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Sequence Data. Our data consist of a set of multiple sequence
alignments (MSAs) of HIV-1 clade B sequences for the proteins
Gag (2,398 sequences), Nef (1,948 sequences), protease (9,396
sequences), and integrase (2,488 sequences), obtained from the
Los Alamos National Laboratory HIV sequence database (www.
hiv.lanl.gov). For protease, we selected only sequences from
drug-naïve patients to minimize the effects of selection for drug
resistance. Insertions with respect to the HXB2 sequence, a
standard clade B reference sequence, were removed. To control
sequence quality, we excluded sequences labeled as “problem-
atic” in the database and removed sequences with gaps and/or
ambiguous amino acids at ≥5% of sites. We selected one se-
quence per patient for inclusion in the MSA to prevent multiple
sequences obtained from the same individual from biasing the
sequence distribution.
For our analysis, we converted the amino acid sequences in the

MSA into a binary form, as described in ref. 1. To do this, we first
determined the most frequently observed amino acid at each site.
Each amino acid sequence in the MSA was then converted into
a vector of binary variables, z = {z1, z2, . . ., zN}, zi ∈ f0; 1g, where
N is the total length of the protein sequence. For each MSA
sequence, each of the zi is set equal to 0 (1) if the amino acid at
site i matches (does not match) the consensus amino acid at the
same site.
We then computed the average frequency of mutations at each

site and at each pair of sites in the MSA, given by the following:
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Here, B is the total number of sequences in the MSA, and
the index k is a label for each MSA sequence. These mutation
frequencies, or correlations, characterize the distribution of
sequences in the MSA. Additionally, we measured the probabil-
ity of observing a sequence with nmutations, obtained by counting
the fraction of sequences in the MSA exhibiting a certain number
of mutations.

Maximum Entropy Model. We seek to infer a model that captures
the variability of sequences present in the MSA, including the
correlations given in Eq. S1. The least biased, or maximum en-
tropy, probabilistic model capable of reproducing the correla-
tions is the Ising model, described by Eq. 1. In recent years,
similar models have been used to study a wide range of complex
systems, from the activity of networks of neurons (2, 3) to anti-
body sequences in zebrafish (3, 4).
Mathematically, we must determine the set of fields hi and

couplings Jij so that the Ising model correlations:
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match those from the MSA (Eq. S1). Here, the sum over z is a
sum over all 2N binary sequences of length N. This problem is
referred to as the inverse Ising problem. Formally, the solution
to the inverse Ising problem can be found by determining the
fields and couplings that minimize the cross-entropy between the
Ising model and the data (5):
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This is equivalent to maximizing the likelihood function, which is
proportional to exp½−BSpðhi; JijÞ�. Due to the presence of the
partition function Q, direct minimization of Eq. S3 is computa-
tionally intractable. To solve the inverse Ising problem, we thus
use the selective cluster expansion algorithm, a fast approximate
method based on iteratively finding the minimum of a regularized
version the cross-entropy,
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on small, strongly interacting subsets of the full system, denoted
here by Γ (5, 6). The regularization strength γ is expected to be of
the order of 1/B, the number of sequences in the MSA (6). Given
a particular value of the regularization strength, we follow the
procedure outlined in ref. 6 to infer the Ising model parameters.

Model Selection and Validation. Although we expect that the ideal
regularization strength γ should be of order 1/B, the optimal
value is not known exactly. Thus, we tested values of the regula-
rization strength ranging from 2/B to 1/(2 B), ensuring that regu-
larization strengths for all proteins are similar in magnitude.
Different values for the regularization strength γ may yield slightly
different values for the fields hi and couplings Jij, all of which
provide a good fit to the correlations measured from the MSA.
We quantify goodness of fit for the correlations through the

error terms:
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the expected SD of the empirical correlations due to finite sam-
pling (6). To avoid overfitting, we select models for which «p1
and «p2 are ∼1; that is, the error between the model correlations
and the empirical correlations from the MSA is of roughly the
same size on average as the expected fluctuation in the correla-
tions due to finite sampling.
To choose the model that best captures the properties of the

