) Relative transcript levels of *SMb20391* gene in *Sme* 8530 (wt) and a *expR* mutant derivative, in presence (pJBpleD*) or absence of *pleD** (pJB3Tc19). Error bars represent standard deviation; a and b denote analysis of variance categories for significant differences (P < 0.05).

Figure S7. Diagram of various plasmid constructions.

Genes *pleD**, *SMb20390* and *SMb20391* are indicated as white, black and gray arrows, respectively. Relevant restriction sites and other plasmid features are depicted.

Figure S8. Epifluorescence micrographs at ×10 magnification of bacterial flocs. A, floc formed in flasks inoculated with 1:1 mixtures of 8530-GFP and 8530-dsRed, both overexpressing PleD*; B, floc formed in flasks inoculated with similar numbers of 8530-GFP and *SMb20391*-dsRed, both overexpressing PleD*; Filters: I, dsRed (G-2A); II, GFP (B-2A); IV, Calcofluor (CF; UV-2E/C); III, no filter.

Figure S9. Nodulation kinetics of wild type 8530 and *SMb20391::Nm* mutant (*bgsA*), inoculated at 10^3 cells per root. Values are the means from 45 inoculated alfalfa plants and two independent experiments.

Supplementary Methods

Intracellular c-di-GMP measurements

c-di-GMP was extracted using a protocol based on a previous report (13). Three biological replicates of Sinorhizobium meliloti 8530 (Sme) expressing pleD* (pJBpleD*) and its control Sme (pJB3Tc19), were grown in 10 ml of TY with shaking at 28°C for 24h. Formaldehyde at a final concentration of 0.19 % was added and the cells harvested by centrifugation (10 min at 4000 rpm). The pellet was washed in 1 ml of iced deionised water, centrifuged for 3 min at 13000 rpm, resuspended in 0.5 ml of iced deionised water and heated to 95°C for 5 min. A volume of 925 µl of iced absolute ethanol was added to reach a final concentration of 65%. Nucleotides were extracted by 30 sec of vortex followed by a centrifugation step (3 min at 13000 rpm). Supernatants containing extracted nucleotides were then evaporated to dryness at 50 °C in a speedvacuum system. The pellet was resuspended by vigorous vortexing in 300 µl of AcNH₄ 10mM (pH 5,5). Samples were filtered through 0.45 µm GHP membranes (GHP Acrodisc, PALL). Samples were spiked at a concentration of 250 nM by mixing 100 µl of a solution of 750 nM of synthetic c-di-GMP (Axxora) disolved in AcNH₄ 10mM pH 5,5 with 200 µl of each sample. Samples were analysed by reversed phase-coupled HPLC-MS/MS. High performance liquid chromatography was performed on an Agilent 1100 coupled to a 3x125 mm column Waters Spherisorb 5 µm ODS2 (C-18). Running conditions were optimized using synthetic c-di-GMP as a reference. ESI-MS mass spectra were measured on an Esquire 6000 (Bruker Daltonics) and on a TSQ7000 (Finnigan) mass spectrometer. Matrix-assisted laser desorption ionization spectra were measured on a Reflex III spectrometer (Bruker Daltonics). To confirm the identity of the substance, relevant peaks were fragmented by ESI-MS using the positive ion mode. Three major ions were visible in the c-di-GMP fragmentation pattern, and m/z 152 and 540 corresponded to products from single bond fragmentation, and 248 originated from double bond fragmentations. The area of the ion m/z 540 peak was used to estimate the amount of c-di-GMP in each sample (similar values were obtained with the other ions). For quantification, a standard curve was established using synthetic c-di-GMP (Axxora) dissolved in ammonium acetate (10mM pH 5.5) at a range of concentrations (20 nM, 200 nM, 2 μ M and 20 μ M). After subtracting the basal 250nM spike, c-di-GMP concentrations in each strain culture were standardised with the total protein content, determined by Bradford assay (14).

