SUPPLEMENTARY DATA

Fig. S1. Delta-*K* values from 20 replicates of STRUCTURE analysis calculated by StrutureHarvester, for *K* from 1 to 8.

Fig. S2. Probabilities of unassigned pollen genotypes to belong to STRUCTURE-inferred clusters estimated by GeneClass2.

Locus	Primer sequence	Repeat motif	Ta	Dye	Reference
UR123	F:AGCAATAAACCTTGTGTCGTG R: GAGCTTGCTATGCTTCGTCTC	(CA) ₄ CG (CA) ₅ (TTA) ₅	60°C	HEX	Zalapa et al. 2008
UR138	F: CTAGAACCCCCTTCGAAACC R: ACAAAAAGCCCACACACCTC	(GA) ₈	60°C	TAMRA	Zalapa et al. 2008
UR158	F: TTCTTCATAGGCGCTGAGGT R: TGCACCCTGTCAAAGCTAAA	(TGTA) ₅	55°C	TAMRA	Zalapa et al. 2008
UR188a	F: AAAACTAACGCGTCCCTTCC R: ATTTCGCTTCAATTGCGAG	(AC) ₁₅	55°C	TAMRA	Zalapa et al. 2008
Ulmi1-21	F: GCGGTCTTACGTGAGCTTTC R: AAAGAGGCAGACGAAGATGG	(CT) ₁₀	55°C	FAM	Collada et al. 2004
Ulmi1-165	F: CTCTTCCATTCGTCCTCACC R: GAGGTGCCATAAGCCAAGAA	(CT) ₉	55°C	FAM	Collada et al. 2004

Table S1. Characteristics of the marker set.

 $\overline{T_{\rm a}}$, annealing temperature.

Table S2. Correspondence between morphological classification and genetic clustering. The number of individuals morphologically classified as *U. minor*, *U. pumila* and hybrids assigned to each STRUCTURE cluster is reported for the Porporana stand and the surrounding area.

	Porporana stand			Surrounding area			
STRUCTURE							
clusters	Hybrids	U. minor	U. pumila	Hybrids	U. minor	U. pumila	
А	0	69	0	8	32	17	
В	0	191	0	0	4	2	
М	0	90	0	3	20	3	

Table S3. Hybrid detection analysis with STRUCTURE. Probabilities that a tree is from, or has ancestry in, the clusters inferred by first STRUCTURE analysis aimed at investigating the genetic structure in the study population.

STRUCTURE clusters	Ancestry in A	Ancestry in B
А	0.994	0.006
В	0.005	0.995
М	0.494	0.506

Analysis	STRUCTURE clusters	P0	P1	Hybrids	Unassigned
NEWHYBRIDS Prior information	А	120	0	0	6
	В	0	197	0	0
	М	1	59	1	55
NEWHYBRIDS No prior information	А	41	34	9	42
	В	0	196	0	1
	М	0	91	9	16

Table S4. Hybrid detection analysis with NEWHYBRIDS. Number of individuals assigned to purebreds (P0 and P1) or to hybrid categories.

Table S5. Genetic diversity parameters locus by locus for the entire dataset (439 individuals) and the Porporana stand only (350 individuals) calculated by GenAlEx (Peakall and Smouse, 2012). EP was calculated accoding to Jamieson and Taylor (1997) formulae by FaMoz (Gerber *et al.*, 2003). Mean inbreeding coefficient in brackets was estimated by InEST (Chybicki and Burczyk, 2009) as well as the frequencies of null alleles.

Population		A	1		Porporana stand					
Locus	Na	H _O	$H_{ m E}$	EP	Na	H _O	$H_{ m E}$	$F_{\rm IS}$	null _{IIM}	s.e.
UR123	4	0.460	0.532	0.372	4	0.429	0.489	0.124	0.056	0.020
UR138	16	0.573	0.828	0.557	14	0.596	0.847	0.296	0.125	0.017
UR158	7	0.707	0.751	0.580	7	0.775	0.726	-0.068	0.012	0.009
UR188A	7	0.746	0.588	0.337	5	0.796	0.581	-0.370	0.004	0.004
Ulmi1-21	13	0.647	0.735	0.646	13	0.621	0.701	0.115	0.046	0.014
Ulmi1-165	18	0.395	0.705	0.542	16	0.402	0.682	0.411	0.170	0.021
Mean	10.833	0.588	0.690		9.833	0.603	0.671	0.1013 (0.002 ± 0.002 s.e.)		
Overall				0.987						

 $N_{\rm a}$, number of alleles; $H_{\rm O}$, observed heterozygosity; $H_{\rm E}$, expected heteozygosity; EP, exclusion probability for paternity analysis; $F_{\rm IS}$, inbreeding coefficient; null_{IIM}, frequency of null allele.