empirical sequence distribution, among those for which «p1, «p2 ∼ 1,
we search for the model that best reproduces higher-order
correlations, which are not directly constrained by the inverse
Ising inference problem. In particular, we choose the model
that gives the best fit to the distribution of the number of
mutations observed in a sequence, as measured by the SE be-
tween the true (MSA) and inferred (model) distributions. In all
cases, we obtain an Ising model that accurately reproduces both
the single- and double-mutation frequencies (Fig. S1 A and B)
and the distribution of the number of mutations in a sequence
(Fig. S1C).
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Statistical Error on the Inferred Fields and Couplings. Finite sampling
induces errors in the inferred fields hi and couplings Jij. We
denote the set of fields and couplings minimizing Eq. S3 by
hpi ; Jpij . In the limit that B→∞, the likelihood function is tightly
concentrated around hpi ; Jpij ; thus, the probability of some de-
viation in the inferred fields and couplings Δ= fh1 − hp1; . . . ;
hN − hpN ; J12 − Jp12; . . . ; JðN−1ÞN − JpðN−1ÞNg can be expanded as fol-
lows (6):
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where χ is the N(N + 1)/2-dimensional covariance matrix of the
Ising model, i.e., the matrix of second derivatives of the entropy
with respect to the fields and couplings. The expected fluctua-
tions in the inferred hi and Jij are thus as follows:

δhi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χ−1

�
i;i

B

s
; δJij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χ−1

�
ij;ij

B

s
: [S8]

Due to the large size of the covariance matrix, these quantities are
difficult to compute directly for the proteins studied here. How-
ever, we have tested the robustness of the inferred fitness peaks
and their properties to using a reduced amount of data from the
MSA to compute the correlations, thus indirectly affecting the
inferred hi and Jij, as well as direct perturbation of these param-
eters. Details on these tests are presented in subsequent sections.

Zero-Temperature Monte Carlo Simulation.We begin with the set of
MSA sequences, converted into a binary form as described above.
To identify physically relevant basins of attraction (i.e., local
maxima of the fitness landscape), we perform a zero-temperature
Monte Carlo simulation to ascend (descend) the fitness (energy)
landscape, using each sequence from theMSA as the starting point
of one simulation. At each step of the simulation, we compute the
change in fitness resulting from flipping the value of each zi from
consensus (0) to mutant (1), or vice versa. If the change in fitness
is negative in all cases, then the current sequence z is a local fitness
maximum; thus, the simulation is stopped. Otherwise, we flip the
value of zi at the site i that increases the fitness the most. This
process continues until a local maximum of the fitness is reached,
where it is no longer possible to increase the fitness of the se-
quence by flipping one of the binary variables in z. Each local
maximum of the fitness defines a fitness peak. We determine the
occupancy of each peak by counting the number of MSA se-
quences that evolve to the same local maximum sequence under
zero-temperature Monte Carlo simulation.

Absence of Multiple Fitness Peaks in Uncorrelated Sequence Data.
Due to finite sampling, fluctuations in the observed frequency
of mutations, given in Eq. S1, lead to uncertainty in the inferred
couplings and fields, as described above. Even if the frequency of
mutations at each site is independent, nonzero couplings can be
inferred, which could potentially lead to the inference of multi-
ple fitness peaks where only one truly exists.
To verify that the peaks we observe are not due purely to finite

sampling noise, we generated an artificial set of data for each
protein by shuffling the amino acids in each column of the MSA,
so that the frequency of mutations at each site is unchanged, but
correlations between mutations at different sites are purely ran-
dom. We then fit an Ising model to the shuffled data, following the
same procedure as before. As before, the inferred Ising models
accurately reproduce the single- and double-mutation frequencies
as well as the distribution of the number ofmutations in a sequence.
However, the number of fitness peaks changes dramatically. For
the proteins protease and integrase, all sequences from the shuffled

MSA lie on the same peak. For Gag, we find only two fitness peaks
(one occupied by 2,397 sequences, the other by a single sequence),
and for Nef, we find only three (occupied by 1,190, 420, and 338
sequences). Thus, the fitness peaks we infer from the fullMSA data
are not the result of sampling noise alone.