Microscopy studies of flocs formed by Sinorhizobium meliloti

The flocs formed by *Sinorhizobium meliloti* strains expressing *pleD** in liquid MM were analyzed by epifluorescence and scanning microscopy. For the epifluorescence microscopy two different fluorescent constructions (pBBR-gfp and pBBR-dsRed) were introduced into *Sinorhizobium meliloti* strains. Equal number of cells (from starting cultures) of the two strains to be compared (WT-GFP versus WT-DsRed or WT-GFP versus *SMb20391*-DsRed) expressing *pleD** (pJBpleD*) were inoculated in flasks with 10 ml of liquid MM supplemented with Tc and CF and grown with shaking for 2 days at 28°C. The flocs formed were analysed using a epifluorescence microscope (Nikon eclipse 50i). Filters for Calcofluor (CF; UV-2E/C Ex/Em 358/461nm) and for fluorescent proteins GFP (B-2A Ex/Em 480/506nm) and DsRed (G-2A Ex/Em 558/583nm) were used.

For scanning microscopy flocs formed by untagged *Sinorhizobium meliloti* 8530 (*Sme*) expressing *pleD** (pJBpleD*) grown in MM with shaking for 2 days at 28°C were fixed in 2.5% glutaraldehyde in 0.1M cacodylate buffer pH7.2, dehydrated in ethanol series and taken to the critical point (Baltec CPD030). Samples were then mounted on

stainless steel stubs, covered with gold in a Leica SCD050 and examined in a Jeol Scanning Electron Microscope (JSM-6490LV).

Flocculation and Biofilm assays

Starting cultures of rhizobial strains were prepared as above. Flocs were obtained by growing *Sinorhizobium meliloti* 8530 expressing *pleD** (pJBpleD*) for 2-7 days in Petri dishes at 28°C in liquid MM supplemented with tetracycline (10 μ g/ml) with gentle shaking.

For biofilm assays, 6 ml of diluted cultures in MM supplemented with CF (100µM final concentration) were disposed in glass tubes and let grow with shaking at 28°C for 72 h. For adhesion to biotic surfaces, bacteria were incubated in the presence of surface sterilized alfalfa roots. Roots were imaged using a fluorescent stereo microscope (Leica M165 FC). Biofilm quantification was done in 96-well plates by crystal violet staining as previously described (5).

Supplementary References

- 1. Meade HM, Long SR, Ruvkun GB, Brown SE, & Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of *Rhizobium meliloti* induced by transposon Tn5 mutagenesis. *J.Bacteriol.* 149(1):114-122.
- 2. Glazebrook J & Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by *Rhizobium meliloti*. *Cell* 56(4):661-672.
- 3. Glazebrook J & Walker GC (1991) Genetic techniques in *Rhizobium meliloti*. *Methods in Enzymology Bacterial Genetic Systems*, ed Jeffrey HM (Academic Press), Volume 204 Ed, pp 398-418.
- 4. Pobigaylo N, *et al.* (2006) Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of *Sinorhizobium meliloti*. *Appl.Environ.Microbiol.* 72(6):4329-4337.
- 5. Koekman BP, Hooykaas PJ, & Schilperoort RA (1982) A functional map of the replicator region of the octopine Ti plasmid. *Plasmid* 7(2):119-132.
- 6. Hanahan D (1983) Studies on transformation of *Escherichia coli* with Plasmids. *J. Mol. Biol.* 166(4):557-580.
- 7. Demarre G, *et al.* (2005) A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha)

conjugative machineries and their cognate *Escherichia coli* host strains. *Res.Microbiol.* 156(2):245-255.

- 8. Simon R, Priefer U, & Pühler A (1983) A Broad Host Range Mobilization System for *In vivo* Genetic-Engineering-Transposon Mutagenesis in Gram-Negative Bacteria. *Biotechnology* 1(9):784-791.
- 9. Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63: 370-9.
- 10. Düvel J, *et al.* (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in *Pseudomonas aeruginosa*. *J.Microbiol.Methods* 88(2):229-236.
- 11. Pérez-Mendoza D, *et al.* (2014) Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. *PLoS.One.* 9(3):e91645.
- 12. Schäfer A, *et al.* (1994) Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* 145(1):69-73.
- Amikam D, Steinberger O, Shkolnik T, & Ben-Ishai Z (1995) The novel cyclic dinucleotide 3'-5' cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. *Biochem.J* 311 (Pt 3):921-927.
- 14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal.Biochem.* 72:248-254.