Table S6. Comparison of pollen immigration estimates obtained by varying FaMoz settings about genotyping error values (e: 0.01, 0.05 and 0.10) and inbreeding coefficient values (F_{IS} : 0 and 0.10) on the original and transformed datasets. The pollen immigration estimate from the scenario selected for analyzing pollen dispersal patterns (original dataset, $F_{IS} = 0.10$, e = 0.05) is highlighted in bold.

		G	enotyping error	r
Dataset	Inbreeding coefficient	<i>e</i> = 0.01	<i>e</i> = 0.05	<i>e</i> = 0.1
Original	$F_{\rm IS} = 0.10$	87.56	77.72	62.43
	$F_{\rm IS}=0$	79.79	62.18	59.07
Transformed	$F_{\rm IS} = 0.10$	88.60	80.83	76.16
	$F_{\rm IS} = 0$	85.23	80.05	63.21

Table S7. Pollen immigration rate for each mother tree in 2007 and 2008. For each mother tree, the number of sampled seeds, its geographical location (in the central Porporana stand or in the surrounding agricultural area) and the genetic cluster to which it was assigned by STRUCTURE analysis are also reported.

V	Turn	27	Morphological	Porporana	Genetic	Pollen immigration
rear	I ree ID	IN	classification	stand	cluster	rate
2007	PO001	9	U. minor	yes	А	0.89
	PO125	9	U. pumila	no	А	0.67
	PO126	10	U. minor	no	А	0.70
	PO129	9	U. minor	no	Μ	1.00
	PO139	10	U. minor	no	А	0.90
	PO147	10	U. pumila	no	В	0.70
	PO148	4	U. pumila	no	А	0.75
	PO149	6	U. pumila	no	Μ	1.00
	PO150	4	Hybrid	no	Μ	0.75
	PO152	6	U. pumila	no	А	1.00
	PO157	8	U. minor	no	Μ	0.88
	PO170	8	U. minor	no	М	1.00
	PO173	10	U. minor	no	А	0.90
	PO174	6	U. minor	no	М	1.00
	PO175	8	U. minor	no	А	0.63
	PO182	10	U. numila	no	A	0.50
	PO187	8	U. pumila	no	A	0.63
	PO193	8	hybrid	no	A	0.75
	PO198	4	U minor	no	B	0.75
	PO204	10	U minor	no	M	0.79
2008	PO001	7	U minor	ves	A	1.00
2000	PO101	9	U minor	ves	A	1.00
	PO116	9	U minor	ves	M	0.67
	PO126	10	U minor	no	A	0.60
	PO129	8	U minor	no	M	1.00
	PO131	10	U minor	no	M	0.70
	PO133	9	U minor	no	M	0.70
	PO134	8	U numila	no	Δ	1.00
	PO130	9	U minor	no	Δ	0.44
	PO147	7	U numila	no	R	1.00
	PO1/8	5	U. pumila	no	Δ Δ	1.00
	PO140	8	U. pumila	no	M	1.00
	DO150	8	bybrid	no	M	1.00
	PO150	0 2	Il numila	no	1VI A	1.00
	PO152	2 0	U. pumila	no	A	1.00
	PO170	9	U. minor	no	M	0.89
	PO173	7 Q	U. minor	no	1VI A	0.89
	PO173	6	U. minor	no	A	0.38
	PO174	0	U. minor	no	IVI A	1.00
	PO1/3	9	U. minor U. munila	no	A	0.44
	PO182	10	U. pumila	no	A M	0.20
	FU183	9 0	0. pumila	110	IVI A	1.00
	PO103	ð 10	U. MINOr herbeid	110	A A	1.00
	PO195	10	nyoria	no	A	0.90
	PO193	9	U. minor	no	M	0.89
	PO198	9	U. minor	no	В	0.89
	PO200	9	nybrid	no	A	0.56
	PO202	8	U. minor	no	M	0.50
	PO204	1	U. minor	no	Μ	0.71

N, number of sampled seeds.

LITERATURE CITED

- Chybicki IJ, Burczyk J. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. *Journal of Heredity* 100: 106–113.
- **Collada C, Fuentes-Utrilla P, Gil L, Cervera MT. 2004.** Characterization of microsatellite loci in *Ulmus minor* Miller and cross-amplifi cation in *U. glabra* Hudson and *U. laevis* Pall. *Molecular Ecology Notes* **4**: 731–732.
- **Evanno G, Regnaut S, Goudet J. 2005.** Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology* **14**: 2611–2620.
- Gerber S, Chabrier P, Kremer A. 2003. FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. *Molecular Ecology Notes* 3: 479–481.
- Jamieson A, Taylor SS. 1997. Comparisons of three probability formulae for parentage exclusion. *Animal Genetics* 28: 397–400.
- **Peakall R, Smouse PE. 2012.** GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. *Bioinformatics* **28**: 2537–2539.
- Zalapa JE, Brunet J, Guries RP. 2008. Isolation and characterization of microsatellite markers for red elm (*Ulmus rubra* Muhl.) and cross-species amplification with Siberian elm (*Ulmus pumila* L.). *Molecular Ecology Resources* 8: 109–112.