Fitness Peaks Obtained from Monte Carlo Sampling of the Model.
Rather than using sequences from the MSA as starting points
for the zero-temperatureMonte Carlo procedure to derive fitness
peaks, we could instead use an artificial collection of sequences
obtained by sampling from the inferred fitness landscape (Eq.
1). Here, we show that this alternative method leads to equiv-
alent results.
First, we generated a random sample of binary sequences,

equal to the total number of sequences in the MSA, according to
the probability distribution given in Eq. 1. We then evolved each
of these sequences through zero-temperature Monte Carlo sim-
ulations as described above. For Gag, we obtained 385 fitness
peaks (all enriched in HLA-associated mutations), and for Nef,
we found 477 fitness peaks (all enriched in HLA-associated mu-
tations). The distribution of sequences across these fitness peaks
also follows a power law (maximum-likelihood exponent of 1.05
for Gag and 0.98 for Nef). The fitness peaks found in this way are
the same as, or very similar to, the fitness peaks described in the
main text, and the number of sequences that is found to lie on
each of them is similar (Fig. S5 A and B).
We obtained analogous results for the weakly immunogenic

proteins. For protease, we found 4 fitness peaks (all enriched in
HLA-associated mutations), and for integrase, we found 25 (all
enriched in HLA-associated mutations, except for one peak se-
quence that contains no mutations). The fitness peaks that contain
a large number of sequences are identical for both methods
(Fig. S5 C and D).

Sensitivity of Inferred Fitness Peaks and Their Properties to Limited
Sequence Data and Perturbations of the Fields and Couplings. Here,
we show that the properties of the fitness peaks that we observe
are stable under variations due to finite sampling as well as direct
perturbations of the inferred couplings and fields.
To evaluate the sensitivity of the inferred peak properties to

finite sampling, we repeated our analysis using a randomly se-
lected sample of 80% of the MSA sequences for each protein to
build to fitness landscape model. For Gag and Nef, we found a set
of 403 and 522 fitness peaks, respectively, all of which were en-
riched in HLA-associated mutations. The distribution of se-
quences across the observed fitness peaks follows the same power
law scaling as previously observed (maximum-likelihood expo-
nent of 1.17 for Gag and 1.09 for Nef). Because the fitness
landscape inferred with this subset of the full set of MSA se-
quences has different hi and Jij parameters, the fitness peaks we
find are similar but not always exactly identical to those observed
previously. Hamming distances between the fitness peaks found
from the subset model and the corresponding peaks obtained
from the full model are typically far smaller than the distance
between fitness peaks in the full model, i.e., the shifted fitness
peaks remain distinguishable (Fig. S5 E and F). We note that the
fitness peaks that contain the most sequences tend to change the
least between the subset and full models, as expected (Spearman
correlation between number of sequences on a fitness peak in
the subset model and Hamming distance to the corresponding
peak in the full model of r = −0.51, P = 1.9 × 10−28 for Gag, and
r = −0.52, P = 4.8 × 10−38 for Nef). The number of sequences
that lie on each fitness peak is also similar to that obtained
previously.
Similar results also hold for the weakly immunogenic proteins

protease and integrase (Fig. S5 G and H). We obtained 7 fitness
peaks for protease (all enriched in HLA-associated mutations)
and 14 for integrase (all but one sequence, which contains no
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mutations, enriched in HLA-associated mutations). Here, the
most populous fitness peaks are recovered exactly; only the fit-
ness peaks containing <10 sequences in the subset model differ
between the subset and full models.
We also repeated our analysis using a perturbed fitness land-

scape, adding a normally distributed random variable with mean
zero and SD σ to each field hi and couplings Jij. We chose σ to be
10% of the size of the corresponding field or coupling, a pertur-
bation large enough that the correlations (Eq. S2) change sub-
stantially («p1 = 109, 122, 136, and 53, «p2 = 24, 46, 42, and 9, for
Gag, Nef, protease, and integrase, respectively). However, despite
the change in the model correlations, the overall structure of the
fitness (energy) landscape is preserved. In this case, we find 569
fitness peaks for Gag and 502 fitness peaks for Nef, all enriched in
HLA-associated mutations. The distribution of sequences across
these fitness peaks again follows a power law with maximum-
likelihood exponent of 1.22 for Gag and 1.05 for Nef. Similar to
the previous analysis using a subset of the MSA sequences, the
Hamming distance between peak sequences in the perturbed
model and their corresponding peaks in the original model is
small compared with the typical distance between peaks. For the
weakly immunogenic proteins, we find 6 fitness peaks for pro-
tease (all enriched in HLA-associated mutations) and 17 for in-
tegrase (all enriched in HLA-associated mutations, except for one
sequence that contains no mutations). As before, all of the most
populous fitness peaks are recovered exactly for these proteins.

Maximum-Likelihood Estimation of Power Law Exponents. We esti-
mate the exponent characterizing the distribution of the number
of sequences lying on a fitness peak by the method of maximum
likelihood. The number of sequences that lie on a peak is a dis-
crete variable, so we assume that the distribution follows a dis-
crete power law of the form:

PðnÞ= n−β

Q
; Q=

Xnmax

n=1

n−β: [S9]

The log-likelihood of the data given a particular value of the expo-
nent β and the maximum number of sequences nmax is as follows:

ℓ=−β
Xb
i=1

log  ni − b logQ; [S10]

where ni is the number of sequences that lie on the ith fitness
peak, and b is the total number of peaks. The exponent β that
maximizes the log-likelihood depends only weakly on the speci-
fied maximum number of sequences. Choosing nmax = ∞, we
obtain estimates of β = 2.040 for Gag and β = 2.022 for Nef.
With nmax = B, the number of sequences in the MSA, we find β =
2.038 for Gag and β = 2.020 for Nef. Note that the exponent in
the rank-frequency plot (Fig. 1) is β − 1, rather than β. This is
because the rank of a peak containing nb sequences is propor-
tional to the fraction of peaks that contain nb or more sequences,
i.e., the cumulative distribution:

rankðnbÞ∝
Z∞
nb

​ dn  PðnÞ: [S11]

Definition of HLA-Associated Mutations. In ref. 7, an extensive list
of HLA-associated polymorphisms were identified in the HIV-1
proteins Gag, Nef, and Pol, a polyprotein that contains both
protease and integrase. Amino acids at a site that were signifi-
cantly enriched in the presence of a specific HLA allele were
referred to as “adapted” HLA-associated polymorphisms. Simi-
larly, amino acids that were significantly depleted in the presence

of a particular HLA allele were referred to as “nonadapted.” To
fit with our binary sequence model, we consider a mutation at a
specific site to be HLA-associated if an amino acid variant la-
beled as adapted at that site differs from the consensus amino
acid, or if an amino acid listed as nonadapted at that site is the
same as the consensus amino acid.
We quantified the enrichment of HLA-associated mutations in

peak sequences by the probability (P value) of obtaining at least
the observed number of HLA-associated mutations in each peak
under the assumption that the mutated sites in the peak se-
quence were selected by chance. Consider a protein of length N,
where mutations at K out of the N total sites are HLA-associ-
ated. If n sites are mutated in a peak sequence, the probability of
obtaining k or more HLA-associated mutations is as follows:

pðkjnÞ =
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Quantifying Properties of Fitness Peaks.To explore properties of the
peak sequences, we computed their overlap with other peak
sequences, as well as the average couplings among mutated sites
between and within peak sequences. For each peak sequence zb,
let us define a set b= fijzbi = 1g, i.e., a list of the sites in the peak
sequence that are mutated. We define the overlap between two
peaks indexed by b1 and b2 to be as follows:

overlapðb1; b2Þ= kb1 ∩ b2k
kb1 ∪ b2k; [S13]

the ratio of the number of mutations sequences b1 and b2 share in
common, divided by the total number of mutations in both se-
quences. The average coupling between mutated sites in these
peak sequences is as follows:

J =

P
i∈b1; j∈b2 Jij

kb1kkb2k− kb1 ∩ b2k: [S14]

Here, the denominator gives the number of pairs {i, j} that can be
formed from i∈ b1 and j∈ b2 satisfying i ≠ j. The average cou-
pling between primary mutations (defined as sites which are mu-
tated in less than 20% of the peak sequences) and/or secondary
mutations (sites that are mutated in more than 20% of the peak
sequences) mutated in a peak sequence can be computed simi-
larly. We note that the specific threshold of 20% for classifying
mutations as primary versus secondary is not important; small
changes in the definition do not qualitatively affect the results.
Measures of the overlap between fitness peaks and their average
couplings are reported in Fig. 2 for the highly immunogenic
proteins Gag and Nef, and in Fig. S4 for the weakly immuno-
genic proteins protease and integrase.

Assessing the Predicted Fitness Effects of Mutations. We examined
how different types of mutations contribute to the energy (fitness)
of sequences in the MSA. We expect that sets of mutations be-
longing to the same peak sequence are part of the same com-
pensatory pathways; thus, they should collectively decrease the
energy (increase the fitness) of sequences bearing these mutations
more than would be expected for arbitrary mutations. To study
this, we computed the change in energy of each MSA sequence z,

ΔHi =HðziÞ−HðzÞ; zi = fz1; z2; . . . ; zi−1; 1− zi; zi+1; . . . ; zNg;
[S15]

obtained when each site i in a sequence is converted from con-
sensus (0) to mutant (1), or vice versa. The values of ΔHi ob-
tained for each MSA sequence were then categorized into one of

Barton et al. www.pnas.org/cgi/content/short/1415386112 3 of 12

www.pnas.org/cgi/content/short/1415386112


four groups, based on whether the site i was mutated or not in
the MSA sequence and in the corresponding peak on which that
sequence lies:

• Site is mutated in the MSA sequence and in the correspond-
ing peak. These values of ΔHi quantify how the energy of the
MSA sequence is affected by mutations in the corresponding
peak sequence. As noted above, we expect such mutations
lower the energy (increase the fitness).

• Site is not mutated in the MSA sequence but is mutated in the
corresponding peak. These values quantify how the energy of
the MSA sequence would change if additional mutations pres-
ent in the corresponding peak sequence were added.

• Site is mutated in the MSA sequence, but not in the corre-
sponding peak. These values quantify how the energy of the
MSA sequence is affected by mutations outside the correspond-
ing peak sequence. Although these mutations are not present in
the peak sequence, they are presumably not arbitrary mutations
and thus they should not have high energy (fitness) costs.

• Site is not mutated in the MSA sequence or in the correspond-
ing peak. These values quantify the energy cost of adding “ran-
dom” or “arbitrary” mutations, which is presumably high.

After categorizing each of the ΔHi into one of these groups, we
computed their average for each MSA sequence and compared
the averages across sequences (Fig. S3).
We found that indeed mutations that are present in both an

MSA sequence and in the corresponding peak sequence tend to
lower the energy (increase the fitness) of the sequence more than
the other categories of mutations. As expected, mutations that are
present in either theMSA sequence or the peak sequence, but not
both, also have typically low energy costs. The typical cost of
arbitrary mutations is very high.

Idealized Model of Multiple Fitness Peaks. Here, we describe a
simple, exactly solvable model that gives a phenomenological
description of the properties of fitness peaks we have observed.
We consider a collection of N binary sites or spins z = {z1, z2, . . .,
zN}, with zi ∈ f0; 1g. A set of s peaks labeled by α = 1, 2, . . ., s, are
encoded in nonoverlapping subsets of Nα sites fiα1; iα2 ; . . . ; iαNα

g.
The sites in each peak are constrained such that sequences
belonging to the peak must have a certain fraction mα of sites
mutated:

XNα

k=1

ziαk =Mα =mαNα: [S16]

In the limit of largeN that we consider below, this is equivalent to
the less strict condition that the average fraction of mutated sites
is equal to mα. This constraint makes no distinction between
different sites in the same peak—any subset of mα Nα sites can
be mutated with equal probability. In sequences that do not
belong to the peak α, all Nα sites are equal to consensus (0).
We assume that sequences belong to only one fitness peak.
In this model, the one- and two-point correlations are given by

the following:

piα = fαmα; piα1 iα2 = fαm2
α; piα iβ = 0; [S17]

where fα is the frequency with which sequences lie on peak α.
These correlations can be enforced through a Hamiltonian of the
same form as that given in Eq. 1, with fields hα for all sites in the
same peak and couplings Jα between them. Additionally, we re-
quire large negative couplings Jαβ between sites in different peaks
to enforce the condition that sequences belong to just one peak.
The partition function Q can then be expressed as a sum over
independent contributions from each peak:

Q =
Xs

α=1

Qα; Qα =
X
fziα g

e−βHα ; [S18]

where the peak-specific Hamiltonian Hα is given by the following:

Hα =−hα
X
k

ziαk − Jα
X
k<l

ziαk ziαl ; [S19]

and β is the inverse temperature.
In the limit of large Nα, the partition function will generically

be dominated by just the largest term. That is, only sequences
from the peak with the highest free fitness would be observed. In
order for sequences from all peaks to be observed with finite
probability at β = 1, we need the following:

lim
Nα�1

logðQαÞ= Sα −Eα =C; [S20]

for some constant C. Because the entropy Sα and energy Eα are
extensive, logðQαÞ∝Nα, in order for peaks with different Nα

(assumed to be independent variables) to contribute, the con-
stant of proportionality C must be equal to zero to leading order
in Nα. We note that, if the condition log(Qα) = 0 held exactly for
all peaks α, then the probability of observing a sequence lying on
any fitness peak α would be the same, in contrast with the ob-
served power law distribution of sequences across peaks. How-
ever, the relatively probability of observing sequences on
different fitness peaks could be tuned by allowing log(Qα) to vary
by small additive factors (subleading in Nα). Here, we assume for
simplicity that Eq. S20 holds with C = 0 for all peaks.
Because all configurations with the same number of mutations

in a peak have the same energy, we have the following:

Sα =−Nαðmα logmα + ð1−mαÞlogð1−mαÞÞ;
Eα =−Nα

�
hαmα + 2NαJαm2

α

�
;

[S21]

in the limit of large Nα. Equating Sα and Eα thus leads to Eq. 3.
In the large Nα limit the self-consistency condition hziαi=mα at
β = 1 further requires the following:

−hα − 2NαJαmα − logmα + logð1−mαÞ= 0: [S22]

Combining the constraints in Eqs. S21 and S22, we can derive
formulas for the fields and couplings in terms of the fraction of
mutated sites in each peak:

hα = log
�

mα

1−mα

�
+

2
mα

logð1−mαÞ;

Jα =−
1

Nαm2
α

logð1−mαÞ:
[S23]

Model of Viral Growth. To compute the time necessary for the mu-
tations characterizing a fitness peak to emerge, we assume a starting
condition where no sites in the sequence are mutated. We consider
only the dynamics of the sites present in the peak sequence of interest;
the rest of the system is ignored. Each site that is currently equal to
consensus mutates with rate 1, and each site that is currently mutated
reverts to consensus with rate αe−J(k−1), where k is the current num-
ber of mutated sites. The exponential factor e−J(k−1) in the reversion
rate quantifies the synergistic effect between mutations within the
same peak sequence due to the positive couplings between them.
For simplicity, we assume that couplings between all sites in the
peak sequence are equal to the average coupling, denoted by J.
The parameter α in the reversion rate quantifies the relative ease of
making new mutations versus reverting existing mutations. Because
these mutations are driven by immune pressure, we expect α < 1.
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With this choice of dynamics, the total rates of the accumu-
lation of mutations pk and the reversion of mutations qk are as
follows:

pk =N − k; qk = k  α  e−Jðk−1Þ: [S24]

Following ref. 8, one then obtains for each peak i the expected
time Ti necessary to proceed from the initial configuration,
where no sites are mutated, to the full set of Ni mutations, given
in Eq. 5 in the main text. Using the total number of mutations
and the average coupling between mutations for each fitness
peak in the highly immunogenic proteins Gag and Nef, we com-
puted a set of ni, proportional to the number of expected se-
quences on each peak i, through Eq. 4. We chose the parameter
α such that the rank correlation between the measured number
of sequences on each peak i and the computed number of sequen-
ces ni was maximized, obtaining α = 0.133 for Nef and α = 0.058
for Gag. For both Gag and Nef, the correlation between the real
and computed number of sequences on each peak depends only
weakly on the value of α chosen in this range; thus, we use α = 0.1
for both in Fig. 3C, where we set f = 3.2 for Gag and f = 3.6 for
Nef. With this value of α, the Spearman rank correlation between
the true and model prevalence is r = 0.42, P = 1.4 × 10−18 for Gag
and r = 0.40, P = 3.2 × 10−20 for Nef (Fig. S8).

We also performed an identical calculation in the case that the
number of mutations required was not Ni but some fraction miNi,
equal to the average number of mutations in the peak sequences
shared by MSA sequences that lie on the same peak. Again, we
obtain a power law scaling relation for similar values of the
parameters, but over a limited range as described in the main
text. The results are shown in Fig. S9A, where we have used the
same value of α as in the previous case, f = 4.9 for Gag and f =
6.9 for Nef.
Incorporating variable mutation rates, to mimic that different

types of amino acid mutations occur with different probabilities,
can extend the range over which the power law holds. To do this,
we assume that mutation rates are not identically equal to 1 as
above, but rather chosen uniformly from the range [0.5, 1]. We
can set the upper limit of the mutation rate to 1 without loss of
generality, as this sets the overall timescale. The results that
follow are insensitive to the precise value of the lower limit.
Because the mutation rates are now unequal, we can no longer
write a simple expression for the overall rate of accumulation and
reversion of mutations as in Eq. S24, so we compute the Ti
through simulation. Choosing the same α = 0.1 and computing
the average Ti for each fitness peak over 104 simulations, we
obtain the set of ni shown in Fig. S9B, using f = 2.3 for Gag and
f = 3.5 for Nef.
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Fig. S1. The inferred Ising model accurately reproduces the frequency of single and double mutations as well as higher-order correlations in the sequence
data. Comparison of single-mutation frequencies (A) and double-mutation frequencies (B) in the sequence data (Eq. S1) and the inferred Ising model (Eq. S2).
(C) Comparison of the distribution of the number of mutations (relative to the consensus) observed in sequences between the sequence data, and the inferred
Ising model. Note that the latter distribution is not directly constrained by the requirement that the single- and double-mutation probabilities in the inferred
model match those in the data.
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Fig. S2. A large fraction of the mutations that define a fitness peak are typically present in the sequences that lie on the same peak. Box plots show the
median of the fraction of mutations in a peak sequence that are also present in the sequences from the MSA that belong to that fitness peak, with outliers
plotted as dots. Means are 0.70 for Gag, 0.78 for Nef, 0.70 for protease, and 0.89 for integrase. Note that, because the peak that most protease sequences lie on
has only one mutation, values of 0 or 1 are common.

Fig. S3. Mutations vary in their effects on the energy of a sequence depending upon whether they are present in the MSA sequence, in the corresponding
peak sequence, or both. Comparison of the contribution of point mutations to the energy of sequences from the MSA, categorized according to whether the
particular mutation was present in the MSA sequence and its corresponding fitness peak (SI Text). Mutations present in both the MSA sequence and the
sequence of the fitness peak on which it lies tend to decrease the energy (increase the fitness) of the sequence. Arbitrary mutations, present in neither the MSA
sequence nor the corresponding peak sequence, tend to have very high energy costs. Mutations that are present in either the MSA sequence or the corre-
sponding peak sequence, but not both, tend to have low energy costs.
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Fig. S4. Properties of fitness peaks in the weakly immunogenic proteins protease and integrase are similar to those obtained for Gag and Nef. (A) In protease
and integrase, 7 of 7 (100%) and 12 of 13 (92%) peak sequences are enriched in HLA-associated mutations (definition in SI Text), respectively. Enrichment
values are defined as the fraction of HLA-associated mutations in a peak sequence divided by the fraction of HLA-associated mutations in the whole protein.
Vertical lines indicate maximum enrichment values, obtained if all mutations present in a peak sequence are HLA-associated. P values express the probability of
obtaining at least as many HLA-associated mutations as actually observed in each peak sequence, assuming that these mutations were selected by chance (SI
Text). (B) Most peaks are distinct, with little overlap between the sets of mutations present in other fitness peaks. Because very few peaks are observed for
protease and integrase, small clusters of peaks that differ by containing slightly different sets of mutations cause a bump in the overlap distribution at large
values of the overlap. These small clusters of peaks also appear in Gag and Nef. They are caused by negative interactions between some sets of mutations,
which make them mutually incompatible. (C) Most mutations occur in a small fraction (20% or less) of peaks. A small fraction of mutations occur in many
fitness peaks (15 for protease, 16 for integrase). (D) Average couplings between primary sites mutated within each peak sequence tend to be strongly positive.
(E) Average couplings between primary and secondary sites mutated within each peak sequence are positive, but weaker than those between primary sites
alone. (F) Average couplings between mutated sites in pairs of peaks are positive (compensatory) when the peaks strongly overlap, becoming more negative
(deleterious) when the peaks are nearly disjoint.
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Fig. S5. Perturbed models yield similar fitness peaks. At Left, distribution of the Hamming distances between observed fitness peaks using binary sequences
sampled from the inferred Ising model (Eq. 1) and their corresponding fitness peaks found using the MSA sequences as starting points for the zero-tem-
perature Monte Carlo procedure for the proteins Gag (A), Nef (B), protease (C), and integrase (D). For comparison, we show the distribution of Hamming
distances between peak sequences in the original model. Fitness peaks found from a random sample from the inferred Ising model are the same, or very similar
to, those found from the MSA sequences. At Right, comparison of the number of sequences that lie on each fitness peak found from the random sample of
sequences and on the nearest corresponding fitness peak found from the MSA sequences. Differences between the distributions only emerge for fitness peaks
that have a small number of sequences on them. The same plots are also shown for fitness peaks found using a model inferred from a fraction of the full set of
data for Gag (E), Nef (F), protease (G), and integrase (H). The Hamming distance between fitness peaks found from the model using a fraction of the data and
the original fitness peaks is small compared with the typical distance between peak sequences, indicating that fitness peaks remain distinct even when the
model is inferred using limited data. The number of sequences that lie on each fitness peak is also consistent between the models inferred with a fraction of
the data and those inferred using the full MSA.
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Fig. S6. Coupling parameters derived from a simple model of nonoverlapping fitness peaks are broadly consistent with those obtained from the maximum
entropy model. (A) Kernel density estimate of the distribution of the log ratio of true average fields for each basin to those obtained from the basin model,
with mα taken to be the fraction of mutations in the basin sequence that are also present in the sequences from the MSA that fall into that basin (SI Text). The
model overestimates the true magnitude of the fields. (B) The couplings derived from the model are similar in magnitude to the true couplings between sites in
peak sequences.

Fig. S7. The frequency of haplotypes in the human population also exhibits power law scaling. The frequency of the 150 most common haplotypes in the US
population of European descent (1) is power law distributed with exponent ∼1 (maximum-likelihood estimate, 0.97), similar to the observed distribution of HIV
sequences across fitness peaks for the highly immunogenic proteins Gag and Nef (Fig. 1A).

1. Maiers M, Gragert L, Klitz W (2007) High-resolution HLA alleles and haplotypes in the United States population. Hum Immunol 68(9):779–788.
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Fig. S8. The prevalence of sequences on each fitness peak in the viral growth model is correlated with the true number of sequences lying on the peak. Here,
we show the true prevalence of sequences on each fitness peak versus the prevalence computed through the viral growth model (Eq. 4) for Gag (A) and Nef (B).
The computed prevalence is significantly correlated with the true prevalence (Spearman’s r = 0.42, P = 1.4 × 10−18 for Gag, and r = 0.40, P = 3.2 × 10−20 for Nef).
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Fig. S9. Decreasing the number of mutations required for virus viability restricts the range of derived power law scaling, but range can be broadened through
more variable dynamics. (A) Real sequences typically do not share all of the mutations in the peak sequence that they evolve to under zero-temperature Monte
Carlo simulation (Fig. S2). Here, we show the derived distribution of sequences among basins using the simple model of viral growth (Eq. 4), with the re-
quirement that the number of mutations in each sequence needed to arise for the virus to be viable is equal to the average number of mutations in the peak
sequence that are also present in the MSA sequences lying on that fitness peak. Because the width of the distribution of the entire set of peak sequence
mutations is larger, the range of observed power law scaling is restricted. Normalization of the prevalence is arbitrary. For comparison, a power law with
exponent 1 is shown in the background. (B) Incorporating more realistic variability in mutation rates broadens the range of the derived power law scaling
(SI Text).

Table S1. Gag, protease, and integrase are similar at the level of
single-site conservation

Protein Mean conservation, % Median conservation, %

Nef 87.7 96.4
Gag 93.8 99.0
Protease 94.7 99.4
Integrase 96.8 99.5

Conservation is defined for each site in an amino acid sequence as the
fraction of sequences in the MSA where the amino acid at that site matches
the consensus amino acid. Nef clearly displays increased variability compared
with the other three proteins. Consideration of the full distribution of single-
site conservation scores, beyond the mean and median shown here, yields
similar results.
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